IDENTIFICATIONS IN SINGULAR HOMOLOGY THEORY

EDWARD R. FADELL

INTRODUCTION

0.1. Given a Mayer complex M, a subcomplex M' is termed an unessential identifier for M if the natural projections from M onto the factor complex M/M' induce isomorphisms-onto on the homology level (see [1, § 1.2]). The present paper is a continuation and improvement of certain results obtained by Rado' and Reichelderfer (see [1] and [3]) concerning unessential identifiers for the singular complex R of Rado' (see [1, § 0.1]). We shall make use of the results, terminology, and notation in [1] and [3] with one exception. Because of a conflict in notation in [1] and [3], we shall use the notation η_p for the homomorphisms

$$\eta_p: C_p^S \longrightarrow C_p^R,$$

defined as the trivial homomorphism for p < 0, and for $p \ge 0$ as follows:

$$\eta_p (d_0, \dots, d_p, T)^S = (d_0, \dots, d_p, T)^R$$

(see [1, $\S0.3$]).

0.2. The principal results of the present paper may be described as follows. Let $N(\sigma_p \ \beta_p^R)$ denote the nucleus of the product homomorphism

$$\sigma_p \,\beta_p^R : C_p^R \longrightarrow C_p^S.$$

THEOREM. The system $\{N(\sigma_p \beta_p^R)\}$ is an unessential identifier for R.

Furthermore, for each p we have

$$N(\sigma_p \beta_p^R) \supset \hat{\Delta}_p^R \supset \hat{\Gamma}_p^R$$
,

Received July 13, 1952.

Pacific J. Math. 3 (1953), 529-549

where $\{\hat{\Delta}_{p}^{R}\}\$ and $\{\hat{\Gamma}_{p}^{R}\}\$ are the largest unessential identifiers for R obtained by Reichelderfer [3, §3.6] and Rado' [1, §4.7], respectively. Thus $\{N(\sigma_{p} \beta_{p}^{R})\}\$ is the largest unessential identifier presently known for R and imposes all the classical identifications in R.

Let $N(\beta_p^S)$ denote the nucleus of the barycentric homomorphism

$$\beta_p^s: C_p^s \longrightarrow C_p^s.$$

THEOREM. The system { $N(\beta_p^S)$ } is an unessential identifier for S.

It is interesting to note that the foregoing theorem gives for the Eilenberg complex S the result corresponding to that of Reichelderfer for the Rado complex R (see [3, §3.2]).

I. PRELIMINARIES

1.1. Let v_0, \dots, v_p denote p+1 points in Hilbert space E_{∞} . The barycenter $b = b(v_0, \dots, v_p)$ of these points is given by

$$b = (v_0 + \cdots + v_p)/(p+1).$$

The following lemmas are easily verified.

1.2. LEMMA. Let v_j $(j = 0, \dots, p)$ denote p + 1 points in E_{∞} , and

$$x = \sum_{j=0}^{p} \mu_{j} b(v_{0}, \dots, v_{j}),$$

where μ_j is real for $j = 0, \dots, p$. Then

$$x = \sum_{j=0}^{p} \sum_{l=j}^{p} \frac{\mu_{l}}{l+1} v_{j}, \text{ with } \sum_{j=0}^{p} \sum_{l=j}^{p} \frac{\mu_{l}}{l+1} = \sum_{j=0}^{p} \mu_{j}.$$

1.3. LEMMA. Let v_j $(j = 0, \dots, p)$ denote p + 1 points in E_{∞} , and

$$x = \sum_{j=0}^{p} \mu_j v_j,$$

with μ_i ($j = 0, \dots, p$) real and satisfying

 $\mu_0 \geq \mu_1 \geq \cdots \geq \mu_p \geq 0$.

Then

$$x = \sum_{j=0}^{p} \lambda_j b(v_0 \cdots v_j),$$

with

$$\begin{split} \lambda_{j} &= (j+1)(\mu_{j} - \mu_{j+1}) \ for \ j = 0, \cdots, p-1 \ (provided \ p-1 \ge 0), \\ \lambda_{p} &= (p+1)\mu_{p}, \end{split}$$

and

$$\sum_{j=0}^{p} \lambda_j = \sum_{j=0}^{p} \mu_j$$

1.4. As in [1], let d_0 , d_1 , d_2 , \cdots denote the sequence of points (1, 0, 0, 0, \cdots), (0, 1, 0, 0, \cdots), (0, 0, 1, 0, \cdots), \cdots in E_{∞} . For integers p, q such that $p \ge 0$, $0 \le q \le p + 1$, the homomorphism

$$q_{*p}: C_p \longrightarrow C_{p+1}$$

in the formal complex K of E_{∞} is defined by the relation

$$q_{*p}(v_0, \dots, v_p) = \begin{cases} (d_{p+1}, v_0, \dots, v_p) & \text{for } q = 0, \\ (-1)^q (v_0, \dots, v_{q-1}, d_{p+1}, v_q, \dots, v_p) & \text{for } 1 \le q \le p, \\ (-1)^{p+1} (v_0, \dots, v_p, d_{p+1}) & \text{for } q = p+1. \end{cases}$$

1.5. For $p \ge 0$, let τ_p denote an element of $T_{p\,0}$ (see [3, §1.9]), and let (i_0, \dots, i_p) denote the permutation of $0, \dots, p$ which gives rise to τ_p . Then we let sgn τ_p denote the sign of the permutation (i_0, \dots, i_p) : i.e., sgn τ_p is +1 or -1 according as an even or odd number of transpositions is required to obtain (i_0, \dots, i_p) .

