IDENTIFICATIONS IN SINGULAR HOMOLOGY THEORY

Edward R. Fadell

Introduction

0.1. Given a Mayer complex M, a subcomplex M^{\prime} is termed an unessential identifier for M if the natural projections from M onto the factor complex M / M^{\prime} induce isomorphisms-onto on the homology level (see [1, §1.2]). The present paper is a continuation and improvement of certain results obtained by Radó and Reichelderfer (see [1] and [3]) concerning unessential identifiers for the singular complex R of Radó (see [1, $£ 0.1]$). We shall make use of the results, terminology, and notation in [1] and [3] with one exception. Because of a conflict in notation in [1] and [3], we shall use the notation η_{p} for the homomorphisms

$$
\eta_{p}: C_{p}^{S} \rightarrow C_{p}^{R},
$$

defined as the trivial homomorphism for $p<0$, and for $p \geq 0$ as follows:

$$
\eta_{p}\left(d_{0}, \cdots, d_{p}, T\right)^{S}=\left(d_{0}, \cdots, d_{p}, T\right)^{R}
$$

(see [$1, \S 0.3]$).
0.2. The principal results of the present paper may be described as follows. Let $N\left(\sigma_{p} \beta_{p}^{R}\right)$ denote the nucleus of the product homomorphism

$$
\sigma_{p} \beta_{p}^{R}: C_{p}^{R} \rightarrow C_{p}^{S}
$$

Theorem. The system $\left\{N\left(\sigma_{p} \beta_{p}^{R}\right)\right\}$ is an unessential identifier for R.
Furthermore, for each p we have

$$
N\left(\sigma_{p} \beta_{p}^{R}\right) \supset \hat{\Delta}_{p}^{R} \supset \hat{\Gamma}_{p}^{R},
$$

Received July 13, 1952.
Pacific J. Math. 3 (1953), 529-549
where $\left\{\hat{\Delta}_{p}^{R}\right\}$ and $\left\{\hat{\Gamma}_{p}^{R}\right\}$ are the largest unessential identifiers for R obtained by Reichelderfer [3, §3.6] and Radó [1, §4.7], respectively. Thus $\left\{N\left(\sigma_{p} \beta_{p}^{R}\right)\right\}$ is the largest unessential identifier presently known for R and imposes all the classical identifications in R.

Let $N\left(\beta_{p}^{S}\right)$ denote the nucleus of the barycentric homomorphism

$$
\beta_{p}^{S}: C_{p}^{S} \rightarrow C_{p}^{S}
$$

Theorem. The system $\left\{N\left(\beta_{p}^{S}\right)\right\}$ is an unessential identifier for S.
It is interesting to note that the foregoing theorem gives for the Eilenberg complex S the result corresponding to that of Reichelderfer for the Radó complex R (see $[3, \S 3.2]$).

I. Preliminaries

1.1. Let v_{0}, \ldots, v_{p} denote $p+1$ points in Hilbert space E_{∞}. The barycenter $b=b\left(v_{0}, \cdots, v_{p}\right)$ of these points is given by

$$
b=\left(v_{0}+\cdots+v_{p}\right) /(p+1)
$$

The following lemmas are easily verified.
1.2. Lemma. Let $v_{j}(j=0, \cdots, p)$ denote $p+1$ points in E_{∞}, and

$$
x=\sum_{j=0}^{p} \mu_{j} b\left(v_{0}, \cdots, v_{j}\right),
$$

where μ_{j} is real for $j=0, \cdots, p$. Then

$$
x=\sum_{j=0}^{p} \sum_{l=j}^{p} \frac{\mu_{l}}{l+1} v_{j}, \text { with } \sum_{j=0}^{p} \sum_{l=j}^{p} \frac{\mu_{l}}{l+1}=\sum_{j=0}^{p} \mu_{j} .
$$

1.3. Lemma. Let $v_{j}(j=0, \cdots, p)$ denote $p+1$ points in E_{∞}, and

$$
x=\sum_{j=0}^{p} \mu_{j} v_{j}
$$

with $\mu_{j}(j=0, \cdots, p)$ real and satisfying

$$
\mu_{0} \geq \mu_{1} \geq \cdots \geq \mu_{p} \geq 0
$$

Then

$$
x=\sum_{j=0}^{p} \lambda_{j} b\left(v_{0} \cdots v_{j}\right)
$$

with

$$
\begin{aligned}
\lambda_{j}=(j+1)\left(\mu_{j}-\mu_{j+1}\right) \text { for } j & =0, \cdots, p-1(\text { provided } p-1 \geq 0), \\
\lambda_{p} & =(p+1) \mu_{p}
\end{aligned}
$$

and

$$
\sum_{j=0}^{p} \lambda_{j}=\sum_{j=0}^{p} \mu_{j}
$$

1.4. As in [1], let $d_{0}, d_{1}, d_{2}, \ldots$ denote the sequence of points ($1,0,0$, $0, \ldots),(0,1,0,0, \ldots),(0,0,1,0, \ldots), \cdots$ in E_{∞}. For integers p, q such that $p \geq 0,0 \leq q \leq p+1$, the homomorphism

$$
q_{* p}: C_{p} \rightarrow C_{p+1}
$$

in the formal complex K of E_{∞} is defined by the relation
$q_{* p}\left(v_{0}, \cdots, v_{p}\right)=\left\{\begin{array}{l}\left(d_{p+1}, v_{0}, \cdots, v_{p}\right) \text { for } q=0, \\ (-1)^{q}\left(v_{0}, \cdots, v_{q-1}, d_{p+1}, v_{q}, \cdots, v_{p}\right) \text { for } 1 \leq q \leq p, \\ (-1)^{p+1}\left(v_{0}, \cdots, v_{p}, d_{p+1}\right) \text { for } q=p+1 .\end{array}\right.$
1.5. For $p \geq 0$, let τ_{p} denote an element of $T_{p o}$ (see [3, §1.9]), and let (i_{0}, \cdots, i_{p}) denote the permutation of $0, \cdots, p$ which gives rise to τ_{p}. Then we let $\operatorname{sgn} \tau_{p}$ denote the sign of the permutation (i_{0}, \cdots, i_{p}): i.e., $\operatorname{sgn} \tau_{p}$ is +1 or -1 according as an even or odd number of transpositions is required to obtain (i_{0}, \cdots, i_{p}).

