
A METHOD OF GENERAL LINEAR FRAMES

IN RIEMANIAN GEOMETRY, I

H A R L E Y F L A N D E R S

1. Introduction. In this paper we shall derive the basic quantities of Riemann-

ian geometry, such as parallelism, curvature tensors, and so on, from a consider-

ation of all linear frames in the various tangent spaces. This procedure has the

advantage of subsuming both the classical approach through local coordinate

frames and the more modern approach through orthonormal frames. The exact con-

nection between these methods is thus made quite explicit.

The principal machinery used here is the exterior differential calculus of E.

Cartan. (See [ 1, p.201-208; 2, p.33-44; 3, p.4-6; 4, p. 146-152; 7, p.3-10].) We

shall follow the notation of Chern [3] with exceptions that we shall note in the

course of the paper. It is important to keep in mind the following specific points

of this calculus.

On a differentiable manifold of dimension n one has associated with each

p = 0, 1, 2, the linear space of exterior differential forms of degree p (p-

forms). The coefficients form the ring of differentiable functions on the manifold.

The 0-forms are simply the functions themselves, and the only p-form with p > n

is the form 0. Locally, if uι, ••• , un is a local,coordinate system then a one-

form ω may be written

(1.1) ω- Σ / U)**1';

and, more generally, a p-form ω may be written

(1.2) ω = Σ h . . . U ) duiι ...duip

( < < < < ) l P

— 2-/ fι i (u) du ι dup with the Λ .v skew-symmetric.
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If ω is a p-form and η a ^-form, then

(1.3) ωη = (-I)pq ηω

is the exterior product of ω and 77, and is a (p + g)-form.

The operation d of exterior differentiation is intrinsically characterized by

the following properties:

(A) d sends a p-form ω into a (p + 1 )-form dω;

(B) d(ωι + ω2) - d(oί + dω2

(C) d(dω) = 0;

(D) df- Σ(df/duι)duι, where / i s a 0-form (function) and (u) is a local

coordinate system;

(E) d(ωη) - dωη + (-1 ) p ωdη, where ω is a p-form.

We shall also use matrices whose elements are differential forms. If A is such

a matrix, tA will denote its transpose and dA will denote the matrix whose ele-

ments are obtained by applying d termwise to the elements of A. If A and B are

square matrices of p-forms and qr-forms respectively, then it follows from (1.3)

that

(1.4) \AB) = (-I)?? ιB 'A.

If A is a nonsingular matrix of functions (0-forms), then

(1.5) d(A~ι) = -A"1 dA A"1.

This is the case because AA~X =1, the identity matrix, hence

dA A"1 + AdA~ι = 0.

2. Linear frames. We shall now define the objects of this investigation. We

begin with a differentiate manifold Sί of dimension n and class C°°. (See [8,

p.20].) On such a manifold one may form the space C(3?) of all infinitely dif-

ferentiable real-valued functions on 3?. If P is a point of J?, a tangent vector at

P is an operator v on C(Ψκ) to the reals satisfying

(A) v(/+g) = v(/) +

(B) v(fg) = /(P) v(s) + g{P) v(f), for all/, ginC(ίl).

It is well known [5, p. 76-78; 6] that the set of all tangent vectors at Pforms a

linear space of dimension n under the usual operations of addition and scalar
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multiplication of operators. If 12 is a coordinate neighborhood on 3ί with a local

coordinate system uι

9 ••• , un

9 then the operators

d d
(2.1) e t = , . . . , en =

duι dun

may be considered as tangent vectors at each point P of 11, where if / i s in C(Jf)

we have

(2.2) βi(/) = {df/du*)p.

The vectors of (2.1) in fact form a basis for the tangent space of each P in 11.

A vector field {vector, for short) is an assignment of a tangent vector \p at

P to each point P of 3? [5, p. 82-83]. In terms of the basis (2.1), one may write

a given vector field v on 11 as follows:

(2.3) v = λ ι 'e., with λ1' = λ ' U 1 , . . . , un).

Here we use the Einstein summation convention, as we shall do in what follows.