The following lemmas are then obvious.

1.6. LEMMA. For
$$p \ge 0$$
 and $\tau_{p+1} \in T_{p+1,0}$, there exists a unique $\pi_p \in T_{p0}$,

and a unique q, $0 \le q \le p + 1$, such that

$$\tau_{p+1}(d_0, \cdots, d_{p+1}) = q_{*p} \pi_p(p+1)_{p+1}(d_0, \cdots, d_{p+1}).$$

1.7. LEMMA. For $p \ge 0$, let E_{p+1} denote the set of ordered pairs (q, π_p) , $0 \le q \le p+1$, $\pi_p \in T_{p0}$. There exists a biunique correspondence

 $\xi: T_{p+10} \longrightarrow E_{p+1}$

with

$$\xi \tau_{p+1} = (q, \pi_p),$$

such that

$$\tau_{p+1}(d_0, \cdots, d_{p+1}) = q_{*p} \pi_p(p+1)_{p+1}(d_0, \cdots, d_{p+1})$$

and

$$\operatorname{sgn} \tau_{p+1} = (-1)^{p+q+1} \operatorname{sgn} \pi_p.$$

1.8. Let

$$h_p: C_p \longrightarrow C_q$$

denote a homomorphism in K such that

$$h_p(d_0 \cdots d_p) = \pm (w_0, \cdots, w_q).$$

Then $[h_p]$ will denote the usual affine mapping from the convex hull $|d_0, \dots, d_q|$ of the points d_0, \dots, d_q onto the convex hull $|w_0, \dots, w_q|$ of the points w_0, \dots, w_q such that $[h_p](d_i) = w_i$ for $i = 0, \dots, q$.

1.9. Let β_p^R denote the barycentric homomorphism in R, and ρ_{*p}^R the barycentric homotopy operator in R of Reichelderfer (see [3, §2.1]). The barycentric homomorphism

$$\beta_p^S: C_p^S \longrightarrow C_p^S$$

in S may be given by

$$\beta_p^S = \sigma_p \ \beta_p^R \ \eta_p \qquad (\text{see} [2, \S 3.7]).$$

The corresponding homotopy operator

$$\rho_{*p}^{S}: C_{p}^{S} \longrightarrow C_{p+1}^{S}$$

is given by

$$\rho_{*p}^{S} = \sigma_{p+1} \rho_{*p}^{R} \eta_{p},$$

1.10. Employing the structure theorems for β_p^R , ρ_{*P}^R (see [3, §2.2]) we obtain the following:

LEMMA. For $p \ge 0$,

$$\beta_p^S(d_0, \cdots, d_p, T)^S = \sum_{\tau_p \in T_{p_0}} \operatorname{sgn} \tau_p(d_0, \cdots, d_p, T[0_{p+1} b_{p_0} \tau_p])^S,$$

$$\rho_{*p}^{S}(d_{0}, \cdots, d_{p}, T)^{S} = \sum_{k=0}^{p} \sum_{\tau_{p} \in T_{pk}} (-1)^{k} \operatorname{sgn} \tau_{p}(d_{0}, \cdots, d_{p+1}, T[b_{pk}\tau_{p}])^{S}.$$

Proof. We have

$$\beta_p^S(d_0, \dots, d_p, T)^S = \sigma_p \ \beta_p^R(d_0, \dots, d_p, T)^R$$
$$= \sigma_p \ \sum_{\tau_p \in T_{p0}} (0_{p+1} \ b_{p0} \ \tau_p(d_0, \dots, d_p), T)^R$$
$$= \sum_{\tau_p \in T_{p0}} \operatorname{sgn} \ \tau_p(d_0, \dots, d_p, T[0_{p+1} \ b_{p0} \ \tau_p])^S$$

and

$$\begin{split} \rho_{*p}^{S}(d_{0}, \cdots, d_{p}, T)^{S} &= \sigma_{p+1} \rho_{*p}^{R}(d_{0}, \cdots, d_{p}, T)^{R} \\ &= \sigma_{p+1} \sum_{k=0}^{p} \sum_{\tau_{p} \in T_{pk}} (b_{pk} \tau_{p}(d_{0}, \cdots, d_{p}), T)^{R} \\ &= \sum_{k=0}^{p} \sum_{\tau_{p} \in T_{pk}} (-1)^{k} \operatorname{sgn} \tau_{p}(d_{0}, \cdots, d_{p+1}, T[b_{pk} \tau_{p}])^{S}. \end{split}$$

,

1.11. In [2], Rado' makes use of the following identities which we state in terms of ρ_{*p}^{R} :

(1) $\sigma_{p+1} \rho_{*p}^R \eta_p \sigma_p = \sigma_{p+1} \rho_{*p}^R, \qquad -\infty$

(2)
$$\sigma_p \beta_p^R \eta_p \sigma_p = \sigma_p \beta_p^R$$
, $-\infty .$

The proof of (1) may be modeled after the proof for the corresponding identity stated in terms of the classical homotopy operator ρ_p^R (see [2, §3.5]). From identities (1) and (2), we have

(3) $\beta_p^S \sigma_p = \sigma_p \beta_p^R$, (4) $\rho_{*p}^S \sigma_p = \sigma_{p+1} \rho_{*p}^R$, (5) $\beta_{p+1}^S \rho_{*p}^S \sigma_p = \sigma_{p+1} \beta_{p+1}^R \rho_{*p}^R$

for all integers p.

