
ON THE PRIME IDEALS OF THE RING OF ENTIRE FUNCTIONS

MELVIN HENRIKSEN

1. Introduction. Let R be the ring of entire functions, and let K be the com-
plex field. In an earlier paper [6 ] , the author investigated the ideal structure of
/?, particular attention being paid to the maximal ideals. In 1946, Schilling [ 9,
Lemma 5] stated that every prime ideal of R is maximal. Recently, I. Kaplansky
pointed out to the author (in conversation) that this statement is false, and con-
structed a nonmaximal prime ideal of R (see Theorem l ( a ) , below). The purpose
of the present paper is to investigate these nonmaximal prime ideals and their
residue class fields. The author is indebted to Prof. Kaplansky for making this
investigation possible.

The nonmaximal prime ideals are characterized within the class of prime

ideals, and it is shown that each prime ideal is contained in a unique maximal

ideal. The intersection P* of all powers of a maximal free ideal M is the largest

nonmaximal prime ideal contained in M. The set PM of all prime ideals contained

in M is linearly ordered under set inclusion, and distinct elements P of PM cor-

respond in a natural way to distinct rates of growth of the multiplicities of the

zeros of functions / i n P.

It is shown that the residue class ring R/P of a nonmaximal prime ideal P of

R is a valuation ring whose unique maximal ideal is principal; R/P is Noetherian

if and only if P = P*. The residue class ring R/P* is isomorphic to the ring

K\z\ of all formal power series over K. The structure theory of Cohen [2] of

complete local rings is used.

2. Notation and preliminaries. A familiarity with the contents of [6] is as-

sumed, but some of it will be reproduced below for the sake of completeness.

DEFINITION 1. If / G R, and / is any nonvoid subset of /?, let:

(a ) A(f) = [z£.K\f(z)-Q]( Note that multiple zeros are repeated. Unions

and intersections are taken in the same sense.);

( b ) A ( l ) = [ A ( f ) \ f e I];
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( c ) A (/) be the sequence of distinct zeros of /, arranged in order of in-

creasing modulus.

In 1940, Helmer showed [ 5 , Theorem 9] that if A (/) n A (g) is empty, there

exist s, t in R such that

(2.1) sf+ tg = 1.

More generally, if d is any element of R such that

A ( d ) = A ( f ) n A ( g ) ,

then d is a greatest common divisor of /and g, unique to within a unit factor, and

the ideal (/, g) generated by f and g is the principal ideal (d). It easily follows

that every finitely generated ideal of R is principal.

He proved this by showing that if ί an \ is any sequence of complex numbers

such that

lim a — oc,a

and wΓlf/€ is any set of complex numbers, then there is an s in R such that

(2.2) s{k) (an) = wnfk, (n = 1,2, - . . ; £ = 0, • • • , ln).

The latter was shown independently by Germay [ 3 ]

REMARK. In [ 4 ] , Germay extended (2.2) to the ring of functions analytic in

I z I < r, where l i m ^ ^ an l ies on | z \ = r. Hence (2.1) follows for this ring, as

will most of the results in [6] and the present paper, with minor modification.

It follows that if/ is an ideal of /?, then ,4(7) has the finite intersection prop-

erty. So we make the following definition.

DEFINITION 2. If Π, 7 A{{) is nonempty, then / is called a fixed ideal.

Otherwise, / is called a free ideal.

DEFINITION 3. ( a ) If A* (/) = { an }, let 0n(f) be the multiplicity of an as a

zero of /.

( b ) If A is a nonvoid subset of i * ( / ) , let On(f:A) be the function 0n(f)

with domain restricted to A.

( c ) L e t m ( / ) = s u P / ϊ , 1 0 n ( / ) , i f / ^ 0 . L e t m ( O ) = oc.

3. Prime ideals of R, Kaplansky's construction of nonmaximal, prime ideals
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of R is given in Theorem l ( a ) , below. The only fallacy in Schilling's demon-

stration (referred to in the Introduction) is the false assumption that a prime

ideal necessarily contains an /such that m(f) = 1. Hence a characterization of

these nonmaximal prime ideals may be given,

THEOREM 1. (a ) There exist nonmaximal prime ideals of R.