The following lemmas are then obvious.
1.6. Lemma. For $p \geq 0$ and $\tau_{p+1} \in T_{p+10}$, there exists a unique $\pi_{p} \in T_{p 0}$,
and a unique $q, 0 \leq q \leq p+1$, such that

$$
\tau_{p+1}\left(d_{0}, \cdots, \tilde{d}_{p+1}\right)=q_{* p} \pi_{p}(p+1)_{p+1}\left(d_{0}, \cdots, d_{p+1}\right)
$$

1.7. Lemma. For $p \geq 0$, let E_{p+1} denote the set of ordered pairs $\left(q, \pi_{p}\right)$, $0 \leq q \leq p+1, \pi_{p} \in T_{p 0}$. There exists a biunique correspondence

$$
\xi: T_{p+10} \longrightarrow E_{p+1}
$$

with

$$
\xi \tau_{p+1}=\left(q, \pi_{p}\right)
$$

such that

$$
\tau_{p+1}\left(d_{0}, \cdots, d_{p+1}\right)=q_{* p} \pi_{p}(p+1)_{p+1}\left(d_{0}, \cdots, d_{p+1}\right)
$$

and

$$
\operatorname{sgn} \tau_{p+1}=(-1)^{p+q+1} \operatorname{sgn} \pi_{p}
$$

1.8. Let

$$
h_{p}: C_{p} \longrightarrow C_{q}
$$

denote a homomorphism in K such that

$$
h_{p}\left(d_{0} \cdots d_{p}\right)= \pm\left(w_{0}, \cdots, w_{q}\right)
$$

Then $\left[h_{p}\right.$] will denote the usual affine mapping from the convex hull $\left|d_{0}, \cdots, d_{q}\right|$ of the points d_{0}, \cdots, d_{q} onto the convex hull $\left|w_{0}, \cdots, w_{q}\right|$ of the points w_{0}, \cdots, w_{q} such that $\left[h_{p}\right]\left(d_{i}\right)=w_{i}$ for $i=0, \cdots, q$.
1.9. Let β_{p}^{R} denote the barycentric homomorphism in R, and $\rho_{* p}^{R}$ the barycentric homotopy operator in R of Reichelderfer (see [3, § 2.1]). The barycentric homomorphism

$$
\beta_{p}^{S}: C_{p}^{S} \longrightarrow C_{p}^{S}
$$

in S may be given by

$$
\beta_{p}^{S}=\sigma_{p} \beta_{p}^{R} \eta_{p}
$$

The corresponding homotopy operator

$$
\rho_{* p}^{S}: C_{p}^{S} \longrightarrow C_{p+1}^{S}
$$

is given by

$$
\rho_{* p}^{S}=\sigma_{p+1} \rho_{* p}^{R} \eta_{p},
$$

1.10. Employing the structure theorems for $\beta_{p}^{R}, \rho_{* P}^{R}$ (see [3, §2.2]) we obtain the following:

Lemma. For $p \geq 0$,

$$
\begin{gathered}
\beta_{p}^{S}\left(d_{0}, \cdots, d_{p}, T\right)^{S}=\sum_{\tau_{p} \in T_{p_{0}}} \operatorname{sgn} \tau_{p}\left(d_{0}, \cdots, d_{p}, T\left[0_{p+1} b_{p 0} \tau_{p}\right]\right)^{S}, \\
\rho_{* p}^{S}\left(d_{0}, \cdots, d_{p}, T\right)^{S}=\sum_{k=0}^{p} \sum_{\tau_{p} \in T_{p k}}(-1)^{k} \operatorname{sgn} \tau_{p}\left(d_{0}, \cdots, d_{p+1}, T\left[b_{p k} \tau_{p}\right]\right)^{S} .
\end{gathered}
$$

Proof. We have

$$
\begin{aligned}
\beta_{p}^{S}\left(d_{0}, \cdots, d_{p}, T\right)^{S} & =\sigma_{p} \beta_{p}^{R}\left(d_{0}, \cdots, d_{p}, T\right)^{R} \\
& =\sigma_{p} \sum_{\tau_{p} \in T_{p 0}}\left(0_{p+1} b_{p 0} \tau_{p}\left(d_{0}, \cdots, d_{p}\right), T\right)^{R} \\
& =\sum_{\tau_{p} \in T_{p 0}} \operatorname{sgn} \tau_{p}\left(d_{0}, \cdots, d_{p}, T\left[0_{p+1} b_{p 0} \tau_{p}\right]\right)^{S}
\end{aligned}
$$

and

$$
\begin{aligned}
\rho_{* p}^{S}\left(d_{0}, \cdots, d_{p}, T\right)^{S} & =\sigma_{p+1} \rho_{* p}^{R}\left(d_{0}, \cdots, d_{p}, T\right)^{R} \\
& =\sigma_{p+1} \sum_{k=0}^{p} \sum_{\tau_{p} \in T_{p k}}\left(b_{p k} \tau_{p}\left(d_{0}, \ldots, d_{p}\right), T\right)^{R} \\
& =\sum_{k=0}^{p} \sum_{\tau_{p} \in T_{p k}}(-1)^{k} \operatorname{sgn} \tau_{p}\left(d_{0}, \cdots, d_{p+1}, T\left[b_{p k} \tau_{p}\right]\right)^{S} .
\end{aligned}
$$

1.11. In [2], Radó makes use of the following identities which we state in terms of $\rho_{* p}^{R}$:
(1) $\sigma_{p+1} \rho_{* p}^{R} \eta_{p} \sigma_{p}=\sigma_{p+1} \rho_{* p}^{R}$,
$-\infty<p<\infty$,
(2) $\sigma_{p} \beta_{p}^{R} \eta_{p} \sigma_{p}=\sigma_{p} \beta_{p}^{R}$, $-\infty<p<\infty$.