1.12. Let P_1 and P_2 denote the following propositions: P_1 . Let c_p^S denote a p-chain of S such that

$$\beta_p^S c_p^S = 0.$$

Then

$$\beta_{p+1}^{S} \, \rho_{*p}^{S} \, c_{p}^{S} = 0 \, .$$

 P_2 . Let c_p^R denote a p-chain of R such that

$$\sigma_p \ \beta_p^R \ c_p^R = 0.$$

Then

$$\sigma_{p+1} \beta_{p+1}^{R} \rho_{*p}^{R} c_{p}^{R} = 0.$$

THEOREM. $P_1 \equiv P_2$; i.e., P_1 is true if and only if P_2 is true.

Proof. Assume P_1 , and let c_p^R denote a p-chain of R such that

$$\sigma_p \ \beta_p^R \ c_p^R = 0.$$

Then via identity (3) we have

$$\beta_p^S \sigma_p c_p^R = 0.$$

Therefore

$$\beta_{p+1}^S \rho_{*p}^S \sigma_p c_p^R = 0.$$

But via identity (5), we have

$$\sigma_{p+1} \beta_{p+1}^{R} \rho_{*p}^{R} c_{p}^{R} = 0,$$

and P_2 follows.

Now assume P_2 , and let c_p^S denote a p-chain of S such that

$$\beta_p^S c_p^S = 0$$

Then since

$$\beta_p^S = \sigma_p \ \beta_p^R \ \eta_p,$$

we have

$$\sigma_p \ \beta_p^R \ \eta_p \ c_p^S = 0.$$

Therefore, via P_2 , we have

$$\sigma_{p+1} \ \beta_{p+1}^R \ \rho_{*p}^R \ \eta_p \ c_p^S = 0.$$

But via (5) and the fact that $\sigma_p \ \eta_p = 1$, we have

$$\sigma_{p+1} \ \beta_{p+1}^R \ \rho_{*p}^R \ \eta_p \ c_p^S = \beta_{p+1}^S \ \rho_{*p}^S \ \sigma_p \ \eta_p \ c_p^S = \beta_{p+1}^S \ \rho_{*p}^S \ c_p^S = 0,$$

and P_1 follows.

II. THE PROOF OF P_1

2.1. We shall use throughout this section the notation T for the p-cell

 $(d_0, \dots, d_p, T)^S$ when there is little chance for ambiguity. Under this convention a chain c_p^S having the representation

$$c_p^{S} = \sum_{j=1}^{n} \lambda_j (d_0, \dots, d_p, T_j)^{S}$$

may be written $\sum_{j=1}^{n} \lambda_j T_j$. Thus *T* represents both a transformation from the convex hull $|d_0, \dots, d_p|$ into the topological space *X* and the *p*-cell $(d_0, \dots, d_p, T)^S$.

2.2. For p < 0, the proposition P_1 is trivial. For p = 0, P_1 is also trivial. For since $\beta_0^R = 1$ and $\sigma_0 \ \eta_0 = 1$, we have

$$\beta_0^S c_0^S = 0$$

implying

$$\sigma_{0} \beta_{0}^{R} \eta_{0} c_{0}^{S} = \sigma_{0} \eta_{0} c_{0}^{S} = c_{0}^{S} = 0,$$

whence clearly

$$\beta_1^S \rho_{*0}^S c_0^S = 0.$$

Now, take a fixed $p \ge 1$. Let

$$c_p^S = \sum_{j=1}^n \lambda_j T_j \qquad (\lambda_j \neq 0)$$

denote a p-chain of S such that

$$\beta_p^S \ c_p^S = 0 \, .$$

Via §1.10,

(1)
$$\beta_p^S c_p^S = \sum_{j=1}^n \sum_{\tau_p \in T_{p0}} \lambda_j \operatorname{sgn} \tau_p T_j [0_{p+1} b_{p0} \tau_p].$$

Let E denote the set of ordered pairs (j, τ_p), $1 \le j \le n$, $\tau_p \in T_{p0}$. Then

(2)
$$\beta_p^S c_p^S = \sum_{(j,\tau_p) \in E} \lambda_j \operatorname{sgn} \tau_p T_j [0_{p+1} b_{p0} \tau_p].$$

We now define a binary relation " \equiv " on E as follows:

$$(j, \tau_p) \equiv (j', \tau_p')$$

if and only if $T_j[0_{p+1} b_{p0} \tau_p]$, $T_j \cdot [0_{p+1} b_{p0} \tau_p']$ are identical p-cells. Then " \equiv " as defined is obviously a true equivalence relation and induces a partitioning of E into nonempty, mutually disjoint sets E_s ($s = 1, \dots, t$) with

$$E = \bigcup_{s=1}^{t} E_s.$$

Therefore, via (2), we have

(3)
$$\beta_p^S c_p^S = \sum_{s=1}^t \sum_{(j, \tau_p) \in E_s} \lambda_j \operatorname{sgn} \tau_p T_j [0_{p+1} b_{p0} \tau_p].$$