(b) A necessary and sufficient condition that a prime ideal P of R be non-

maximal is that m (/) = oo, for all f G P.

Proof, (a ) Let

S = [/G R\m(f) < oc].

Clearly, S is closed under multiplication and does not contain 0. If g 4 0 is in

R - S, g is contained in a prime ideal P not intersecting S (see [8, p. 105]).

Since, as noted in [6, p. 183], any maximal ideal contains an /such that m(f) =*

1, P cannot be maximal.

(b) The sufficiency is clear from the above. If / G P with m(f) < oc, the

primality of P ensures that there is a g G P with m(g) = 1. Suppose the maximal

ideal M contains P, and let h G M. By (2.1), there is a d G M such that

A{d) = A(g) nA(h).

Now g = g d, where A(g ) n A(d) is empty, since m(g) = 1. Since P is prime,

it follows that either gχ G P or c? G P. But M ̂  R, so gt is not in P. It follows

that dy and hence h, is in P, whence P = M

COROLLARY. Any prime9 fixed ideal of R is maximal.

THEOREM 2. Every prime ideal P of R is contained in a unique maximal

(free) ideal U.

Proof. By Theorem l ( b ) and [6, Theorem 4 ] , the ideal (P, /) is maximal if

m{f) = 1 and A(f) intersects every element of A (P). Let / , / be any two such

functions, so that M =(P, f ) and M - (P, / 2 ) are maximal ideals containing

P. If

A(d) = A(fγ) n A(f2),

then M = (P, d) is a maximal ideal containing P, and Mγ C M, M2 C M9 so that
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More concrete constructions of nonmaximal prime ideals are given below in

terms of maximal free ideals.

THEOREM 3. If M is a maximal free ideal of R9 then

oo

p* = n Mk

k= l

is a prime ideal$ and is the largest nonmaximal prime ideal contained in M,

Proof. Since every finitely generated ideal of R is principal, P* is easily

seen to be the set of all / G R expressible in the form h^d^9 with d^ G M9 k - 1,

2, . Thus, if / G M, f G P if and only if m(f/e) = oo whenever e divides /

and e G R - M9 (whence f/e G U). Suppose / , / are not in P . Clearly, / /

is not in P* except possibly when both / and / are in M. In this case, there

exist βj dividing /̂ , with βj G R - M such that m^f^/e^) < oo, ( i = 1, 2). Since

M is prime, eιe2 G R - M and τn(fχf2/eιe2) < mif^e^ + m(/ 2 /e 2 ) < oo. So

/ / is not in P*, whence P* is a prime ideal.

The second part of the Theorem is a direct consequence of Theorem 1 (b).

We proceed now to identify the remainder of the class PM of prime ideals con-

tained in M. This is done by considering the rates of growth of the functions

0n(f) on the filter A(M). Results of Bourbaki [ l ] are used without further ac-

knowledgement.

DEFINITION 4. If /, g E M9 and there is an e G M such that

Λ*(e) c A*{f) nA*(g)

with

On(fιA*(e)) >On(g:A*(e))9

t h e n f>g ( g < f ) .

It is easily seen that the relation ">" is reflexive and transitive. Moreover:

LEMMA 1. If f9 g e M9 either f > g or g > f.

Proof. Let

A(d) = A(f) nA(g),

and let
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A x - [ z € A * ( d ) \ O n { f ι \ z \ ) > O n ( g : \ z \ ) ] 9

A 2 = [ z G A * ( d ) \ O n ( f : { z \ ) < O n ( g : U l ) ] .

Since Av r\A2 i s empty, Aγ u A2 =A*(d); and since M i s prime, one and only

one oi A l9 A2 G M. Hence / > g or g > /.

D E F I N I T I O N 5. Suppose f, g e M.

( a ) If there exist positive integers Nϊ9 N2 such that f ι > g and g 2 > /,

then f ~ g.

( b ) If / > gN for all positive integers /V or if / = 0, then f » g(g « f).

LEMMA 2. ( a ) Tλe relation * ~ ' is αw equivalence relation.

