EXTENSION OF A RENEWAL THEOREM

David Blackwell

1. Introduction. A chance variable x will be called a d-lattice variable if

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \operatorname{Pr}\{x=n d\}=1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
d \text { is the largest number for which (1) holds. } \tag{2}
\end{equation*}
$$

If x is not a d-lattice variable for any d, x will be called a nonlattice variable. The main purpose of this paper is to give a proof of:

Theorem l. Let x_{1}, x_{2}, \cdots be independent identically distributed chance variables with $E\left(x_{1}\right)=m>0$ (the case $m=+\infty$ is not excluded); let $S_{n}=$ $x_{1}+\cdots+x_{n}$; and, for any $h>0$, let $U(a, h)$ be the expected number of integers $n \geq 0$ for which $a \leq S_{n}<a+h$. If the x_{n} are nonlattice variables, then

$$
U(a, h) \longrightarrow \frac{h}{m}, 0
$$

$$
\text { as } a \longrightarrow+\infty,-\infty .
$$

If the x_{n} are d-lattice variables, then

$$
U(a, d) \longrightarrow \frac{d}{m}, 0 \quad \text { as } a \longrightarrow+\infty,-\infty .
$$

(If $m=+\infty, h / m$ and d / m are interpreted as zero.)
This theorem has been proved (A) for nonnegative d-lattice variables by Kolmogorov [5] and by Erdös, Feller, and Pollard [4]; (B) for nonnegative nonlattice variables by the writer [1], using the methods of [4]; (C) for d-lattice variables by Chung and Wolfowitz [3]; (D) for nonlattice variables such that the distribution of some S_{n} has an absolutely continuous part and $m<\infty$ by Chung

Received June 28, 1952. This paper was written under an Office of Naval Research contract.

Pacific J. Math. 3 (1953), 315-320
and Pollard [2], using a purely analytical method; and (E) in the form given here by Harris (unpublished). Harris' proof does not essentially use the results of the special cases (A), (B), (C), (D); the proof given here obtains Theorem 1 almost directly from the special cases (A) and (B) by way of an integral identity and an equation of Wald.
2. An integral identity. Let N_{1} be the smallest n for which $S_{n}>0$, and write $z_{1}=S_{N_{1}}$; let N_{2} be the smallest $n>0$, for which $S_{N_{1}+n}-S_{N_{1}}>0$, and write $z_{2}=S_{N_{1}+N_{2}}-S_{N_{1}}$, and so on. Continuing in this way, we obtain sequences N_{1}, $N_{2}, \cdots ; z_{1}, z_{2}, \cdots$ of independent, positive, identically distributed chance variables such that

$$
S_{N_{1}}+\cdots+N_{K}=z_{1}+\cdots+z_{K} .
$$

Let $V(t), R(t)$ denote the expected number of integers $n \geq 0$ for which

$$
T_{n}=z_{1}+\cdots+z_{n} \leq t \text { and }-t \leq S_{n} \leq 0,
$$

$n<N_{1}$, respectively. That $V(t)<\infty$ follows from a theorem of Stein [6], and that $R(t)<\infty$ follows from $E\left(N_{1}\right)<\infty$, which we show in the next section. The integral identity is:

Theorem 2. $U(a, h)=\int_{0}^{\infty}[R(t-a)-R(t-a-h)] d V(t)$.
Proof. If n_{K} is the number of integers n with

$$
N_{1}+\cdots+N_{K} \leq n<N_{1}+\cdots+N_{K+1} \text { and } a \leq S_{n}<a+h
$$

we have

$$
E\left(n_{K} \mid T_{K}=t\right)=R(t-a)-R(t-a-h),
$$

so that

$$
E\left(n_{K}\right)=\int_{0}^{\infty}[R(t-a)-R(t-a-h)] d F_{K}(t),
$$

where $F_{K}(t)=\operatorname{Pr}\left\{T_{K} \leq t\right\}$. Summing over $K=0,1,2, \cdots$, and using the fact that

$$
V(t)=\sum_{K=0}^{\infty} F_{K}(t),
$$

we obtain the theorem.
3. Wald's equation. The main purpose of this section is to note that $E\left(N_{1}\right)$ is finite, so that an equation of Wald [7, p. 142] holds.