The vector field v is infinitely differentiable if each of the coordinate functions

λι of the variables υJ is so. In the future we shall deal only with this kind of

vector so that "vector field" or "vector" will always mean infinitely differenti-

able vector. It is important to note that that this definition is independent of the

particular local coordinate system we have choosen, since a change in local co-

ordinates merely effects a nonsingular linear transformation with C°° coefficients

on the λ ι, in accordance with the usual tensor rules.

By a linear frame we shall mean a set e l f « , eΛ of vectors which form a

basis for the tangent space at each point P of a given coordinate neighborhood

U. One may visualize this as a choice of oblique coordinates in each of the tan-

gent spaces at the various points of U in such a way that the coordinate axes

and units vary smoothly in moving from point to point. The vectors of (2.1) form

an example of a linear frame, and we shall call such a frame a coordinate frame

to indicate that it is derived from a local coordinate system.

The manifold 5? is called a Riemannian space if it carries the following add-

itional structure. For each P in J? one is given an inner product in the tangent

space at P, making this space into a euclidean space. This assignment of inner

products to the various tangent spaces must be infinitely differentiate in the

following sense. If v and w are any two vectors on 3ί, then v w, the inner product

of v and w, which clearly is a point function on Jί, must be of class C°°. This

implies (and is equivalent to) the following. If e p ••• , en is the coordinate

frame of (2.1), then
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(2.4) e { . ek = gik(uι

9 •• , un),

where the functions g., are C°° functions on U. In this case one custimarily

writes

(2.5) d s 2 = gik\duιduk\,

where { } denotes the ordinary tensor product of the differentials, as distinguished

from the exterior product.

An orthonormal frame βp ••• , βn is a frame satisfying

(2.6) e; ek = δ k , the Kronecker δ .

If e ι t , en is a frame on the space 3ΐ, then there is uniquelly determined a

(dual) basis σ 1, , σn of the space of differential forms of degree one. This

is the case because the algebraic dual of the space of tangent vectors at a point

is precisely the space of 1-forms at that point. (Cf. [5, p. 81].) As is customary,

we shall formally write

(2.7) dP = σ ι 'e.,

and think of this displacement vector dP as a tangent vector whose components

are differentials. (See [ 1 , p. 34, 52, 101; 3, p. 10; 6, Chapter 2].)

3. Existence of parallel displacement. We shall now generalize the develop-

ment of [3, § 5]. We first of all select a linear frame el9 , en, and have

(3.1) dP = σ'e;,

where P is the variable point of 11 and the σι are one-forms on 11. We set

(3.2) *i *k = £ik>

which defines a positive definite symmetric matrix | | gik \\ of functions on 11.

We next wish to define differential forms ωί of degree 1 so that if we set

(3.3) dβi = ω/ey,

then the equations

(3.4) d(dP) = 0,

(3.5) deέ . e ^ e . dek = Πk
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will be formally satisfied. The first yields

d(dP) = d(σi e, ) = dσ' e, - σl ω( e. - 0,

hence

(3.6) dσJ' - σl ω{ = 0 .

The second equation becomes

(3.7) ω{βjk+ ωk &il = d8ik*

THEOREM 3.1. The equations (3.4), (3.5) define unique I'forms ωl.

Proof. It is convenient to work with covariant components. We set

(3.8) ωir = ω{ g / r, ηr = dd gjr,

and our equations become

(3.40 olωiτ - ηr,

(3 ^') ω L + α>i. = ^ ^ L.
\ v «-» / ικ tii ~ικ

The one-forms σ ι , , σ" are linearly independent, and so we may write

1
(3 9) 77 = — λ , σ σ ,

(3.10) dgik = c.kl σl

9

where the hτst and c ^ are known functions on 11 satisfying

We seek unknown functions Vjk such that

(3.12) ω\ - Γ{kσ
k,

or

(3.13) ωiτ = Γirk σk with Γirk = Γ'<Jfc g / r

We now have
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and so our equations ( 3 . 4 ' ) , (3 .5 ' ) become

(3.4") Γirk-Γkri = Kik>

O.5") r i W + r m = cikl.