( b ) Tλe relation ' » ' is transitive.

( c ) If f> g έ M, one and only one of f ~ g, f » g, f « g holds.

Proof. The relations ( a ) and ( b ) follow easily from the observations that

0n(fN) = /V ()„(/), and i f / > gthenf" > gN.

It is clear that at most one of the relations ( c ) can hold. By Lemma 1, / > g
0 Γ 8 ^ /• Suppose f > g and not f ~ g; then f > g for all N, whence / » g.

Similarly, if g > f.

LEMMA 3. Let f be an element of a prime ideal P of PM. If g > /, or g ~ f9

then g E P.

Proof. Suppose first that g > f. Then, as is evident from the construction in

Lemma 1, we can write

where

A*(dι) -A*(d2), 0n(d2) > ( ) „ ( < * ! ) ,

and / , g are not in M. Hence dχ G P; and, since d2 is a multiple of dl9 d2 and

g e P.lί g ~ f, then gN > f, for some N. By the above, gN G P. But P is a prime

ideal, so g G P.

THEOREM 4. ( a ) Let Ω be any subset of M, and let

PQ = [fβ M\f» g9 for all gβ Q].
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Then P Q is a prime ideal.

(b) If P is a prime ideal, then P = PQ, where Ω = M — P.

Proo/. ( a ) Note first that if gχ9 g2 G M and ^ ^ ?έ 0

A =A*(8ι) n 4 * ( g a ) ,

then

0 Λ ( « t - β 2 ^ ) = m i n ί θ n ( g 1 : i 4 ) , ( U ^ ' . Λ

If ^ e J I , ^ G Λ, gχ g2 £ 0, then

It now follows from the lemmas above that P is an ideal. The primality of P fol-

lows from the observation that

Pg = [feM\ f»g]

is a prime ideal, and that P Q is an intersection of a descending chain (under set

inclusion) of ideals of this form.

(b) If P is a prime ideal, the relations / E P, g E M — P, imply that / » g9

by Lemma 3.

COROLLARY. The ideals of Py are linearly ordered under set inclusion.

By the Theorem above, every element of PM is the upper class of a Dedekind

cut (under « ). If P contains a least element /, then

If M - P has a greatest element g> then P = Pg as defined in the proof of the

theorem. It is clear that PM contains the greatest lower bound and least upper

bound of any set of elements.

Note, moreover that Pf = Pf (P/+ = Pt ) if and only if / ~ /„ .
J1 J2 J ί J2 ι 2

LEMMA 4. ΓAe seί P* — {0} Aαs no countable cofinal or coinitial subset.

Moreover, if\f }, {f n\ are two sequences of nonzero elements of P*, such

that

' I , τ ι + 1 J l,n J2,m ; 2 , m + i > ; 9 9

then there is an f E P* such that
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fι,n» f» f2,m> foralln,m.

Proof. See [1, p. 123, exercise 8 ] .

The author is indebted to Dr. P.-Erdos and Dr. L. Gillman for the following

Theorem.

THEOREM 5. The set PM has power at least 2**1.

Proof. It is implicit in arguments of Hausdorff and Sierpinski [10, p. 62] that

every set satisfying Lemma 4 contains a subset similar to the lexicographically

ordered set S of ω^sequences of 0's and l ' s , each having at most countably

many l ' s By [ l l ] , S is dense in the set of all dyadic ω t-sequences, which has

power 2**1. Since the set PM is complete, card {PM) > 2**1.

Since card (Pu) < 2°, where c is the cardinal number of the continuum, we

have:

COROLLARY. // 2**1 = 2C, in particular i/fr^ = c, then card (PM) = 2C.

4. Residue class rings of prime ideals. We adopt the following definition of

Krull [7, p. 110]:

DEFINITION 6. An integral domain D such that if /, g G D, then / divides g

or g divides /, is called a valuation ring.

It is easily seen that a valuation ring possesses a unique maximal ideal, con-

sisting of all its nonunits.

THEOREM 6. The residue class ring R/P of a prime ideal P of R is a valua-

ring whose unique maximal ideal is principal.

First, we prove a lemma.