Take $1 \leq s < s' \leq t$. Then for $(j, T_p) \in E_s$, $(j', T_p') \in E_s$, the p-cells $T_j[0_{p+1} \ b_{p0} \ \tau_p]$, $T_j \cdot [0_{p+1} \ b_{p0} \ \tau_p']$ are distinct. Therefore, since

$$\beta_p^S c_p^S = 0,$$

we must have for each s, $1 \leq s \leq t$,

(4)
$$\sum_{(j, \tau_p) \in E_s} \lambda_j \operatorname{sgn} \tau_p T_j [0_{p+1} b_{p0} \tau_p] = 0,$$

and hence

(5)
$$\sum_{(j, \tau_p) \in E_s} \lambda_j \operatorname{sgn} \tau_p = 0,$$

since all p-cells occuring in (4) are identical.

2.3. Again via § 1.10,

(6)
$$\beta_{p+1}^{S} \rho_{*p}^{S} c_{p}^{S} = \sum_{j=1}^{n} \sum_{k=0}^{p} \sum_{\tau_{p} \in T_{pk}} \sum_{\tau_{p+1} \in T_{p+1,0}} \sum_{(-1)^{k} \operatorname{sgn} \tau_{p} \operatorname{sgn} \tau_{p+1} \lambda_{j} T_{j} [b_{pk} \tau_{p}] [0_{p+2} b_{p+1,0} \tau_{p+1}].$$

Applying the lemma of \S 1.7, we obtain

(7)
$$\beta_{p+1}^{S} \rho_{*p}^{S} c_{p}^{S} = \sum_{k=0}^{p} \sum_{q=0}^{p+1} (-1)^{p+q+k+1} \left\{ \sum_{j=1}^{n} \sum_{\tau_{p} \in T_{pk}} \sum_{\pi_{p} \in T_{p0}} \lambda_{j} \operatorname{sgn} \tau_{p} \right.$$
$$\operatorname{sgn} \pi_{p} T_{j} [b_{pk} \tau_{p}] [0_{p+2} b_{p+10} q_{*p} \pi_{p} (p+1)_{p+1}] \left. \right\}.$$

Thus, to prove that

$$\beta_{p+1}^{S} \ \rho_{*p}^{S} \ c_{p}^{S} = 0,$$

we are led to consider for a fixed k and q, $0 \leq k \leq p$, $0 \leq q \leq p+1,$ the expression

(8)
$$Y_{kq} = \sum_{j=1}^{n} \sum_{\tau_p \in T_{pk}} \sum_{\pi_p \in T_{p0}} \lambda_j \operatorname{sgn} \tau_p \operatorname{sgn} \pi_p T_j [b_{pk} \tau_p] \\ [0_{p+2} \ b_{p+10} \ q_{*p} \ \pi_p (p+1)_{p+1}].$$

Now to prove P_1 we need only show that $Y_{kq} = 0$. Therefore k and q will remain fixed throughout the remainder of this section; and even though subsequent definitions will depend upon k and q, they will not be displayed in the notation.

2.4. For

$$\tau_p = \tau_p(i_0, \cdots, i_p) \in T_{p0}$$

(see [3, §1.9]) there exists a unique permutation (n_0, \dots, n_k) of $0, \dots, k$ such that $i_{n_0} < \dots < i_{n_k}$. Let

$$\overline{\tau}_p = \overline{\tau}_p(j_0, \cdots, j_p),$$

where $j_l = i_{n_l}$ for $l = 0, \dots, k$, and $j_l = i_l$ for $k + 1 \le l \le p$. Then there exists

a unique permutation (m_0, \dots, m_k) of $0, \dots, k$, namely $(n_0, \dots, n_k)^{-1}$, such that

$$\tau_p = \tau_p(j_{m_0}, \cdots, j_{m_k}, j_{k+1}, \cdots, j_p).$$

Furthermore, let $A(\tau_p)$ denote the set of $\pi_p \in I_{p0}$ defined as follows. For

$$\pi_p = \pi_p (u_0, \dots, u_p) \in T_{p0}$$

we have a unique set of integers l_0, \dots, l_k , $0 \le l_0 < \dots < l_k \le p$ such that $(u_{l_0}, \dots, u_{l_k})$ is a permutation of $0, \dots, k$. Set $\pi_p \in A(\tau_p)$ if and only if $m_0 = u_{l_0}, \dots, m_k = u_{l_k}$.

