THE RECIPROCITY THEOREM FOR DEDEKIND SUMS

L. Carlitz

1. Introduction. Let $((x))=x-[x]-1 / 2$, where $[x]$ denotes the greatest integer $\leq x$, and put

$$
\begin{equation*}
\bar{s}(h, k)=\sum_{r(\bmod k)}\left(\left(\frac{r}{k}\right)\right)\left(\left(\frac{h r}{k}\right)\right), \tag{1.1}
\end{equation*}
$$

the sumntation extending over a complete residue system $(\bmod k)$, Then if $(h, k)=1$, the $\operatorname{sum} \bar{s}(h, k)$ satisfies (see for example [4])

$$
\begin{equation*}
12 h k\{\bar{s}(h, k)+\bar{s}(k, h)\}=h^{2}+3 h k+k^{2}+1 \tag{1.2}
\end{equation*}
$$

Note that $\bar{s}(h, k)=s(h, k)+1 / 4$, where $s(h, k)$ is the sum defined in [4].
In this note we shall give a simple proof of (1.2) which was suggested by Redei's proof [5]. The method also applies to Apostol's extension [1]; [2].
2. A formula for $\bar{s}(h, k)$. We start with the easily proved formula

$$
\begin{equation*}
\left(\left(\frac{r}{k}\right)\right)=-\frac{1}{2 k}+\frac{1}{k} \sum_{s=1}^{k-1} \frac{\rho^{-r s}}{\rho^{s}-1} \quad\left(\rho=e^{2 \pi i / k}\right) \tag{2.1}
\end{equation*}
$$

which is equivalent to a formula of Eisenstein. (Perhaps the quickest way to prove (2.1) is to observe that

$$
\sum_{r=0}^{k-1}\left(\left(\frac{r}{k}\right)\right) \rho^{r s}= \begin{cases}1 /\left(\rho^{s}-1\right) \\ -1 / 2 & (k \nmid s) \\ (k \mid s)\end{cases}
$$

inverting leads at once to (2.1)).
Now substituting from (2.1) in (1.1) we get

$$
\begin{aligned}
\bar{s}(h, k) & =\sum_{r}\left\{-\frac{1}{2 k}+\frac{1}{k} \sum_{t=1}^{k-1} \frac{\rho^{-t s}}{\rho^{t}-1}\right\}\left\{-\frac{1}{2 k}+\frac{1}{k} \sum_{s=1}^{k-1} \frac{\rho^{-h r s}}{\rho^{s}-1}\right\} \\
& =\frac{1}{4 k}+\frac{1}{k^{2}} \sum_{s, t=1}^{k-1} \frac{1}{\left(\rho^{s}-1\right)\left(\rho^{t}-1\right)} \sum_{r=0}^{k-1} \rho^{-r(s h+t)}
\end{aligned}
$$

Since the inner sum vanishes unless $s+h t \equiv 0(\bmod k)$, we get

$$
\bar{s}(h, k)=\frac{1}{4 k}+\frac{1}{k} \sum_{k=1}^{k-1} \frac{1}{\left(\rho^{-s}-1\right)\left(\rho^{h s}-1\right)},
$$

or, what is the same thing,

$$
\begin{equation*}
\bar{s}(h, k)=\frac{1}{4 k}+\frac{1}{k} \sum_{\zeta \neq 1} \frac{1}{\left(\zeta^{-1}-1\right)\left(\zeta^{h}-1\right)}, \tag{2.2}
\end{equation*}
$$

where ζ runs through the k th roots of unity distinct from 1 .
3. Proof of (1.2) In the next place consider the equation

$$
\begin{equation*}
\left(x^{h}-1\right) f(x)+\left(x^{k}-1\right) g(x)=x-1 \tag{3.1}
\end{equation*}
$$

where $f(x), g(x)$ are polynomials, $\operatorname{deg} f(x)<k-1$, $\operatorname{deg} g(x)<h-1$. Then if ζ has the same meaning as in (2.2), it is clear from (3.1) that

$$
\left(\zeta^{h}-1\right) f(\zeta)=\zeta-1
$$

Thus by the Lagrange interpolation formula

$$
\begin{equation*}
f(x)=\left(x^{k}-1\right)\left\{\frac{f(1)}{k(x-1)}+\frac{1}{k} \sum_{\zeta \neq 1} \frac{\zeta}{x-\zeta} \frac{\zeta-1}{\zeta^{h}-1}\right\} \tag{3.2}
\end{equation*}
$$