LEMMA 5. If P £ PM, then f is singular modulo P if and only if f G M.

Proof. Consider the equation

fX ^ 1 ( m o d ? ) .

If / G M, the equation clearly has no solution since A(f) n 4̂ (p) is nonempty for

all p G P (see [6, Theorem 4 ] ) .

On the other hand, if f is not in M, there is a p G P such t h a t ^ ( / ) Π A(p)

is empty. Let A*(p) = { an 1, with 0n(p) - ln9 in which case / ( a n ) ^ 0. The



718 MELVIN HENRIKSEN

equation in question has a solution if and only if there exists a g G R such that

(i) g(an) = \f(an)Γι,

and

( i i ) (fg){k) {an) = 0, k = 1, . . . , / „ .

Since

ik){k) = fg(k)

 + Σ (1) / ( 0 ^ Λ where <*) = T ~ ^ ,

( i i ) is satisfied if

(iii) g<*> (αB) = - { / ( α j ! " 1 Σ (?) /(° («») «(*"° («»>•
I = 1

Such a g can be constructed by (2.2), whence

fg= 1 ( m o d ? ) .

Proof of Theorem 6. By Lemma 5, every element of R — U is a unit, so we

may assume that /, g G M. Let

A(d) = 4 ( / ) n i ( g ) ,

so that A (f/d) n A {g/d) is empty. Clearly, at least one of f/d9 g/d G R - M,

and hence is a unit modulo P. So /?/? is a valuation ring.

If, in particular, / is chosen to be in U - M2, f/d cannot be in M9 so g is a

multiple (modulo P) of /. Therefore the unique maximal ideal M/P of R/P is gen-

erated by /, and hence is principal.

If P Φ ?*> R/P possesses the nonmaximal prime ideals Pί/P9 where F t i s a

nonmaximal prime ideal of R properly containing P. Moreover:

THEOREM 7. The residue class ring R/P of a nonmaximal prime ideal P is

Noetherian if and only if P — P .

Proof. Every nonzero element of M - P* i s in Mk ~ Mk~ι, for some unique

positive integer k. Hence every nonzero ideal of R/P* is of the form (/ ), where

f e M ~ M2.

If / G P - ?*, construct fk such that
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A*(fk) = A*(f)

0n(fk) = m a x i θ Λ ( / ) - A , l l .

Then fk+ι is a proper divisor (modulo P) of /^. Hence the ideal generated by all

the ffo does not have finite basis.

The residue class ring R/P* is concretely identified below by the use of the

structure theory of complete local rings [ 2 ] of Cohen. First we make a definition.

DEFINITION 7. (a) If the nonunits of a Noetherian ring D with unit form a

maximal ideal M such that

oo

n Af* = ( o ) ,
k = i

D i s called a local ring.

( b ) If / , , fn is a minimal basis for M such that /,•••, f^ generate a

prime ideal (i - 1, , n), S is called a regular local ring.

( c ) Using the powers of M as a system of neighborhoods of 0, (thereby to-

pologizing D)9 we call D complete if every Cauchy sequence in D has a (unique)

limit.

THEOREM 8. The residue class ring R/P* is isomorphic with the ring K{ z I

of all formal power series over K.

Proof By Theorems 3, 4, 6, R/P* is a local ring and is trivially regular

since M/P* is principal. Cohen [2, Theorem 15] has shown that every regular,

complete, local ring, whose unique maximal ideal is principal, and such that D/M

is isomorphic to K, is isomorphic to K{ z }. By [6, Theorem 6 ] ,

(R/P*) A M/P*) s R/M zK.

The proof is completed by the following Lemma.

LEMMA 6. The residue class ring R/P* is complete.

Proof Let \ f^\ be any Cauchy sequence in R/P*. We may assume without

loss of generality that /^+ - f^ G M , since a Cauchy sequence has at most

one limit. Let
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with all α^ distinct. Let

Clearly, B^ £ A(M), and Π̂ L

an / G R such that

is empty. Hence, we may construct by (2.2)

and

Then

U ) - / j * > ( z )

whence

4 = / (mod^),

^ ~ 4 - Λ
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