2.5. Let B denote the set of ordered pairs $(\tau_p, \pi_p), \tau_p \in T_{p0}, \pi_p \in A(\tau_p)$, and B' the set of ordered pairs $(\tau_p', \pi_p'), \tau_p' \in T_{pk}, \pi_p \in T_{p0}$. We define a mapping

$$\gamma: B \longrightarrow B'$$

as follows:

$$\gamma(\tau_p, \pi_p) = (\tau_p', \pi_p')$$

where $\tau_p' = \overline{\tau_p}$ and $\pi_p' = \pi_p$. One shows with little difficulty that γ is biunique. Therefore

(9)
$$Y_{kq} = \sum_{j=1}^{n} \sum_{\tau_p \in T_{p0}} \sum_{\pi_p \in A(\tau_p)} \lambda_j \operatorname{sgn} \overline{\tau_p} \operatorname{sgn} \pi_p T_j [b_{pk} \overline{\tau_p}]$$

$$[0_{p+2} b_{p+10} q_{*p} \pi_p (p+1)_{p+1}].$$

2.6. Let $A = A(\tau_p(0, \dots, p))$. For $\tau_p \in I_{p0}$ we define

$$f_{\tau_p}: A \longrightarrow A(\tau_p)$$

as follows. For $\pi_p(u_0, \dots, u_p) \in A$, there exist integers l_0, \dots, l_k , $0 \leq l_0 < \dots < l_k \leq p$, such that $u_{l_0} = 0, \dots, u_{l_k} = k$. Define

$$f_{\tau_p} \pi_p = \pi_p'(u_0', \cdots, u_p')$$

as follows. Let

$$\overline{\tau}_p = \overline{\tau}_p(j_0, \cdots, j_p) \text{ and } \tau_p = \tau_p(j_{m_0}, \cdots, j_{m_k}, j_{k+1}, \cdots, j_p),$$

where (m_0, \dots, m_k) is a permutation of $0, \dots, k$. Set $u'_{l_0} = m_0, \dots, u'_{l_k} = m_k$, and $u'_r = u_r$ for $r \neq l_0, \dots, l_k$. Here again it is easy to show that f_{τ_p} is biunique. We have then

(10)
$$Y_{kq} = \sum_{j=1}^{n} \sum_{\tau_p \in T_{p0}} \sum_{\pi_p \in A} \lambda_j \operatorname{sgn} \overline{\tau_p} \operatorname{sgn} f_{\tau_p} \pi_p T_j [b_{pk} \overline{\tau_p}] \\ [0_{p+2} b_{p+10} q_{*p} f_{\tau_p} \pi_p (p+1)_{p+1}],$$

and hence

(11)
$$Y_{kq} = \sum_{s=1}^{t} \sum_{\pi_p \in A} \sum_{(j, \tau_p) \in E_s} \lambda_j \operatorname{sgn} \overline{\tau_p} \operatorname{sgn} f_{\tau_p} \pi_p T_j [b_{pk} \overline{\tau_p}] \\ [0_{p+2} b_{p+10} q_{*p} f_{\tau_p} \pi_p (p+1)_{p+1}]$$

(see §2.2).

2.7. LEMMA. Take
$$\pi_p(u_0, \dots, u_p) \in T_{p0}$$
 and let
 $\alpha = [0_{p+2} b_{p+10} q_{*p} \pi_p (p+1)_{p+1}].$

Let

$$x = \sum_{j=0}^{p+1} \mu_j d_j,$$

with

$$\mu_j \geq 0, \ j = 0, \dots, p+1, \ and \ \sum_{j=0}^{p+1} \mu_j = 1,$$

denote a point of $|d_0, \dots, d_{p+1}|$. Then

$$\alpha(x) = \sum_{j=0}^{p+1} a_j d_j,$$

where

(i)
$$a_j \ge 0, \ j = 0, \dots, p+1;$$

(ii)
$$\sum_{j=0}^{p+1} a_j = 1;$$

(iii) $a_{u_0} \geq a_{u_1} \geq \cdots \geq a_{u_p};$

(iv) $a_{u_0}, \dots, a_{u_p}, a_{p+1}$ are independent of π_p ; i.e., if $\pi'_p = \pi'_p(u'_0, \dots, u'_p) \in T_{p_0}$ and

$$\alpha' = \left[0_{p+2} b_{p+10} q_{*p} \pi'_p (p+1)_{p+1} \right],$$

then

$$\alpha'(x) = \sum_{j=0}^{p+1} a_j' d_j$$

with

$$a_{u_0} = a'_{u_0}, \cdots, a_{u_p} = a'_{u_p}, a_{p+1} = a'_{p+1}.$$

Proof. We consider only the case $1 \le q \le p$ since the fringe cases q = 0, p + 1 follow in a completely analogous manner. In case $1 \le q \le p$ we have

$$\alpha = [b(w_0)b(w_0, w_1)\cdots b(w_0, \cdots, w_{p+1})],$$

where

$$w_l = d_{u_l}, l = 0, \dots, q - 1, w_q = d_{p+1}, w_l = d_{u_{l-1}}, l = q + 1, \dots, p + 1.$$

Therefore,

$$\alpha(x) = \sum_{j=0}^{p+1} \mu_j b(w_0, \cdots, w_j) = \sum_{j=0}^{p+1} \left(\sum_{l=j}^{p+1} \frac{\mu_l}{l+1} \right) w_j$$

(see §1.2). Let

$$a_{p+1} = \sum_{l=q}^{p+1} \frac{\mu_l}{l+1}$$
, $a_{u_r} = \sum_{l=r}^{p+1} \frac{\mu_l}{l+1}$ for $r = 0, \dots, q-1$

and

$$a_{u_r} = \sum_{l=r+1}^{p+1} \frac{\mu_l}{l+1}$$
 for $r = q, \dots, p$.