Theorem 3. $E\left(N_{1}\right)<\infty$ and $m E\left(N_{1}\right)=E\left(z_{1}\right)$, so that $m, E\left(z_{1}\right)$ are both finite or both infinite.

Proof. In showing $E\left(N_{1}\right)$ finite, we may suppose $\left\{x_{n}\right\}$ bounded above; for defining $x_{n}^{*}=\min \left\{s_{n}, M\right\}$ yields an $N_{1}^{*} \geq N_{1}$; choosing M sufficiently large makes $E\left(x_{n}^{*}\right)>0$, and $E\left(N_{1}^{*}\right)<\infty$ implies $E\left(N_{1}\right)<\infty$. Since

$$
\frac{T_{K}}{K}=\frac{S_{N_{1}+\cdots+N_{K}}}{N_{1}+\cdots+N_{K}} \cdot \frac{N_{1}+\cdots+N_{K}}{K},
$$

we obtain, letting $K \longrightarrow \infty$ and using the strong law of large numbers, first that $E\left(z_{1}\right)=m E\left(N_{1}\right)$ and next since if $\left\{x_{n}\right\}$ is bounded above and $\left\{z_{n}\right\}$ is bounded, that $E\left(N_{1}\right)$ is finite in this case and consequently in general.
4. The d-lattice case. For d-lattice variables, Theorem 2 yields

$$
\begin{equation*}
U(n d, d)=\sum_{s=0}^{\infty} r(s-n) v(s)=\sum_{s=0}^{\infty} r(s) v(s+n) \tag{3}
\end{equation*}
$$

where $r(s)=R(s d)-R([s-1] d)$ and $v(s)=V(s d)-V([s-1] d)$. Now

$$
\sum_{s=0}^{\infty} r(s)=\lim _{t \rightarrow \infty} R(t)=E\left(N_{1}\right)<\infty .
$$

Theorem (A) asserts that

$$
v(n) \longrightarrow \frac{d}{E\left(z_{1}\right)}, 0 \quad \text { as } n \longrightarrow \infty,-\infty ;
$$

applying this to (1) yields

$$
U(n d, d) \rightarrow \frac{d E\left(N_{1}\right)}{E\left(z_{1}\right)}, 0 \quad \text { as } n \rightarrow \infty,-\infty,
$$

and Wald's equation yields Theorem 1 for d-lattice variables.
5. The nonlattice case. For nonlattice variables we have, rewriting Theorem

2 with a change of variable,

$$
U(a, h)=\int_{M}^{\infty}[R(t)-R(t-h)] d V(t+a) .
$$

For any $M>0$, write

$$
U(a, h)=I_{1}(M, a, h)+I_{2}(M, a, h),
$$

where

$$
I_{1}=\int_{0}^{M}[R(t)-R(t-h)] d V(t+a)
$$

and

$$
I_{2}=\int_{0}^{\infty}[R(t)-R(t-h)] d V(t+a)
$$

Theorem B applied to $\left\{z_{n}\right\}$ yields

$$
V(t+h)-V(t) \longrightarrow \frac{h}{E\left(z_{1}\right)}
$$

for all $h>0$ as $t \longrightarrow \infty$, so that, since $R(t)$ is monotone,

$$
\begin{array}{rlr}
I_{1} & =\int_{0}^{M} R(t) d V(t+a)-\int_{0}^{M-h} R(t) d V(t+a+h) & \\
& \rightarrow \frac{1}{E\left(z_{1}\right)} \cdot \int_{M-h}^{M} R(t) d t, 0 & \text { as } a \rightarrow \infty,-\infty
\end{array}
$$

for fixed M, h. We now show that, for fixed $h, I_{2}(M, a, h) \longrightarrow 0$ as $M \longrightarrow \infty$ uniformly in a. We have