The proof of (1) may be modeled after the proof for the corresponding identity stated in terms of the classical homotopy operator ρ_{p}^{R} (see [2, §3.5]). From identities (1) and (2), we have
(3) $\beta_{p}^{S} \sigma_{p}=\sigma_{p} \beta_{p}^{R}$,
(4) $\rho_{* p}^{S} \sigma_{p}=\sigma_{p+1} \rho_{* p}^{R}$,
(5) $\beta_{p+1}^{S} \rho_{* p}^{S} \sigma_{p}=\sigma_{p+1} \beta_{p+1}^{R} \rho_{* p}^{R}$
for all integers p.
1.12. Let P_{1} and P_{2} denote the following propositions:
P_{1}. Let c_{p}^{S} denote a p-chain of S such that

$$
\beta_{p}^{S} c_{p}^{S}=0
$$

Then

$$
\beta_{p+1}^{S} \rho_{* p}^{S} c_{p}^{S}=0
$$

P_{2}. Let c_{p}^{R} denote a p-chain of R such that

$$
\sigma_{p} \beta_{p}^{R} c_{p}^{R}=0
$$

Then

$$
\sigma_{p+1} \beta_{p+1}^{R} \rho_{* p}^{R} c_{p}^{R}=0
$$

Theorem. $P_{1} \equiv P_{2}$; i.e., P_{1} is true if and only if P_{2} is true.
Proof. Assume P_{1}, and let c_{p}^{R} denote a p-chain of R such that

$$
\sigma_{p} \beta_{p}^{R} c_{p}^{R}=0
$$

Then via identity (3) we have

$$
\beta_{p}^{S} \sigma_{p} c_{p}^{R}=0
$$

Therefore

$$
\beta_{\cdot p+1}^{S} \rho_{* p}^{S} \sigma_{p} c_{p}^{R}=0
$$

But via identity (5), we have

$$
\sigma_{p+1} \beta_{p+1}^{R} \rho_{* p}^{R} c_{p}^{R}=0
$$

and P_{2} follows.
Now assume P_{2}, and let c_{p}^{S} denote a p-chain of S such that

$$
\beta_{p}^{S} c_{p}^{S}=0
$$

Then since

$$
\beta_{p}^{S}=\sigma_{p} \beta_{p}^{R} \eta_{p}
$$

we have

$$
\sigma_{p} \beta_{p}^{R} \eta_{p} c_{p}^{S}=0
$$

Therefore, via P_{2}, we have

$$
\sigma_{p+1} \beta_{p+1}^{R} \rho_{* p}^{R} \eta_{p} c_{p}^{S}=0
$$

But via (5) and the fact that $\sigma_{p} \eta_{p}=1$, we have

$$
\sigma_{p+1} \beta_{p+1}^{R} \rho_{* p}^{R} \eta_{p} c_{p}^{S}=\beta_{p+1}^{S} \rho_{* p}^{S} \sigma_{p} \eta_{p} c_{p}^{S}=\beta_{p+1}^{S} \rho_{* p}^{S} c_{p}^{S}=0
$$

and P_{1} follows.

II. The proof of P_{1}

2.1. We shall use throughout this section the notation T for the p-cell
$\left(d_{0}, \ldots, d_{p}, T\right)^{S}$ when there is little chance for ambiguity. Under this convention a chain c_{p}^{S} having the representation

$$
c_{p}^{s}=\sum_{j=1}^{n} \lambda_{j}\left(d_{0}, \cdots, d_{p}, T_{j}\right)^{s}
$$

may be written $\sum_{j=1}^{n} \lambda_{j} T_{j}$. Thus T represents both a transformaticn from the convex hull $\left|d_{0}, \cdots, d_{p}\right|$ into the topological space X and the p-cell $\left(d_{0}, \cdots\right.$, $\left.d_{p}, T\right)^{S}$.
2.2. For $p<0$, the proposition P_{1} is trivial. For $p=0, P_{1}$ is also trivial. For since $\beta_{0}^{R}=1$ and $\sigma_{0} \quad \eta_{0}=1$, we have

$$
\beta_{0}^{S} c_{0}^{S}=0
$$

implying

$$
\sigma_{0} \beta_{0}^{R} \eta_{0} c_{0}^{S}=\sigma_{0} \eta_{0} c_{0}^{S}=c_{0}^{S}=0,
$$

whence clearly

$$
\beta_{1}^{S} \rho_{* 0}^{S} c_{0}^{S}=0 .
$$

Now, take a fixed $p \geq 1$. Let

$$
\begin{equation*}
c_{p}^{s}=\sum_{j=1}^{n} \lambda_{j} T_{j} \tag{j}
\end{equation*}
$$

denote a p-chain of S such that

$$
\beta_{p}^{S} c_{p}^{S}=0
$$

Via § 1.10,

$$
\begin{equation*}
\beta_{p}^{S} c_{p}^{s}=\sum_{j=1}^{n} \sum_{\tau_{p} \in T_{p 0}} \lambda_{j} \operatorname{sgn} \tau_{p} T_{j}\left[0_{p+1} b_{p 0} \tau_{p}\right] . \tag{1}
\end{equation*}
$$

Let E denote the set of ordered pairs $\left(j, \tau_{p}\right), 1 \leq j \leq n, \tau_{p} \in T_{p 0}$. Then

$$
\begin{equation*}
\beta_{p}^{S} c_{p}^{S}=\sum_{\left(j, \tau_{p}\right) \in E} \lambda_{j} \operatorname{sgn} \tau_{p} T_{j}\left[0_{p+1} b_{p 0} \tau_{p}\right] . \tag{2}
\end{equation*}
$$

We now define a binary relation " \equiv " on E as follows:

$$
\left(j, \tau_{p}\right) \equiv\left(j^{\prime}, \tau_{p}^{\prime}\right)
$$

if and only if $T_{j}\left[\begin{array}{lll}0_{p+1} & b_{p o} & \tau_{p}\end{array}\right], T_{j} \rho\left[\begin{array}{lll}0_{p+1} & b_{p o} & \tau_{p}^{\prime}\end{array}\right]$ are identical p-cells. Then " \equiv " as defined is obviously a true equivalence relation and induces a partitioning of E into nonempty, mutually disjoint sets $E_{s}(s=1, \cdots, t)$ with

$$
E=\bigcup_{s=1}^{t} E_{s}
$$

Therefore, via (2), we have

$$
\begin{equation*}
\beta_{p}^{S} c_{p}^{S}=\sum_{s=1}^{t} \sum_{\left(j, \tau_{p}\right) \in E_{s}} \lambda_{j} \operatorname{sgn} \tau_{p} T_{j}\left[0_{p+1} b_{p 0} \tau_{p}\right] \tag{3}
\end{equation*}
$$