Clearly, $a_{u_0}, \dots, a_{u_p}, a_{p+1}$ are independent of π_p in the sense of (iv), and $a_{u_0} \geq \dots \geq a_{u_p}$. Furthermore, $a_j \geq 0$ $(j = 0, \dots, p+1)$, and

$$\sum_{j=0}^{p+1} a_j = \sum_{j=0}^{p+1} \mu_j = 1.$$

Also,

$$\alpha(x) = \sum_{j=0}^{q-1} a_{u_j} d_{u_j} + a_{p+1} d_{p+1} + \sum_{j=q}^{p} a_{u_j} d_{u_j} = \sum_{j=0}^{p+1} a_j d_j,$$

and the lemma follows.

2.8. LEMMA. Take (j, τ_p) and $(j', \tau_p') \in E_s$ (see §2.2), $1 \le s \le t$, and $\pi_p^* \in A$. Then

$$T_{j}[b_{pk} \overline{\tau_{p}}][0_{p+2} b_{p+10} q_{*p} f_{\tau_{p}} \pi_{p}^{*}(p+1)_{p+1}]$$

= $T_{j} \cdot [b_{pk} \overline{\tau_{p}}'][0_{p+2} b_{p+10} q_{*p} f_{\tau_{p}} \pi_{p}^{*}(p+1)_{p+1}].$

Proof. Since (j, τ_p) , (j', τ_p') lie in E_s , we have

$$T_{j}[0_{p+1} b_{p0} \tau_{p}] = T_{j} \cdot [0_{p+1} b_{p0} \tau_{p}'],$$

Let

$$\pi_p = f_{\tau_p} \pi_p^* = \pi_p (u_0, \cdots, u_p), \pi_p' = f_{\tau_p'} \pi_p^* = \pi_p' (u_0', \cdots, u_p'),$$

$$\alpha = [0_{p+2} b_{p+10} q_{*p} \pi_p (p+1)_{p+1}], \alpha' = [0_{p+2} b_{p+10} q_{*p} \pi_p' (p+1)_{p+1}],$$
$$\gamma = [b_{pk} \overline{\tau_p}], \text{ and } \gamma' = [b_{pk} \overline{\tau_p'}].$$

Furthermore, let

$$\begin{aligned} \tau_p &= \tau_p(i_0, \cdots, i_p), \ \overline{\tau}_p = \overline{\tau}_p(j_0, \cdots, j_p), \\ \tau'_p &= \tau'_p(i_0, \cdots, i_p), \ \overline{\tau}'_p = \overline{\tau}'_p(j_0, \cdots, j_p). \end{aligned}$$

We have permutations (m_0, \dots, m_k) , (n_0, \dots, n_k) of $0, \dots, k$ such that

$$\begin{aligned} \tau_p &= \tau_p(j_{m_0}, \cdots, j_{m_k}, j_{k+1}, \cdots, j_p), \\ \tau_p' &= \tau_p'(j_{n_0}, \cdots, j_{n_k}, j_{k+1}, \cdots, j_p') \end{aligned}$$

Take an arbitrary point of $|d_0, \dots, d_{p+1}|$, say

$$x = \sum_{j=0}^{p+1} \mu_j d_j \qquad \qquad \mu_j \ge 0, \sum_{j=0}^{p+1} \mu_j = 1.$$

Then via the lemma of \S 2.7 we have

$$\alpha(x) = \sum_{j=0}^{p+1} a_j d_j \text{ with } a_j \ge 0, \sum_{j=0}^{p+1} a_j = 1, a_{u_0} \ge \cdots \ge a_{u_p},$$

and

$$\alpha'(x) = \sum_{j=0}^{p+1} a'_j d_j \text{ with } a'_j \ge 0, \sum_{j=0}^{p+1} a'_j = 1, a'_{u'_0} \ge \cdots \ge a'_{u'_p},$$

with

$$a_{u_0} = a'_{u_0}, \dots, a_{u_p} = a'_{u_p}$$
 and $a_{p+1} = a'_{p+1}$.

Now

$$\gamma = [d_{j_0}, \dots, d_{j_k}, b(d_{j_0}, \dots, d_{j_k}), \dots, b(d_{j_0}, \dots, d_{j_p})].$$

Hence

$$y \alpha(x) = a_0 d_{j_0} + \dots + a_k d_{j_k} + a_{k+1} b(d_{j_0}, \dots, d_{j_p}) + \dots + a_{p+1} b(d_{j_0}, \dots, d_{j_p})$$

$$= a_{m_0} d_{j_{m_0}} + \dots + a_{m_k} d_{j_{m_k}} + a_{k+1} b(d_{j_0}, \dots, d_{j_k}) + \dots + a_{p+1} b(d_{j_0}, \dots, d_{j_p})$$

$$= a_{m_0} d_{j_{m_0}} + \dots + a_{m_k} d_{j_{m_k}} + a_{k+1} b(d_{j_{m_0}}, \dots, d_{j_{m_k}}) + \dots + a_{p+1} b(d_{j_{m_0}}, \dots, d_{j_{m_k}}, d_{j_{k+1}}, \dots, d_{j_p})$$

$$= a_{m_0} d_{i_0} + \dots + a_{m_k} d_{i_k} + a_{k+1} b(d_{i_0}, \dots, d_{i_k}) + \dots + a_{p+1} b(d_{i_0}, \dots, d_{i_p}).$$

Now take integers l_0, \dots, l_k , $0 \le l_0 < \dots < l_k \le p$, such that $(u_{l_0}, \dots, u_{l_k})$ is a permutation of $0, \dots, k$. Since $\pi_p \in A(\tau_p)$, we have $m_0 = u_{l_0}, \dots, m_k = u_{l_k}$. Hence $a_{m_0} \ge \dots \ge a_{m_k}$.