These equations have a unique solution. To prove this, we derive as a con-

sequence of our equations the expression

Tiτk " hτik + Γkτi = hτik + ckri ~ Γrki

= Kik + c i r i ~ hkri ~ Γikr = hrik + c*ri " V i ~ Ci*r + ΓΛir

= Kik + Ckτi ~ hkri ~ Cikτ + hikr + Γrik

= Arifc + cAri ~ hkri ~ cikτ + hikτ + Crik ~ Γirk'

This implies that the only possible solution is given by

( 3 1 4 ) Γirk = 1 {hΠk + hikr ~ hkri^> + J ^Crik + Ckri ~ Cikr^

Substitution of this expression into the original equations (3 .4 ' ) , ( 3 . 5 " ) shows

that this indeed is a solution.

The functions Γ ^ are the components of the Christoffel symbols of the first

kind —with respect to a general frame rather than a coordinate frame as is usual.

In case of a coordinate frame (2.1) we have

σ* = du\ dσ1 = 0, hrst = 0;

only the terms in the cfi^ appear in (3.14). Since in this case

d&ikm ciki duί>

we have

iki γ'
du

and so (3.14) is precisely the formula of Cartan [ l , p . 3 7 ] . In case of an ortho-

normal frame, the g^ are constant, hence the c^ all vanish; only the terms in

the hriji appear in (3.14). Thus formula (3.1) of [ 3 ] results. In view of these

special cases and the right side of (3.14), it would appear that somehow a gen-

eral frame can be decomposed into a coordinate frame and an orthonormal frame.

This possibility seems worthy of further investigation.



GENERAL LINEAR FRAMES IN RIEMANNIAN GEOMETRY, I 5 5 7

We now can express our result in a convenient matrix form. We set

(3.15) G = \\gik\\> e = ' ( e ^ . ^ e j , σ = ( σ 1 , . . . , σ Λ ) , Ω = | | ω f | | .

We then have the vector equations

(3.16) dP = σe , de = Ωe, e . *e = G,

and the form equations

(3.17) do = σΩ, </C = ΩG + G Ώ .

It is perhaps well to keep in mind the relation in ordinary differentials

(3.18) ds2 = dP . dP = βtflσ 'σM = IσG %σ\.

Suppose that X = λ e is a (contravariant) vector field on 11, where λ =

( λ ι , . . . , λ71). We have

(3.19) dX = dλe + λrfe = {dλ + λΩ) e .

The vector field is said to be generated by parallel displacement along a sub-

space if the components of dX vanish on that subspace. Thus the condition is

(3.20) dλ + λΩ = 0.

If Y = μe is a second vector field, also generated by parallel displacement, so

that

dμ + μΩ = 0,

then we have

X Y = λ G ' μ ,

hence

d(X . Y) = dλ G V + λd G V + λ G %dμ

= - λ Ω G V + λ(ΩG + G*Ω)*μ - λ G ' β ' μ - 0.

This shows that parallel displacement is a euclidean transformation.

The differential forms given in (3.19) are often called the components of the

absolute differential of the given field X. (See [1, p.38].) These are given ex-

plicitly by
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(3.21) Z)λ=</λ + λ Ω , Dλ = ( D λ ι , ••• ,Dλn).

If we express these forms in terms of the basis σ, we obtain the coefficients

of the covariant derivative of λ:

(3.22) Dλ1 = λι',;. σ>, or Z)λ = λ,σ, where λ, = | | λ\j | | .

One deals with covariant (form) fields and tensor fields similarly. Suppose for

example that

T - λ</ . , e.

is a contravariant tensor field of order two. Here

denotes the tensor product of the vectors βj and βy. We have

(3.23) dτ = itfi e. e . + λ1' ω? e, e. + λι/ ω\ e£ β,,
* / I K ] J I I

hence

(3.24) dτ = Dλίy' βi e / t Z)λ^ = rfλ1^' + λ*' ω^ + λiZ ωj.