Take $1 \leq s<s^{\prime} \leq t$. Then for $\left(j, T_{p}\right) \in E_{s},\left(j^{\prime}, T_{p}^{\prime}\right) \in E_{s^{\prime}}$, the p-cells $T_{j}\left[0_{p+1} b_{p o} \tau_{p}\right], T_{j} \cdot\left[0_{p+1} b_{p 0} \tau_{p}^{\prime}\right]$ are distinct. Therefore, since

$$
\beta_{p}^{S} c_{p}^{S}=0
$$

we must have for each $s, 1 \leq s \leq t$,

$$
\begin{equation*}
\sum_{\left(j, \tau_{p}\right) \in E_{s}} \lambda_{j} \operatorname{sgn} \tau_{p} T_{j}\left[0_{p+1} b_{p o} \tau_{p}\right]=0, \tag{4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{\left(j, \tau_{p}\right) \in E_{s}} \lambda_{j} \operatorname{sgn} \tau_{p}=0 \tag{5}
\end{equation*}
$$

since all p-cells occuring in (4) are identical.
2.3. Again via $\& 1.10$,

$$
\begin{align*}
\beta_{p+1}^{S} \rho_{* p}^{S} c_{p}^{S} & =\sum_{j=1}^{n} \sum_{k=0}^{p} \sum_{\tau_{p} \in T_{p k}} \sum_{\tau_{p+1} \in T_{p+10}} \tag{6}\\
& (-1)^{k} \operatorname{sgn} \tau_{p} \operatorname{sgn} \tau_{p+1} \lambda_{j} T_{j}\left[b_{p k} \tau_{p}\right]\left[0_{p+2} b_{p+10} \tau_{p+1}\right]
\end{align*}
$$

Applying the lemma of $\S 1.7$, we obtain

$$
\begin{align*}
\beta_{p+1}^{S} \rho_{* p}^{S} c_{p}^{S}= & \sum_{k=0}^{p} \sum_{q=0}^{p+1}(-1)^{p+q+k+1}\left\{\sum_{j=1}^{n} \sum_{\tau_{p} \in T_{p k}} \sum_{\pi_{p} \in T_{p 0}} \lambda_{j} \operatorname{sgn} \tau_{p}\right. \tag{7}\\
& \left.\operatorname{sgn} \pi_{p} T_{j}\left[b_{p k} \tau_{p}\right]\left[0_{p+2} b_{p+1} 0 q_{* p} \pi_{p}(p+1)_{p+1}\right]\right\}
\end{align*}
$$

Thus, to prove that

$$
\beta_{p+1}^{S} \rho_{* p}^{S} c_{p}^{S}=0,
$$

we are led to consider for a fixed k and $q, 0 \leq k \leq p, 0 \leq q \leq p+1$, the expression

$$
\begin{align*}
& Y_{k q}=\sum_{j=1}^{n} \sum_{\tau_{p} \in T_{p k}} \sum_{\pi_{p} \in T_{p 0}} \lambda_{j} \operatorname{sgn} \tau_{p} \operatorname{sgn} \pi_{p} T_{j}\left[b_{p k} \tau_{p}\right] \tag{8}\\
& {\left[0_{p+2} b_{p+10} q_{* p} \pi_{p}(p+1)_{p+1}\right] . }
\end{align*}
$$

Now to prove P_{1} we need only show that $Y_{k q}=0$. Therefore k and q will remain fixed throughout the remainder of this section; and even though subsequent definitions will depend upon k and q, they will not be displayed in the notation.
2.4. For

$$
\tau_{p}=\tau_{p}\left(i_{0}, \cdots, i_{p}\right) \in T_{p 0}
$$

(see $[3, \S 1.9]$) there exists a unique permutation $\left(n_{0}, \cdots, n_{k}\right)$ of $0, \cdots, k$ such that $i_{n_{0}}<\cdots<i_{n_{k}}$. Let

$$
\bar{\tau}_{p}=\bar{\tau}_{p}\left(j_{0}, \cdots, j_{p}\right)
$$

where $j_{l}=i_{n_{l}}$ for $l=0, \cdots, k$, and $j_{l}=i_{l}$ for $k+1 \leq l \leq p$. Then there exists
a unique permutation $\left(m_{0}, \cdots, m_{k}\right)$ of $0, \cdots, k$, namely $\left(n_{0}, \cdots, n_{k}\right)^{-1}$, such that

$$
\tau_{p}=\tau_{p}\left(j_{m_{0}}, \cdots, j_{m_{k}}, j_{k+1}, \cdots, j_{p}\right)
$$

Furthermore, let $A\left(\tau_{p}\right)$ denote the set of $\pi_{p} \in T_{p 0}$ defined as follows. For

$$
\pi_{p}=\pi_{p}\left(u_{0}, \cdots, u_{p}\right) \in T_{p 0}
$$

we have a unique set of integers $l_{0}, \cdots, l_{k}, 0 \leq l_{0}<\cdots<l_{k} \leq p$ such that $\left(u_{l_{0}}, \cdots, u_{l_{k}}\right)$ is a permutation of $0, \ldots, k$. Set $\pi_{p} \in A\left(\tau_{p}\right)$ if and only if $m_{0}=u_{l_{0}}, \cdots, m_{k}=u_{l_{k}}$.
2.5. Let B denote the set of ordered pairs $\left(\tau_{p}, \pi_{p}\right), \tau_{p} \in T_{p 0}, \pi_{p} \in A\left(\tau_{p}\right)$, and B^{\prime} the set of ordered pairs $\left(\tau_{p}^{\prime}, \pi_{p}^{\prime}\right), \tau_{p}^{\prime} \in T_{p k}, \pi_{p}^{\prime} \in T_{p 0}$. We define a mapping

$$
\gamma: B \rightarrow B^{\prime}
$$

as follows:

$$
\gamma\left(\tau_{p}, \pi_{p}\right)=\left(\tau_{p}^{\prime}, \pi_{p}^{\prime}\right)
$$

where $\tau_{p}^{\prime}=\bar{\tau}_{p}$ and $\pi_{p}^{\prime}=\pi_{p}$. One shows with little difficulty that γ is biunique. Therefore

$$
\begin{align*}
& Y_{k q}=\sum_{j=1}^{n} \sum_{\tau_{p} \in T_{p 0}} \sum_{\pi_{p} \in A\left(\tau_{p}\right)} \lambda_{j} \operatorname{sgn} \bar{\tau}_{p} \operatorname{sgn} \pi_{p} T_{j}\left[b_{p k} \bar{\tau}_{p}\right] \tag{9}\\
& {\left[\begin{array}{lll}
0_{p+2} b_{p+10} & \left.q_{* p} \pi_{p}(p+1)_{p+1}\right] .
\end{array}\right.}
\end{align*}
$$