$$
\begin{aligned}
I_{2} & =\sum_{n=0}^{\infty} \int_{M+n h}^{M+(n+1) h}[R(t)-R(t-h)] d V(t+a) \\
& \leq \sum_{n=0}^{\infty} R_{1}(M, n)[V(a+M+(n+1) h)-V(a+M+n h)],
\end{aligned}
$$

where

$$
R_{1}(M, n)=\sup [R(t)-R(t-h)]
$$

as t varies over the interval $(M+n h, M+(n+1) h)$. Since, by Theorem (B),

$$
V(b+h)-V(b) \rightarrow \frac{h}{E\left(z_{1}\right)} \quad \text { as } b \rightarrow \infty,
$$

there is a constant c (for the given h) such that

$$
I_{2}(M, a, h) \leq c \sum_{n=0}^{\infty} R_{1}(M, n) \quad \text { for all } M \text { and } a
$$

Now
$\sum_{n=0}^{\infty} R_{1}(M, 2 n) \leq E\left(N_{1}\right)-R(M)$ and $\sum_{n=0}^{\infty} R_{1}(M, 2 n+1) \leq E\left(N_{1}\right)-R(M)$, and $R(M) \longrightarrow E\left(N_{1}\right)$ as $M \longrightarrow \infty$. Thus

$$
\left|U(a, h)-I_{1}(M, a, h)\right|<\epsilon(M, h)
$$

for all a, where $\epsilon(M, h) \longrightarrow 0$ as $M \longrightarrow \infty$ for fixed h. Then

$$
\begin{aligned}
\left\lvert\, U\left(a, \left.h-\frac{h E\left(N_{1}\right)}{E\left(z_{1}\right)} \right\rvert\, \leq \epsilon(m, h)\right.\right. & +\left|I_{1}(M, a, h)-\frac{1}{E\left(z_{1}\right)} \int_{M-h}^{M} R(t) d t\right| \\
& +\left|\frac{1}{E\left(z_{1}\right)} \int_{M-h}^{M} R(t) d t-h E\left(N_{1}\right)\right|,
\end{aligned}
$$

so that

$$
\begin{aligned}
& \limsup _{a \rightarrow \infty}\left|U(a, h)-\frac{h E\left(N_{1}\right)}{E\left(z_{1}\right)}\right| \\
& \qquad \leq \epsilon(M, h)+\frac{1}{E\left(z_{1}\right)}\left|\int_{M-h}^{M} R(t) d t-h E\left(N_{1}\right)\right| .
\end{aligned}
$$

Letting $M \longrightarrow \infty$ yields

$$
U(a, h) \rightarrow \frac{h E\left(N_{1}\right)}{E\left(z_{1}\right)} \quad \text { as } a \rightarrow \infty,
$$

and Wald's equation yields Theorem 1 for $a \longrightarrow \infty$. Similarly,

$$
U(a, h) \leq \epsilon(M, h)+\left|I_{1}(M, a, h)\right|
$$

for all a, so that

$$
\limsup _{a \rightarrow-\infty} U(a, h) \leq \epsilon(M, h)
$$

and $U(a, h) \longrightarrow 0$ as $a \longrightarrow-\infty$. This completes the proof.

References

1. D. Blackwell, A renewal theorem, Duke Math. J. 15 (1948), 145-151.
2. K. L. Chung and Harry Pollard, An extension of renewal theory, Proc. Amer. Math. Soc. 3 (1952), 303-309.
3. K. L. Chung and J. Wolfowitz, On a limit theorem in renewal theory, Ann. of Math. 55 (1952), 1-6.
4. P. Erdös, W. Feller, and H. Pollard, A theorem on power series, Bull. Amer. Math. Soc. 55 (1949), 201-204.
5. A. Kolmogorov, Anfangsgründe der Theorie der Markoffschen Ketten mit unendlich vielen möglichen Zuständen, Mat. Sbornik N.S. 1 (1936), 607-610.
6. C. Stein, A note on cumulative sums, Ann. Math. Statistics 17 (1946), 498-499.
7. A. Wald, Sequential tests of statistical hypotheses, Ann. Math. Statistics 16 (1945) 117-186.

Stanford University