This again defines the covariant derivative

4. Consequences; the curvature forms and the Bianchi identities. We begin

with the basic relations (3.17). By differentiating the first of these, c?σ = σΩ,

we obtain

0 = dσίl - σdύ = σ(Ω 2 - rfΩ).

Thus if we set

(4.1) Θ = rfΩ - Ω 2,

we obtain the relation

(4.2) σΘ = 0.

The elements of the matrix

Θ -
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are two-forms, usually called the curvature forms. We set

( 4 . 3 ) "i ~~ a Urn σ σ

with

defining the Riemann symbols of the second kind. The relation (4.2) may now be

written

nk ί I 771 r\

ilm

By expressing this 3-form in skew-symmetric canonical form, we obtain

U Λ \ Z?& . nk . nk r\
4> Rilm + Rlmi + Rmiί = °

We next differentiate the relation ( 4 . 1 ) to obtain

d@ = -rfΩΩ + ΩrfΩ = - ( Θ + Ω 2 ) Ω + Ω(Θ + Ω 2 ) .

This gives the Bianchi relations:

U ζ) d® = Ω Θ - Θ Ω.

It is easily shown that further differentiation of this relation yields nothing new.

Now let us work on the second relation,

dG = ΩG + G*Ω,

of (3.17). This implies

0 = rfΩG - ΩdG + dG'Ω + G ιdΌ.

= (Θ + Ω 2 )G - ΩίΩG + G^Ω) + (ΩG + G ί Ω ) ί Ω + G ( ί Θ - ( ί Ω ) 2 ) ;

hence we have

(4.6) Θ G + G *Θ = 0 .

One also verifies that differentiating this formula leads to nothing more. One now

introduces the covariant components of Θ by setting

(4 7) θh = 07' £ z,
V4*.* / v

t k wι ojk

This implies
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with

Riklm = R1ilm 8jk-

These new symbols R are the Riemann symbols of the first kind (in the case of a

coordinate frame) and are also called the components of the covariant curvature

tensor. Their tensor nature will be verified in the next section. The relation

(4.6) now has the simple expressions

We also have from the relations (4.3) and (4.4),

On combining (4.9) with (4.10), one obtains in the usual way the symmetry re-

lation

5. Change of basis. Suppose that e* is second frame on 11. Then

(5.1) e* = A e,

where A is a nonsingular matrix of functions. For convenience we set B = A~ι

9

so that

dB = -BdAB.

The relation (5.1) implies

(5.2) σ— σ A y o r σ — σ B .

From the relation (3.16) we have

e . 'e = G.

This implies

G* = AG'A.

Next we obtain the main transformation law:
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THEOREM 5.1. Under the change of basis (5.1) we have

(5.4) Ω* = AζlA~ι + dAA-1.

Proof. According to Theorem 3.1, the matrix Ω* is uniquely determined by

the formulas

rfσ* = σ*Ω*, Ω*C* + G* Ώ * = dG*.

By differentiating (5.2), we obtain

dσ* = dσB - σdB = α Ω S + σBdAB = σ*(AΩB + dAB)t

which shows that the expression given in (5.4) satisfies the first of these con-

ditions. The verification of the second condition is this:

(AQB + dA B) AG *A + AG'A (ιB ιΩιA+ ιB ιdA)

- AQG'A + dAGU + AG'Q'A + AG ιdA

= dAGιA + AdGxA + AGHA = d{AGιA) = dG*.

COROLLARY 1. The curvature forms transform according to the law

(5.5) Θ* = A® A'1

Proof. We have

da* = dAaB + A da B + A da B + A ΩB dA B + dA B dA B

and

Ω*2 = Aa2 B + AaB dA B + dAaB + dABdA B,

hence

Θ* = rfΩ* -Ω*2 = A daB-Aa2 B = A®A~ι.

COROLLARY 2. //X= λe = λ*e* is a vector field on U, the following trans-

formation laws hold:

(5.6) λ* = λ , r ι , Z)λ* = Dλ A'1.

Proof. The first relation is simply the statement that λ satisfies the contra-

variant transformation law, and is obvious. The second relation is true because
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£>λ* = rfλ* + λ*Ω* = d\B - \B dA B + \B{AΩ B + dA B)

= dλ B + λΩ S = Dλ B.