2.6. Let $A=A\left(\tau_{p}(0, \ldots, p)\right)$. For $\tau_{p} \in T_{p 0}$ we define

$$
f_{\tau_{p}}: A \rightarrow A\left(\tau_{p}\right)
$$

as follows. For $\pi_{p}\left(u_{0}, \ldots, u_{p}\right) \in A$, there exist integers l_{0}, \ldots, l_{k}, $0 \leq l_{0}<\cdots<l_{k} \leq p$, such that $u_{l_{0}}=0, \cdots, u_{l_{k}}=k$. Define

$$
f_{\tau_{p}} \pi_{p}=\pi_{p}^{\prime}\left(u_{0}^{\prime}, \ldots, u_{p}^{\prime}\right)
$$

as follows. Let

$$
\bar{\tau}_{p}=\bar{\tau}_{p}\left(j_{0}, \cdots, j_{p}\right) \text { and } \tau_{p}=\tau_{p}\left(j_{m_{0}}, \cdots, j_{m_{k}}, j_{k+1}, \cdots, j_{p}\right)
$$

where $\left(m_{0}, \cdots, m_{k}\right)$ is a permutation of $0, \cdots, k$. Set $u \hat{l}_{0}=m_{0}, \cdots, u l_{k}^{\prime}=m_{k}$, and $u_{r}^{\prime}=u_{r}$ for $r \neq l_{0}, \cdots, l_{k}$. Here again it is easy to show that $f_{\tau_{p}}$ is biunique. We have then
(10) $\quad Y_{k q}=\sum_{j=1}^{n} \sum_{\tau_{p} \in T_{p 0}} \sum_{\pi_{p} \in A} \lambda_{j} \operatorname{sgn} \bar{\tau}_{p} \operatorname{sgn} f_{\tau_{p}} \pi_{p} T_{j}\left[b_{p k} \bar{\tau}_{p}\right]$

$$
\left[0_{p+2} b_{p+10} q_{* p} f_{\tau_{p}} \pi_{p}(p+1)_{p+1}\right]
$$

and hence

$$
\begin{align*}
& Y_{k q}=\sum_{s=1}^{t} \sum_{\pi_{p} \in A} \sum_{\left(j, \tau_{p}\right) \in E_{s}} \lambda_{j} \operatorname{sgn}{\overline{\tau_{p}} \operatorname{sgn} f_{\tau_{p}} \pi_{p} T_{j}\left[b_{p k} \bar{\tau}_{p}\right]}^{\left[0_{p+2} b_{p+10} q_{* p} f_{\tau_{p}} \pi_{p}(p+1)_{p+1}\right]} \tag{11}
\end{align*}
$$

(see § 2.2).
2.7. Lemмa. Take $\pi_{p}\left(u_{0}, \cdots, u_{p}\right) \in T_{p o}$ and let

$$
\alpha=\left[\begin{array}{llll}
0_{p+2} b_{p+1} & q_{* p} \pi_{p}(p+1)_{p+1}
\end{array}\right]
$$

Let

$$
x=\sum_{j=0}^{p+1} \mu_{j} d_{j}
$$

with

$$
\mu_{j} \geq 0, j=0, \ldots, p+1, \text { and } \sum_{j=0}^{p+1} \mu_{j}=1
$$

denote a point of $\left|d_{0}, \cdots, d_{p+1}\right|$. Then

$$
\alpha(x)=\sum_{j=0}^{p+1} a_{j} d_{j}
$$

where
(i) $a_{j} \geq 0, j=0, \cdots, p+1$;
(ii) $\sum_{j=0}^{p+1} a_{j}=1$;
(iii) $a_{u_{0}} \geq a_{u_{1}} \geq \cdots \geq a_{u_{p}}$;
(iv) $a_{u_{0}}, \cdots, a_{u_{p}}, a_{p+1}$ are independent of $\pi_{p} ;$ i.e., if $\pi_{p}^{\prime}=\pi_{p}^{\prime}\left(u_{0}^{\prime}, \cdots, u_{p}^{\prime}\right) \in$ $T_{p o}$ and

$$
\alpha^{\prime}=\left[\begin{array}{lll}
0_{p+2} b_{p+1} 0 & q_{* p} \pi_{p}^{\prime}(p+1)_{p+1}
\end{array}\right]
$$

then

$$
\alpha^{\prime}(x)=\sum_{j=0}^{p+1} a_{j}^{\prime} d_{j}
$$

with

$$
a_{u_{0}}=a_{u_{\delta}}^{\prime}, \cdots, a_{u_{p}}=a_{u_{p}^{\prime}}^{\prime}, \quad a_{p+1}=a_{p+1}^{\prime}
$$

Proof. We consider only the case $1 \leq q \leq p$ since the fringe cases $q=0$, $p+{ }^{\bullet} 1$ follow in a completely analogous manner. In case $1 \leq q \leq p$ we have

$$
\alpha=\left[b\left(w_{0}\right) b\left(w_{0}, w_{1}\right) \cdots b\left(w_{0}, \cdots, w_{p+1}\right)\right]
$$

where

$$
w_{l}=d_{u_{l}}, l=0, \cdots, q-1, w_{q}=d_{p+1}, w_{l}=d_{u_{l-1}}, l=q+1, \ldots, p+1
$$

Therefore,

$$
\alpha(x)=\sum_{j=0}^{p+1} \mu_{j} b\left(w_{0}, \cdots, w_{j}\right)=\sum_{j=0}^{p+1}\left(\sum_{l=j}^{p+1} \frac{\mu_{l}}{l+1}\right) w_{j}
$$

$$
a_{p+1}=\sum_{l=q}^{p+1} \frac{\mu_{l}}{l+1}, a_{u_{r}}=\sum_{l=r}^{p+1} \frac{\mu_{l}}{l+1} \text { for } r=0, \ldots, q-1
$$

and

$$
a_{u_{r}}=\sum_{l=r+1}^{p+1} \frac{\mu_{l}}{l+1} \text { for } r=q, \cdots, p
$$

Clearly, $a_{u_{0}}, \ldots, a_{u_{p}}, a_{p+1}$ are independent of π_{p} in the sense of (iv), and $a_{u_{0}} \geq \cdots \geq a_{u_{p}}$. Furthermore, $a_{j} \geq 0(j=0, \cdots, p+1)$, and

$$
\sum_{j=0}^{p+1} a_{j}=\sum_{j=0}^{p+1} \mu_{j}=1
$$

Also,

$$
\alpha(x)=\sum_{j=0}^{q-1} a_{u_{j}} d_{u_{j}}+a_{p+1} d_{p+1}+\sum_{j=q}^{p} a_{u_{j}} d_{u_{j}}=\sum_{j=0}^{p+1} a_{j} d_{j}
$$

and the lemma follows.
2.8. Lemma. Take $\left(j, \tau_{p}\right)$ and $\left(j^{\prime}, \tau_{p}^{\prime}\right) \in E_{s}($ see $§ 2.2), 1 \leq s \leq t$, and $\pi_{p}^{*} \in A$. Then

$$
\begin{aligned}
& T_{j}\left[b_{p k} \bar{\tau}_{p}\right]\left[0_{p+2} b_{p+10} q_{* p} f_{\tau_{p}} \pi_{p}^{*}(p+1)_{p+1}\right] \\
& =T_{j} \cdot\left[\begin{array}{llll}
b_{p k} & \bar{\tau}_{p}^{\prime}
\end{array}\right]\left[\begin{array}{lll}
0_{p+2} & b_{p+10} & q_{* p} \\
f_{\tau_{p}^{\prime}} & \pi_{p}^{*}(p+1)_{p+1}
\end{array}\right] .
\end{aligned}
$$

