
EXTENSION OF A RENEWAL THEOREM

DAVID B L A C K W E L L

1. Introduction. A chance variable x will be called a d-lattice variable if

(1) £ Pr{* = n</| = 1
n = -oo

and

(2) d is the largest number for which (1) holds.

If x is not a (/-lattice variable for any d, x will be called a nonlattice variable.

The main purpose of this paper is to give a proof of:

THEOREM 1. Let xv x2, ••• be independent identically distributed chance

variables with E(xi) = m > 0 (the case m = + oo is not excluded); let Sn =

# ! + •••+ xn; and, for any h > 0, let U(α, h) be the expected number of integers

n > 0 for which a < Sn < a + h. If the xn are nonlattice variables, then

h
U(a9 h)—> — , 0 as a —> + oo, - oo.

m

If the xn are d-lattice variables, then

d

U (α, d)—> — , 0 as a —> + oc , - oo .
m

(If m = + oo, h/m and d/m are interpreted as zero. )

T h i s theorem h a s been proved ( A ) for nonnegat ive (/- la t t ice v a r i a b l e s by

Kolmogorov [ 5 ] and by E r d δ s , F e l l e r , and P o l l a r d [ 4 ] ; ( B ) for nonnegat ive non-

l a t t i c e v a r i a b l e s by the writer [ l ] , u s ing the methods of [ 4 ] ; ( C ) for (/-lattice

v a r i a b l e s by Chung and Wolfowitz [ 3 ] ; ( D ) for nonla t t ice v a r i a b l e s such that

the d i s t r ibut ion of some Sn h a s an a b s o l u t e l y cont inuous part and m < oc by Chung
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and Pollard [ 2 ] , using a purely analytical method; and ( E ) in the form given

here by Harris (unpublished). Harris' proof does not essentially use the results

of the special cases (A), (B), (C), (D) the proof given here obtains Theorem 1

almost directly from the special cases (A) and (B) by way of an integral identi-

ty and an equation of Wald.

2. An integral identity. Let /Vt be the smallest n for which Sn > 0, and write

zί = SN let N2 be the smallest n > 0, for which S^ + n - S/y t > 0, and write

z2 = S/v +jv ~~ $N 9 a n d so on. Continuing in this way, we obtain sequences N ί9

Λ̂2> 5 zι* Z2> of independent, positive, identically distributed chance vari-

ables such that

Let V ( t ) , R (t) denote the expected number of integers n > 0 for which

Tn = Zι + " + zn ^ t a n d ~ ί < ̂  < °»

n<Nί9 respectively. That F ( ί ) < o o follows from a theorem of Stein [ 6 ] , and

that R (t) < oo follows from E (Nx ) < oo, which we show in the next section. The

integral identity i s :

T H E O R E M 2 / £ / ( α , h ) = [°° [ R ( t - a ) - R { t - a - h ) ] d V ( t ) .

Jo

Proof. If Πjr is the number of integers n with

/Vj + + NR < n < Nί + + Nκ + t and α < 5^ < α + A,

we have

E(nκ\Tκ = ί ) = Λ ( ί - α ) - R ( t - a - h ) ,

so that

£ ( Λ Λ ) = f°°[R(t-a) - Λ ( f - α - A ) ] dFκ(t),

where F ^ ( ί ) = Pr{ Tκ <t\. Summing over K = 0, 1, 2, , and using the fact

that

=o
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we obtain the theorem.

3. Wald's equation. The main purpose of this section is to note that E{Nί )

is finite, so that an equation of Wald [ 7, p. 142] holds.

THEOREM 3. E (/V1 ) < oo and mE (yVt) = E {zι ), so that m, E ( z t ) are both

finite or both infinite.

Proof. I n s h o w i n g E{Nί ) f i n i t e , w e m a y s u p p o s e {xn\ b o u n d e d a b o v e ; f o r

d e f i n i n g # * = m i n { s w , M\ y i e l d s a n /V* >N; c h o o s i n g M s u f f i c i e n t l y l a r g e

m a k e s E(x*)> 0 , a n d £ ( / V * ) < oo i m p l i e s E(Nl)<a>. S i n c e

K N, + + Nκ K

we obtain, letting K —» oc and using the strong law of large numbers, first that

E (z 1 ) = mE (N i ) and next since if ί xn \ is bounded above and \ zn\ is bounded,

that E (Nx ) is finite in this case and consequently in general.

4. The d-lattice case. For αf-lattice variables, Theorem 2 yields

\o ) U \nd, d) — 2^ τ\s — n) v\s) = 2 L γ\s> v \ s + n> *

s = o s = o

w h e r e r ( s ) = Λ ( s ( O - R ( [ s - 1 ] ί ) a n d v ( s ) = F ( s d ) - V([s - 1 ] < / ) . N o w

Σ r(s) = l i m R(t) = EiN^ < oo .

Theorem (A) asserts that

d

E(zι )

applying this to (1) yields

dEiN,)
U (nd, d ) —> , 0 as n —> oo , - co ,

E(zι)

and Wald's equation yields Theorem 1 for (/-lattice variables.

5. The nonlattice case. For nonlattice variables we have, rewriting Theorem
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2 with a change of variable,

£ / ( α , A ) = [ ° [R(t) - R{t~h)] dV(t
JM

For any if > 0, write

U(a, A ) = 7^/tf, α , A ) + / 2 ( Λ f , α , A ) ,

where

Λ =
1

and

I = [ ° ° [ R ( t ) - R ( t - h ) ] dV(t + a).
2 Jo

T h e o r e m B appl ied to { zn\ y i e l d s

V(t + h) - V{t)—> —
£ ( z i )

for all h > 0 a s t —» oo, so t h a t , s i n c e R(t) i s m o n o t o n e ,

R(t)dV(t + a) - / ^ β ( ί ) ^ F ( ί + α + A )

: Γ R(t)dt, 0
.2, JM-h

a s a — > oc , — oo

for fixed M, A. We now show t h a t , for fixed A, / (M, α, A) — > 0 a s Λ/ — > oo uni-

formly in a. We have

JM2 ^ jM+nh
n =o

n =0

w h e r e

Λ ^ ί f , Λ ) = s u p [ Λ ( ί ) - R(t-h)]
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as t varies over the interval (M + nh, M + {n + 1) h). Since, by Theorem (B),

h
V(b + h) - V(b)

E(Zι)

there is a constant c (for the given h) such that

I2(M,a,h) < c

Now

as b —> oo ,

for all M and a .

Σ Rχ (M9 2n) < E(Nι ) - R(M) and £ Rι (M, 2n
n =0 n =0

and R(M) ) as/M—>oo. Thus

, h)

for all α, where e(M9 h ) —» 0 as M —> oo for fixed h. Then

U (α, h —
hE(h\)

< e{m, h) 1AM, α,h) -
E( c R{t) dt

so that

lim sup U{α, h) -
hE{Nι

e(M, h)
1 \ίM

E(zχ) \JM-
R(t) dt - hE(Nι

Letting M —> oo yields

U(α,h)-
E{z

as α —> oo ,

and Wald's equation yields Theorem 1 for α —> oo. Similarly,
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U(a, h) < e(M,h) + \lι(M,a,h)\

for all α, so that

lim sup ί/(α, h) < 6 {M, h)
a —* —oo

and U ( α, h ) —> 0 as a—> - oc . This completes the proof.
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