In a similar fashion we obtain

$$\gamma' \alpha'(x) = a_{n_0}' d_{i_0}' + \dots + a_{n_k}' d_{i_k}' + a_{k+1}' b(d_{i_0}', \dots, d_{i_k}) + \dots + a_{p+1}' b(d_{i_0}', \dots, d_{i_p}),$$

with $a'_{n_0} \ge \cdots \ge a'_{n_k}$; and if l'_0, \cdots, l'_k , $0 \le l'_0 < \cdots < l'_k \le p$, are integers such that $(u'_{l_0}, \cdots, u'_{l_k})$ is a permutation of $0, \cdots, k$, we have

$$n_0 = u_{l_0}', \dots, n_k = u_{l_k'}'$$
.

Applying §1.3, we get

$$a_{m_0} d_{i_0} + \cdots + a_{m_k} d_{i_k} = \sum_{l=0}^k \gamma_l b(d_{i_0}, \cdots, d_{i_l})$$

with

$$\gamma_l = (l+1)(a_{m_l} - a_{m_{l+1}})$$
 for $l = 0, \dots, k-1$,

 $\gamma_k = (k+1)a_{m_k},$

and

$$\sum_{l=0}^{k} \gamma_{l} = \sum_{l=0}^{k} a_{m_{l}} .$$

Similarly,

$$a_{n_0} d_{i_0} + \cdots + a_{n_k} d_{i_k} = \sum_{l=0}^k \gamma_l b(d_{i_0}, \cdots, d_{i_l})$$

with

$$\gamma'_{l} = (l+1) (a''_{n_{l}} - a''_{n_{l+1}})$$
 for $l = 0, \dots, k-1$,
 $\gamma'_{k} = (k+1)a''_{n_{k}}$

and

$$\sum_{l=0}^k \gamma_l' = \sum_{l=0}^k a_{n_l}'.$$

However, since

$$\pi_p = f_{\tau_p} \pi_p^*, \ \pi_p' = f_{\tau_p'} \ \pi_p^*,$$

we have

$$l_0 = l'_0, \dots, l_k = l'_k$$
 and $u_r = u'_r$ for $r \neq l_0, \dots, l_k$.

Therefore, $a_{u_{l_0}} = a'_{u'_{l_0}}, \dots, a_{u_{l_k}} = a'_{u'_{l_k}}$, and hence

$$a_{m_0} = a_{n_0}, \cdots, a_{m_k} = a_{n_k}$$
.

Thus

$$\gamma_r = \gamma'_r$$
 for $r = 0, \cdots, k$.

Furthermore,

$$a_{u_r} = a''_{u_r}$$
 for $r \neq l_0, \dots, l_k$, and $a_{p+1} = a'_{p+1}$.

Therefore,

$$\gamma \alpha(x) = \sum_{l=0}^{k} \gamma_{l} b(d_{i_{0}}, \dots, d_{i_{l}}) + \sum_{l=k}^{p} a_{l+1} b(d_{i_{0}}, \dots, d_{i_{l}}),$$
$$\gamma' \alpha'(x) = \sum_{l=0}^{k} \gamma_{l} b(d_{i_{0}}, \dots, d_{i_{l}}) + \sum_{l=k}^{p} a_{l+1} b(d_{i_{0}}, \dots, d_{i_{l}}),$$

with

$$\sum_{l=0}^{k} \gamma_l + \sum_{l=k}^{p} a_{l+1} = \sum_{l=0}^{p+1} a_l = 1.$$

Let

$$y = \sum_{j=0}^{p} h_j d_j$$

with

$$h_j = \gamma_j \text{ for } j = 0, \dots, k-1,$$
$$h_k = \gamma_k + a_{k+1},$$
$$h_j = a_{j+1} \text{ for } j = k+1, \dots, p.$$

Clearly,

$$h_j \ge 0$$
 $(j = 0, \dots, p)$, and $\sum_{j=0}^{p} h_j = 1$.

Then

$$\gamma \alpha(x) = \sum_{l=0}^{p} h_{l} b(d_{i_{0}}, \dots, d_{i_{l}}) = [0_{p+1} b_{p_{0}} \tau_{p}](y)$$

and

$$\gamma' \alpha'(x) = \sum_{l=0}^{p} h_l b(d_{i_0}, \dots, d_{i_l}) = [0_{p+1} b_{p0} \tau_p'](y).$$

Therefore, since

$$T_{j}[0_{p+1} b_{p0} \tau_{p}](y) = T_{j} [0_{p+1} b_{p0} \tau_{p}](y),$$

we have

$$T_j \gamma \alpha(x) = T_j \cdot \gamma \cdot \alpha'(x).$$

Since x is arbitrary in $|d_0, \dots, d_{p+1}|$, our lemma follows.