Proof. Since $\left(j, \tau_{p}\right),\left(j^{\prime}, \tau_{p}^{\prime}\right)$ lie in E_{s}, we have

$$
T_{j}\left[0_{p+1} b_{p 0} \tau_{p}\right]=T_{j} \cdot\left[\begin{array}{lll}
0_{p+1} & b_{p 0} & \tau_{p}^{\prime}
\end{array}\right]
$$

Let

$$
\begin{gathered}
\pi_{p}=f_{\tau_{p}} \pi_{p}^{*}=\pi_{p}\left(u_{0}, \cdots, u_{p}\right), \pi_{p}^{\prime}=f_{\tau_{p}^{\prime}} \pi_{p}^{*}=\pi_{p}^{\prime}\left(u_{0}^{\prime}, \cdots, u_{p}^{\prime}\right) \\
\alpha=\left[0_{p+2} b_{p+10} q_{* p} \pi_{p}(p+1)_{p+1}\right], \alpha^{\prime}=\left[0_{p+2} b_{p+10} q_{* p} \pi_{p}^{\prime}(p+1)_{p+1}\right], \\
\gamma=\left[b_{p k} \bar{\tau}_{p}\right], \text { and } \gamma^{\prime}=\left[b_{p k} \bar{\tau}_{p}^{\prime}\right] .
\end{gathered}
$$

Furthermore, let

$$
\begin{aligned}
& \tau_{p}=\tau_{p}\left(i_{0}, \cdots, i_{p}\right), \quad \bar{\tau}_{p}=\bar{\tau}_{p}\left(j_{0}, \cdots, j_{p}\right) \\
& \tau_{p}^{\prime}=\tau_{p}^{\prime}\left(i_{0}^{\prime}, \cdots, i_{p}^{\prime}\right), \bar{\tau}_{p}^{\prime}=\bar{\tau}_{p}^{\prime}\left(j_{0}^{\prime}, \cdots, j_{p}^{\prime}\right)
\end{aligned}
$$

We have permutations $\left(m_{0}, \cdots, m_{k}\right),\left(n_{0}, \cdots, n_{k}\right)$ of $0, \cdots, k$ such that

$$
\begin{aligned}
& \tau_{p}=\tau_{p}\left(j_{m_{0}}, \cdots, j_{m_{k}}, j_{k+1}, \cdots, j_{p}\right), \\
& \tau_{p}^{\prime}=\tau_{p}^{\prime}\left(j_{n_{0}}^{\prime}, \cdots, j_{n_{k}}^{\prime}, j_{k+1}^{\prime}, \cdots, j_{p}^{\prime}\right)
\end{aligned}
$$

Take an arbitrary point of $\left|d_{0}, \cdots, d_{p+1}\right|$, say

$$
x=\sum_{j=0}^{p+1} \mu_{j} d_{j} \quad \quad \mu_{j} \geq 0, \sum_{j=0}^{p+1} \mu_{j}=1
$$

Then via the lemma of $£ 2.7$ we have

$$
\alpha(x)=\sum_{j=0}^{p+1} a_{j} d_{j} \text { with } a_{j} \geq 0, \sum_{j=0}^{p+1} a_{j}=1, a_{u_{0}} \geq \cdots \geq a_{u_{p}}
$$

and

$$
\alpha^{\prime}(x)=\sum_{j=0}^{p+1} a_{j}^{\prime} d_{j} \text { with } a_{j}^{\prime} \geq 0, \sum_{j=0}^{p+1} a_{j}^{\prime}=1, a_{u_{0}^{\prime}}^{\prime} \geq \cdots \geq a_{u_{p}^{\prime}}^{\prime}
$$

with

$$
a_{u_{0}}=a_{u_{0}^{\prime}}^{\prime}, \ldots, a_{u_{p}}=a_{u_{p}^{\prime}}^{\prime} \quad \text { and } \quad a_{p+1}=a_{p+1}^{\prime}
$$

Now

$$
\gamma=\left[d_{j_{0}}, \ldots, d_{j_{k}}, b\left(d_{j_{0}}, \cdots, d_{j_{k}}\right), \ldots, b\left(d_{j_{0}}, \cdots, d_{j_{p}}\right)\right]
$$

Hence

$$
\begin{aligned}
& \gamma \alpha(x)=a_{0} d_{j_{0}}+\cdots+a_{k} d_{j_{k}}+a_{k+1} b\left(d_{j_{0}}, \cdots, d_{j_{p}}\right)+\cdots+ \\
& a_{p+1} b\left(d_{j_{0}}, \cdots, d_{j_{p}}\right) \\
& =a_{m_{0}} d_{j_{m_{0}}}+\cdots+a_{m_{k}} d_{j_{m_{k}}}+a_{k+1} b\left(d_{j_{0}}, \cdots, d_{j_{k}}\right)+\cdots+ \\
& a_{p+1} b\left(d_{j_{0}}, \cdots, d_{j_{p}}\right) \\
& =a_{m_{0}} d_{j_{m_{0}}}+\cdots+a_{m_{k}} d_{j_{m_{k}}}+a_{k+1} b\left(d_{j_{m_{0}}}, \cdots, d_{j_{m_{k}}}\right)+\cdots+ \\
& a_{p+1} b\left(d_{j_{m_{0}}}, \ldots, d_{j_{m_{k}}}, d_{j_{k+1}}, \ldots, d_{j_{p}}\right) \\
& =a_{m_{0}} d_{i_{0}}+\cdots+a_{m_{k}} d_{i_{k}}+a_{k+1} b\left(d_{i_{0}}, \cdots, d_{i_{k}}\right)+\cdots \\
& +a_{p+1} b\left(d_{i_{0}}, \ldots, d_{i_{p}}\right) .
\end{aligned}
$$

Now take integers $l_{0}, \cdots, l_{k}, 0 \leq l_{0}<\cdots<l_{k} \leq p$, such that ($u_{l_{0}}, \cdots, u_{l_{k}}$) is a permutation of $0, \cdots, k$. Since $\pi_{p} \in A\left(\tau_{p}\right)$, we have $m_{0}=u_{l_{0}}, \cdots, m_{k}=u_{l_{k}}$. Hence $a_{m_{0}} \geq \cdots \geq a_{m_{k}}$.