Similarly, if η runs through the h th roots of unity,

$$
\begin{equation*}
g(x)=\left\{\frac{g(1)}{h(x-1)}+\frac{1}{h} \sum_{\eta \neq 1} \frac{\eta}{x-\eta} \frac{\eta-1}{\eta^{k}-1}\right\} \tag{3.3}
\end{equation*}
$$

Now it follows from (3.1) that $h f(1)+k g(1)=1$; hence substituting from (3.2) and (3.3) in (3.1) we get the identity
(3.4) $\frac{1}{k} \sum_{\zeta \neq 1} \frac{\zeta}{x-\zeta} \frac{\zeta-1}{\zeta^{h}-1}+\frac{1}{h} \sum_{\eta \neq 1} \frac{\eta}{x-\eta} \frac{\eta-1}{\eta^{k}-1}$

$$
=\frac{x-1}{\left(x^{k}-1\right)\left(x^{h}-1\right)}-\frac{1}{h k(x-1)} .
$$

Next put $x=1+t$ in (3.4) and expand both members in ascending powers of t. We find without difficulty that the right member of (3.4) becomes

$$
\begin{equation*}
-\frac{h+k-2}{2 h k}+\frac{h^{2}+3 h k+k^{2}-3 h-3 k+1}{12 h k} t+\cdots \tag{3.5}
\end{equation*}
$$

Comparison of coefficients of t in both sides of (3.4) leads at once to

$$
\begin{aligned}
-\frac{1}{k} \sum_{\zeta \neq 1} \frac{\zeta}{\zeta-1} & \frac{1}{\zeta^{h}-1}-\frac{1}{h} \sum_{\eta \neq 1} \frac{\eta}{\eta-1} \frac{1}{\eta^{k}-1} \\
& =\frac{h^{2}+3 h k+k^{2}-3 h-3 k+1}{12 h k}
\end{aligned}
$$

Therefore by (2.2) and the corresponding formula for $s(k, h)$, we have

$$
\bar{s}(h, k)+\bar{s}(k, h)=\frac{h^{2}+3 h k+k^{2}+1}{12 h k}
$$

which is the same as (1.2).
4. The generalized reciprocity formula. The identity (3.4) implies a good deal more than (l.2). For example, for $x=0$, we get

$$
\begin{equation*}
\frac{1}{k} \sum_{\zeta \neq 1} \frac{\zeta-1}{\zeta^{h}-1}+\frac{1}{h} \sum_{\eta \neq 1} \frac{\eta-1}{\eta^{k}-1}=1-\frac{1}{h k} \tag{4.1}
\end{equation*}
$$

while if we use the constant term in (3.5), we find that

$$
\begin{equation*}
\frac{1}{k} \sum_{\zeta \neq 1} \frac{\zeta}{\zeta^{h}-1}+\frac{1}{h} \sum_{\eta \neq 1} \frac{\eta}{\eta^{k}-1}=\frac{h+k-2}{2 h k} \tag{4.2}
\end{equation*}
$$

Again if we multiply by x and let $x \longrightarrow \infty$, we get

$$
\begin{equation*}
\frac{1}{k} \sum_{\zeta \neq 1} \zeta \frac{\zeta-1}{\zeta^{h}-1}+\frac{1}{h} \sum_{n \neq 1} \eta \frac{\eta-1}{\eta^{k}-1}=-\frac{1}{h k} \tag{4.3}
\end{equation*}
$$

More generally, expanding (3.4) in descending powers of x, we have

$$
\frac{1}{k} \sum_{\zeta \neq 1} \zeta^{r} \frac{\zeta-1}{\zeta^{h}-1}+\frac{1}{h} \sum_{\eta \neq 1} \eta^{r} \frac{\eta-1}{\eta^{k}-1}=\left\{\begin{array}{l}
-\frac{1}{h k}(1 \leq r<h+k-1) \tag{4.4}\\
1-\frac{1}{h k}(r=h+k-1)
\end{array}\right.
$$