Corollary 1 asserts that the forms Ql which compose the matrix Θ transform

as a mixed tensor of order two. Theorem 5.1 gives the transformation law for the

forms ωJ , and can easily be converted into a transformation law for the Christof-

fel symbols Γ/, of §3. What is more important, however, is the assertion of Corol-

lary 2, that the components Dλ1 of the absolute differential of X transform by the

contravariant tensor rule. This proves incidentally that parallel displacement is

intrinsic.

6. The volume element and Gaussian curvature. We set

(6.1) γ - \ G \ ι ' 2 σ ι , σ".

Thus γ is a nonzero ra-form on U. Here | G | denotes the (positive) determinant of

the positive-definite matrix G. It follows from equations (5.2) and (5.3) that

under a change of frame we have

(6.2) I G * ! 1 ' 2 = eA \ A \ . | G | " 2 , σι,- -,σn = \A\σ*\...,σ*n,

where

eA = s g n \A\.

Thus we have the transformation law satisfied by the volume element γ:

(6.3) y * = eA γ.

It is thus possible to define the volume of an orientable ^-dimensional portion of

3x by integrating γ over that portion.

We now borrow some information from the theory of skew-symmetric matrices.

Let S= ll^iyH be a generic skew-symmetric matrix of even dimension n = 2m.

Then there is a unique homogeneous polynomial P {xη) of degree m with the fol-

lowing properties:

(a) \S\ = [ P ( % i y ) ] 2 ;

(b) if S* = AS tA9 where A is nonsίngular, then

? ( * * . ) = \A\ P ( * . ; . ) ;

( c ) P has value 1 for the specialization
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Now assume that our space $t has even dimension n = 2m. The matrix // = Θ G

is skew-symmetric, by equations (4.7) and (4.9). Also the elements of H are 2-

forms, and hence lie in the commutative ring generated by all forms of even de-

gree. We set

(6.4) ξ=-P(H)/\G\ι/2.

This form ξ is of degree n and is called the Gaussian curvature form [ 5 ] . When

we combine (b) above with equation (6.2), we obtain the transformation law

(6.5) ξ* = eA ξ.

Since γ is a nonzero rc-form, and there is only one linearly independent rc-form,we

have

(6.6) ξ-Kγ,

where K is a function called the Gaussian curvature. We may combine (6.3) with

(6.5) to obtain the intrinsic character of this quantity:

(6.7) K* = K.

7. A property of | G\ In this section we shall set

g - \G\.

The equation (5.3) then implies that

where

a = \A\.

The following result is known [ 1 , p. 44] for the classical case of a local coordi-

nate frame.

T H E O R E M 7.1. //

S(Ω) = Σ, ω
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denotes the trace of the matrix Ω, then

1 dg
(7.1) - — = S ( Ω ) .

2 g

The proof of this theorem will rest on the following known lemma.

LEMMA 7.1. If A is a nonsingular matrix of functions, and

o = \A\,

then

da

(7.2) — = S(dA . A'1).
a

We shall include a short proof of this result for completeness. We set

C = coίA, B = A"1 = α"*1 C.

Then

where ηi is the determinant formed from | A \ be replacing the i row of | A \ by

the row (da^ , ^ , </α^). Thus

It follows that

da = 2Z ( ̂ ai •) c i > summed on £ and /.

On the other hand,

A~ι) = a-lS(dA . C) = α"1 Σ (ώ, , ) ca

as asserted.

Proof of Theorem 7.1. We shall first show that the formula (7.1) is valid,
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provided that it is valid for a single moving frame. We have, under the change of

frame (5.1),

dg* = lag da + a2 dg;

hence

2 g* = 2 g + a '

Next, from equation (5.4) we have

S(Ω*) = S(Ω) + S(dA .A'1).

It now follows from Lemma 7.1 that

^ ( )

2 g* 2 g

Finally, we note that for an orthonormal frame, Ω is skew-symmetric, hence

S(Ω) = 0, while G = /, g = 1, and so g"1 dg = 0.
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