In a similar fashion we obtain

$$
\begin{aligned}
& \gamma^{\prime} \alpha^{\prime}(x)=a_{n_{0}^{\prime}}^{\prime} d_{i_{0}^{\prime}}^{\prime}+\cdots+a_{n_{k}^{\prime}} d_{i_{k}^{\prime}}+a_{k+1}^{\prime} b\left(d_{i_{0}^{\prime}}, \cdots, d_{i_{k}^{\prime}}\right)+\cdots \\
&+a_{p+1}^{\prime} b\left(d_{i_{0}^{\prime}}, \cdots, d_{i_{p}^{\prime}}\right)
\end{aligned}
$$

with $a_{n_{0}}^{\prime} \geq \cdots \geq a_{n_{k}}^{\prime}$; and if $l_{0}^{\prime}, \cdots, l_{k}^{\prime}, 0 \leq l_{0}^{\prime}<\cdots<l_{k}^{\prime} \leq p$, are integers such that $\left(u_{l}^{\prime}, \ldots, u_{k}^{\prime}\right)$ is a permutation of $0, \cdots, k$, we have

$$
n_{0}=u_{l_{0}^{\prime}}^{\prime}, \cdots, n_{k}=u_{l_{k}^{\prime}}^{\prime}
$$

Applying § 1.3, we get

$$
a_{m_{0}} d_{i_{0}}+\cdots+a_{m_{k}} d_{i_{k}}=\sum_{l=0}^{k} \gamma_{l} b\left(d_{i_{0}}, \ldots, d_{i_{l}}\right)
$$

with

$$
\gamma_{l}=(l+1)\left(a_{m_{l}}-a_{m_{l+1}}\right) \text { for } l=0, \cdots, k-1,
$$

$$
\gamma_{k}=(k+1) a_{m_{k}},
$$

and

$$
\sum_{l=0}^{k} \gamma_{l}=\sum_{l=0}^{k} a_{m_{l}}
$$

Similarly,

$$
a_{n_{0}}^{\prime} d_{i_{0}^{\prime}}+\cdots+a_{n_{k}}^{\prime} d_{i_{k}^{\prime}}=\sum_{l=0}^{k} \gamma_{l}^{\prime} b\left(d_{i_{0}^{\prime}}, \cdots, d_{i}^{\prime \prime}\right)
$$

with

$$
\begin{gathered}
\gamma_{l}^{\prime}=(l+1)\left(a_{n_{l}}^{\prime}-a_{n_{l+1}^{\prime}}^{\prime}\right) \text { for } l=0, \cdots, k-1, \\
\gamma_{k}^{\prime}=(k+1) a_{n_{k}}^{\prime}
\end{gathered}
$$

and

$$
\sum_{l=0}^{k} \gamma_{l}^{\prime}=\sum_{l=0}^{k} a_{n_{l}}^{\prime}
$$

However, since

$$
\pi_{p}=f_{\tau_{p}} \pi_{p}^{*}, \pi_{p}^{\prime}=f_{\tau_{p}^{\prime}} \pi_{p}^{*}
$$

we have

$$
l_{0}=l_{0}^{\prime}, \cdots, l_{k}=l_{k}^{\prime} \text { and } u_{r}=u_{r}^{\prime} \text { for } r \neq l_{0}, \cdots, l_{k}
$$

Therefore, $a_{u_{l_{0}}}=a_{u l_{0}^{\prime}}^{\prime}, \ldots, a_{u_{l_{k}}}=a_{u l_{k}^{\prime}}^{\prime}$, and hence

$$
a_{m_{0}}=a_{n_{0}}^{\prime}, \cdots, a_{m_{k}}=a_{n_{k}}^{\prime}
$$

Thus

$$
\gamma_{r}=\gamma_{r}^{\prime} \text { for } r=0, \cdots, k
$$

Furthermore,

$$
a_{u_{r}}=a_{u_{r}^{\prime}}^{\prime} \text { for } r \neq l_{0}, \cdots, l_{k}, \text { and } a_{p+1}=a_{p+1}^{\prime}
$$

Therefore,

$$
\begin{aligned}
& \gamma \alpha(x)=\sum_{l=0}^{k} \gamma_{l} b\left(d_{i_{0}}, \cdots, d_{i_{l}}\right)+\sum_{l=k}^{p} a_{l+1} b\left(d_{i_{0}}, \cdots, d_{i_{l}}\right), \\
& \gamma^{\prime} \alpha^{\prime}(x)=\sum_{l=0}^{k} y_{l} b\left(d_{i_{0}^{\prime}}, \ldots, d_{i_{l}^{\prime}}\right)+\sum_{l=k}^{p} a_{l+1} b\left(d_{i_{0}^{\prime}}, \ldots, d_{i_{l}^{\prime}}\right),
\end{aligned}
$$

with

$$
\sum_{l=0}^{k} \gamma_{l}+\sum_{l=k}^{p} a_{l+1}=\sum_{l=0}^{p+1} a_{l}=1
$$

Let

$$
y=\sum_{j=0}^{p} h_{j} d_{j}
$$

with

$$
\begin{gathered}
h_{j}=\gamma_{j} \text { for } j=0, \ldots, k-1, \\
h_{k}=\gamma_{k}+a_{k+1} \\
h_{j}=a_{j+1} \text { for } j=k+1, \cdots, p
\end{gathered}
$$

Clearly,

$$
h_{j} \geq 0 \quad(j=0, \ldots, p), \text { and } \sum_{j=0}^{p} h_{j}=1 .
$$

Then

$$
\gamma \alpha(x)=\sum_{l=0}^{p} h_{l} b\left(d_{i_{0}}, \cdots, d_{i_{l}}\right)=\left[0_{p+1} b_{p 0} \tau_{p}\right](y)
$$

and

$$
\gamma^{\prime} \alpha^{\prime}(x)=\sum_{l=0}^{p} h_{l} b\left(d_{i_{0}^{\prime}}, \ldots, d_{i l}^{\prime}\right)=\left[0_{p+1} b_{p 0} \tau_{p}^{\prime}\right](y) .
$$