2.9. LEMMA. For any s, $1 \leq s \leq t$, and $\pi_p^* \in A$,

$$\sum_{(j, \tau_p) \in E_s} \lambda_j \operatorname{sgn} \overline{\tau_p} \operatorname{sgn} f_{\tau_p} \pi_p^* = 0.$$

Proof. Since

$$\operatorname{sgn} \overline{\tau}_p \operatorname{sgn} f_{\tau_p} \pi_p^* = \operatorname{sgn} \tau_p \operatorname{sgn} \pi_p^*,$$

we have

$$\sum_{(j, \tau_p) \in E_s} \lambda_j \operatorname{sgn} \overline{\tau}_p \operatorname{sgn} f_{\tau_p} \pi_p^* = \operatorname{sgn} \pi_p^* \sum_{(j, \tau_p) \in E_s} \lambda_j \operatorname{sgn} \tau_p = 0$$

via (5) of §2.2.

2.10. Employing §§2.8, 2.9, and (11) of §2.6, we see that $Y_{kq} = 0$, and hence P_1 follows. Let us note also that since $P_1 \equiv P_2$, P_2 also is valid.

III. RESULTS

3.1. In [1, §4.2], Rado has established a lemma, which we state here for the barycentric homotopy operator ρ_{*p}^{R} .

LEMMA. Let $\{G_p\}$ be an identifier for R, such that the following conditions hold:

(i)
$$G_p \supset A_p^R$$
 (see [1, §3.4]),

(ii)
$$c_p^R \in G_p$$
 implies that $\sigma_p \beta_p^R c_p^R = 0$,
(iii) $c_p^R \in G_p$ implies that $\rho_{*p}^R c_p^R \in G_{p+1}$.

Then $\{G_p\}$ is an unessential identifier for R.

The proof of this lemma is identical with the proof of the corresponding lemma as given by Rado' with ρ_p^R (classical homotopy operator) replacing ρ_{*p}^R .

Since

$$\sigma_p \,\beta_p^R : C_p^R \longrightarrow C_p^S$$

is a chain mapping, the system $\{N(\sigma_p \ \beta_p^R)\}$ of nuclei of the homomorphisms $\sigma_p \ \beta_p^R$ is an identifier for R (see [1, §1.2]). Furthermore,

$$N(\sigma_p \ \beta_p^R) \supset A_p^R$$
 since $\sigma_p \ \beta_p^R = \beta_p^S \sigma_p$

(see §1.11). Applying P_2 directly, we see that $N(\sigma_p \beta_p^R)$ satisfies (iii) of the foregoing lemma. Therefore, since $N(\sigma_p \beta_p^R)$ is the largest identifier, satisfying (ii), we have the following maximum result yielded by the same lemma:

THEOREM. The system
$$\{N(\sigma_n \beta_n^R)\}$$
 is an unessential identifier for R.

3.2. In order to compare our results with those of Rado [1] and Reichelderfer[3] let us first note that

$$\hat{N}(\sigma_p \ \beta_p^R) = N(\sigma_p \ \beta_p^R),$$

where $\hat{N}(\sigma_p \ \beta_p^R)$ is the division hull of $N(\sigma_p \ \beta_p^R)$, since C_p^R is a free Abelian group. Then since

$$N(\sigma_p \ \beta_p^R) \supset \Delta_p^R = N(\beta_p^R) + A_p^R$$

(see [3, §3.6]) we have

$$N(\sigma_p \ \beta_p^R) \supset \hat{\Delta}_p^R \supset \hat{\Gamma}_p^R$$

(see [1, §4.7]).

The writer has been unable to determine as yet whether $N(\sigma_p \beta_p^R)$ is effectively larger than either $\hat{\Delta}_p^R$ or $\hat{\Gamma}_p^R$.

3.3. The following lemma (see [1, §4.1]) is immediate from the fact that ρ_{*p}^{S} satisfies the well-known "homotopy identity,"

$$\partial_{p+1}^{s} \rho_{*p}^{s} + \rho_{*p-1}^{s} \partial_{p}^{s} = \beta_{p}^{s} - 1.$$

LEMMA. Let $\{G_p\}$ be an identifier for S such that the following conditions hold:

(i)
$$c_p^S \in G_p$$
 implies that $\beta_p^S c_p^S = 0$,
(ii) $c_p^S \in G_p$ implies that $\rho_{*p}^S c_p^S \in G_{p+1}$.

Then $\{G_p\}$ is an unessential identifier for S.

The system of nuclei $\{N(\beta_p^S)\}$ clearly is an identifier for S since β_p^S is a chain mapping. Therefore, applying P_1 we obtain the maximum result of the fore-going lemma.

THEOREM. The system $\{N(\beta_p^S)\}$ is an unessential identifier for S.

REFERENCES

1. T. Rado, An approach to singular homology theory, Pacific J. Math. 1 (1951), 265-290.

2. ____, On identifications in singular homology theory, Rivista Mat. Univ. Parma, 2 (1951), 3-18.

3. P. V. Reichelderfer, On the barycentric homomorphism in a singular complex, Pacific J. Math. 2 (1952), 73-97.

4. S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, Princeton, 1952.

OHIO STATE UNIVERSITY AND HARVARD UNIVERSITY