By continuing the expansion of (3.5) we can also show that

$$
h \sum_{\zeta \neq 1} \frac{\zeta}{(\zeta-1)^{r}\left(\zeta^{h}-1\right)}+k \sum_{\eta \neq 1} \frac{\eta}{(\eta-1)^{r}\left(\eta^{k}-1\right)}
$$

is a polynomial in h, k, but the explicit expression seems complicated. A more interesting result can be obtained as follows. First we divide both sides of (3.4) by $x-1$ so that the left member becomes

$$
\begin{gathered}
\frac{1}{k} \sum_{\zeta} \frac{\zeta}{\zeta^{h}-1}\left(\frac{1}{x-\zeta}-\frac{1}{x-1}\right)+\frac{1}{h} \sum_{\eta} \frac{\eta}{\eta^{k}-1}\left(\frac{1}{x-\eta}-\frac{1}{x-1}\right) \\
\quad=\frac{1}{k} \sum_{\zeta} \frac{\zeta}{\zeta^{h}-1} \frac{1}{x-\zeta}+\frac{1}{h} \sum_{\eta} \frac{\eta}{\eta^{k}-1} \frac{1}{x-\eta}-\frac{h+k-2}{2 h k(x-1)}
\end{gathered}
$$

by (4.2). We now put $x=e^{t}$. Transposing the last term above to the right we find that the right member has the expansion
(4.5) $\frac{1}{h k} \sum_{m=0}^{\infty} \frac{(B h+B k)^{m} t^{m-2}}{m!}+\frac{h+k}{2 h k} \sum_{m=0}^{\infty} \frac{B_{m} t^{m-1}}{m!}+\frac{1}{h k} \sum_{m=0}^{\infty} \frac{(m-1) B_{m} t^{m-2}}{m!}$,
where the B_{m} are the Bernoulli numbers. In the left member we put

$$
\frac{1-\zeta}{e^{t}-\zeta}=\sum_{m=0}^{\infty} H_{m}(\zeta) \frac{t^{m}}{m!}
$$

where the $H_{m}(\zeta)$ are the so-called "Eulerian numbers"; we thus get
(4.6) $\frac{1}{k} \sum_{m=0}^{\infty} \frac{t^{m}}{m!} \sum_{\zeta} \frac{H_{m}\left(\zeta^{-1}\right)}{(\zeta-1)\left(\zeta^{-h}-1\right)}+\frac{1}{h} \sum_{m=0}^{\infty} \frac{t^{m}}{m!} \sum_{\eta} \frac{H_{m}\left(\eta^{-1}\right)}{(\eta-1)\left(\eta^{-k}-1\right)}$.

But by [3, formula (6.6)], for podd >1,

$$
\frac{p}{k^{p}} \sum_{\zeta} \frac{H_{p-1}(\zeta)}{(\zeta-1)\left(\zeta^{-h}-1\right)}=s_{p}(h, k)
$$

where [1]

$$
s_{p}(h, k)=\sum_{r(\bmod k)} \bar{B}_{1}\left(\frac{r}{k}\right) \bar{B}_{P}\left(\frac{h r}{k}\right),
$$

and $\bar{B}_{r}(x)$ is the Bernoulli function. Thus the coefficient of $t^{p-1} /(p-1)$! in (4.6) is

$$
\begin{equation*}
\frac{1}{p}\left\{k^{p-1} s_{p}(h, k)+h^{p-1} s_{p}(k, h)\right\}, \tag{4.7}
\end{equation*}
$$

while the corresponding coefficient in (4.5) is

$$
\begin{equation*}
\frac{1}{p(p+1) h k}(B h+B k)^{p+1}+\frac{1}{(p+1) h k} B_{p+1} \tag{4.8}
\end{equation*}
$$

Hence equating (4.7) and (4.8) we get Apostol's formula [1, Theorem 1]:

$$
(p+1)\left\{h k^{p} s_{p}(h, k)+k h^{p} s_{p}(k, h)\right\}=(B h+B k)^{p+1}+p B_{p+1}
$$

for p odd >1. Note that $s_{1}(h, k)=\bar{s}(h, k)$.

References

1. T. M. Apostol, Generalized Dedekind sums and transformation formulae for certain Lambert series, Duke Math. J. 17 (1950), 147-157.
2. \qquad , Theorems on generalized Dedekind sums, Pacific J. Math. 2 (1950), 1-9.
3. L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math. 3(1953), 513-522.
4. H. Rademacher and A. Whiteman, Theorems on Dedekind sums, Amer. J. Math. 63 (1941), 377-407.
5. L. Redei, Elementarer Beweis und Verallgemeinerung einer Reziprozitätsformel von Dedekind, Acta Sci. Math. Szeged 12, Part B (1950), 236-239.

Duke University