Therefore, since

$$
T_{j}\left[\begin{array}{lll}
0_{p+1} b_{p 0} & \tau_{p}
\end{array}\right](y)=T_{j} \cdot\left[\begin{array}{lll}
0_{p+1} & b_{p o} \tau_{p}^{\prime}
\end{array}\right](y)
$$

we have

$$
T_{j} \gamma \alpha(x)=T_{j}^{\prime} \gamma^{\prime} \alpha^{\prime}(x)
$$

Since x is arbitrary in $\left|d_{0}, \cdots, d_{p+1}\right|$, our lemma follows.
2.9. Lemma. For any $s, l \leq s \leq t$, and $\pi_{p}^{*} \in A$,

$$
\sum_{\left(j, \tau_{p}\right) \in E_{s}} \lambda_{j} \operatorname{sgn} \bar{\tau}_{p} \operatorname{sgn} f_{\tau_{p}} \pi_{p}^{*}=0
$$

Proof. Since

$$
\operatorname{sgn} \bar{\tau}_{p} \operatorname{sgn} f_{\tau_{p}} \pi_{p}^{*}=\operatorname{sgn} \tau_{p} \operatorname{sgn} \pi_{p}^{*},
$$

we have

$$
\sum_{\left(j, \tau_{p}\right) \in E_{s}} \lambda_{j} \operatorname{sgn} \bar{\tau}_{p} \operatorname{sgn} f_{\tau_{p}} \pi_{p}^{*}=\operatorname{sgn} \pi_{p}^{*} \sum_{\left(j, \tau_{p}\right) \in E_{s}} \lambda_{j} \operatorname{sgn} \tau_{p}=0
$$

via (5) of § 2.2.
2.10. Employing $\S \S 2.8,2.9$, and (11) of $\S 2.6$, we see that $Y_{k q}=0$, and hence P_{1} follows. Let us note also that since $P_{1} \equiv P_{2}, P_{2}$ also is valid.

III. Results

3.1. In [1, §4.2], Radó has established a lemma, which we state here for the barycentric homotopy operator $\rho_{* p}^{R}$.

Lemma. Let $\left\{G_{p}\right\}$ be an identifier for R, such that the following conditions hold:
(i) $G_{p} \supset A_{p}^{R}($ see $[1, \S 3.4])$,
(ii) $c_{p}^{R} \in G_{p}$ implies that $\sigma_{p} \beta_{p}^{R} c_{p}^{R}=0$,
(iii) $c_{p}^{R} \in G_{p}$ implies that $\rho_{* p}^{R} c_{p}^{R} \in G_{p+1}$.

Then $\left\{G_{p}\right\}$ is an unessential identifier for R.
The proof of this lemma is identical with the proof of the corresponding lemma as given by Radó with ρ_{p}^{R} (classical homotopy operator) replacing $\rho_{* p}^{R}$.

Since

$$
\sigma_{p} \beta_{p}^{R}: C_{p}^{R} \longrightarrow C_{p}^{S}
$$

is a chain mapping, the system $\left\{N\left(\sigma_{p} \beta_{p}^{R}\right)\right\}$ of nuclei of the homomorphisms $\sigma_{p} \beta_{p}^{R}$ is an identifier for R (see [1, $\left.£ 1.2\right]$). Furthermore,

$$
N\left(\sigma_{p} \beta_{p}^{R}\right) \supset A_{p}^{R} \text { since } \sigma_{p} \beta_{p}^{R}=\beta_{p}^{S} \sigma_{p}
$$

(see $\S 1.11)$. Applying P_{2} directly, we see that $N\left(\sigma_{p} \beta_{p}^{R}\right)$ satisfies (iii) of the foregoing lemma. Therefore, since $N\left(\sigma_{p} \beta_{p}^{R}\right)$ is the largest identifier, satisfying (ii), we have the following maximum result yielded by the same lemma:

Theorem. The system $\left\{N\left(\sigma_{p} \beta_{p}^{R}\right)\right\}$ is an unessential identifier for R.
3.2. In order to compare our results with those of Radó [1] and Reichelderfer [3] let us first note that

$$
\hat{N}\left(\sigma_{p} \beta_{p}^{R}\right)=N\left(\sigma_{p} \beta_{p}^{R}\right)
$$

where $\hat{N}\left(\sigma_{p} \beta_{p}^{R}\right)$ is the division hull of $N\left(\sigma_{p} \beta_{p}^{R}\right)$, since C_{p}^{R} is a free Abelian group. Then since

$$
N\left(\sigma_{p} \beta_{p}^{R}\right) \supset \Delta_{p}^{R}=N\left(\beta_{p}^{R}\right)+A_{p}^{R}
$$

(see $[3, \S 3.6]$) we have

$$
N\left(\sigma_{p} \beta_{p}^{R}\right) \supset \hat{\Delta}_{p}^{R} \supset \hat{\Gamma}_{p}^{R}
$$

(see [1, §4.7]).

The writer has been unable to determine as yet whether $N\left(\sigma_{p} \beta_{p}^{R}\right)$ is effectively larger than either $\hat{\Delta}_{p}^{R}$ or $\hat{\Gamma}_{p}^{R}$.
3.3. The following lemma (see [1, §4.1]) is immediate from the fact that $\rho_{* p}^{S}$ satisfies the well-known "homotopy identity,"

$$
\partial_{p+1}^{S} \rho_{* p}^{S}+\rho_{* p-1}^{S} \partial_{p}^{S}=\beta_{p}^{S}-1 .
$$

Lemma. Let $\left\{G_{p}\right\}$ be an identifier for S such that the following conditions hold:
(i) $c_{p}^{S} \in G_{p}$ implies that $\beta_{p}^{S} c_{p}^{S}=0$,
(ii) $c_{p}^{S} \in G_{p}$ implies that $\rho_{* p}^{S} c_{p}^{S} \in G_{p+1}$.

Then $\left\{G_{p}\right\}$ is an unessential identifier for S.
The system of nuclei $\left\{N\left(\beta_{p}^{S}\right)\right\}$ clearly is an identifier for S since β_{p}^{S} is a chain mapping. Therefore, applying P_{1} we obtain the maximum result of the foregoing lemma.

Theorem. The system $\left\{N\left(\beta_{p}^{S}\right)\right\}$ is an unessential identifier for S.

References

1. T. Radó, An approach to singular homology theory, Pacific J. Math. 1 (1951), 265-290.
2. On identifications in singular homology theory, Rivista Mat. Univ. Parma, 2(1951), 3-18.
3. P. V. Reichelderfer, On the barycentric homomorphism in a singular complex, Pacific J. Math. 2 (1952), 73-97.
4. S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, Princeton, 1952.

Ohio State University and Harvard University

