MAPPING PROPERTIES OF CESARO SUMS OF ORDER TWO
OF THE GEOMETRIC SERIES

S.E. RavucH

1. Introduction. Previous investigations of the mappings
w =S¥ (2)

of the unit circle |z| < 1, where

k k-1 k
S(k)(z)=(n+ )+(n+ )z+-u+( )z”
n k k k

denotes the nth Ceshro sum of order % of the geometric series, have been made
by Fejet, Schweitzer, Sidon, and Szegd. Knowledge of the properties of the
sums S,Ek)(z) is valuable in the study of power series having coefficients

monotonic of order & + 1.

The present article provides additional asymptotic properties for
(2) (i) = ;
S\ (e'®) = x,(¢) + iy, (#).

The following results are established:

THEOREM 1. For n sufficiently large, an Op exists such that y (¢) is
increasing for 0 < ¢ < O, and decreasing for 0, < ¢ < m. Furthermore,

Up = 0/n + 0(n"?), where m < o < 3a/2.

THEOREM 2. For n sufficiently large, a B, exists such that

<0,0< ¢ <B,,n=20(mod3)
2 () 1<0,0< ¢ < B, n = 1(mod 3)
<0,0<¢<B,,n=2(mod3)

n
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where

°n B
ﬂn = -3— + :—-O(Tl 3/2),

and B=2n, 47/3, 27/3 for n=0, 1, 2 (mod 3 ), respectively.
THEOREM 3. For n sufficiently largé, the mapping of |z| =1 by
= §2)( i
w = Sn2 (')

is convex for 0 < ¢ < y,, where y, is the maximum angle for which convexity
holds, and y, = y/n + O(n"?) where 27 < y < 3m.

2. Proof of Theorem 1.

2.1. A closed expression for y (¢) has been presented by Szegs [10]:

(2.1 y/(g)=

. 2
_;_ __(nz+3n+3)_n‘s1n(fz+3/2)<75+ sin®(n +1)¢/2 .
8 sin? ¢/2 sin ¢/2 sin? /2

The inequality y,(¢$) < 0 is satisfied if

sin(n + 3/2)¢ 3 sin?(n + 1) ¢/2
+
sin ¢/2 sin? ¢/2

(2.2) n*+3n+3>-n-

or

(2.3) n? +3n+3>n-csc¢/2 +3.csc’p/2.

Let & be fixed, 5 > 0, and consider the restriction ¢ > 8/n. For n suf-
ficiently large, sin(8/2n) > 8/mn, and the previous inequality is maintained

if & is chosen so that

n2+3n+3>n%n/8 +3n*n%/82, or n/8 +3m?/8% < 1.

It is sufficient for the present problem to define &= 3 7. Hence, if ¢ > 3n/n,
then y (¢) < 0 and 37/n > &p. Since
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yn'(¢) = Z: ap cos ma,

m=1

where

it at once follows that y (&) > 0 for 0 < ¢ < n/2n.

2.2. In the next section it is shown that in the interval #/2n < ¢ < 37/n
there is exactly one ¢ =&, such that y’ () = 0 if n is sufficiently large. More
precisely, for the ¢ =, the second derivative does not vanish and «, ~ & /n,
« > 0, where 7 < & < 37/2. The magnitude of & is defined as the root of a

transcedental equation.

It is possible to express (2.1) in the following form:

(2.4) y (@) =n?/8 - g,(p) - esc?¢/2,

where the function g, (¢) is defined as

1 sin(n+3/2)¢ 3  sin®(n+1)¢/2 3 3
P G U T SN LI R E RS
n sin ¢/2 n? sin? ¢/2 n p2

Let ¢ =c¢/n, /2 < ¢ < 3m, and then g,(¢) becomes a function of ¢, denoted
by G,(c). In addition,

lim Gp(c) == 1/¢% « f(c),

n—soo
where

f(c)=2 -+sinc+6-cosc+(c?-6).

Furthermore, G,(c) converges uniformly to this limit for arbitrary values of ¢
in the interval. It is sufficient to show that the function f(c) has a unique
simple zero in the interval 7/2 < ¢ < 37/2 to assure that g (c) has a simple

zero in the same interval if n is sufficiently large.

An easy calculation yields

f'(c) =8 . cos?(c/2) « (c/2 ~ tan ¢/2).
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Thus it is seen that f(0)=0, f(¢) <0 for 0 < ¢ < m; f(7)==(12-7?)
<0, f(c)>0form<c<2m;f(27)> 0and if ¢ > 27 then f(c) > (¢ -1)?
~13 > 0. Since f(3%/2) > 0, there is a simple positive zero, ¢ =&, of the
function f(¢), # < & < 37/2. In conclusion, &, ~ ¢ /n, # <& < 3m/2, for n
sufficiently large.

2.3. It is not difficult to find a more precise asymptotic expression for 0.
For this purpose let o, = ¢/n, where ¢ = + a/n and a is a bounded, real con-
stant. Let h,(a) denote g,(c) when the latter is regarded as a function of a.
Let ¢ = ¢/n; a simplification yields

—n%hy(a)=n?%(2¢c +sinc+6cosc+c?—6)/c>+n(3+3cosc—6/c-sinc)
+(5/2-13¢/6 - sinc —5/2+ cos ¢) + O(1/n).
If
h(c)=3c%[1+ cos c—2/c-sinc]

and

k(c)=c?[5/2~13¢c/6 - sinc ~5/2- cos c],
then it is possible to rewrite the previous expression in the form

-n2c?hp(a)=n?-f(c)+n-h(c)+Ek(c)+0(1/n).

Let the functions f(c), h(c), k(c) be expanded by Taylor’s formula for values

of ¢ near «. Then the previous equality becomes

—n%c?hp(a)=nla- f () + k()] +a?/2« f(®) +a h(&) + k() + O(1/n).

Thus one obtains

lim [-n.c?hy(a)l=a-f(x)+h(c) and f(at) # O.

n— oo
Obviously the limit has a zero for the value a = — & (a)/f*(), or
a=-302/8+(1+cos 0L -2/ +sin &) « sec?a /2 (/2 ~tan & /2)" 1,

and o is the simple zero of the function

fle)=2c+sinc+6-cosc+c?-6
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in the interval # < & < 37/2.

This shows that for n sufficiently large, y,"(¢) = 0 for
$=0n=0/n+(a+€y)/n?,
where €; — 0. Thus the assertion of Theorem 1 has been verified.

3. Proof of Theorem 2.

3.1. In the article by Szegd [10], a closed expression for x,,(¢) is presented:

(3.1)  x5(9)

_ cos b/2 (2n43)— (n+3/2) cos(n +3/2)¢ . 3' sin(7?+3/2)¢
8 sin® ¢/2 cos ¢/2 2 sin ¢ /2

It immediately follows that x,; (¢ ) is negative if

(3.2) [3/(2n +3)1% . csc? ¢/2 +sec? /2 < 4, cot $/2 > 0.

Let 0 < ¢ < n/n. As
n
xp(¢)= D by cos m¢p,
m=1

where

n+2~-m
bm:( 2 )

then x;(¢) < 0. Next consider the interval n/n < ¢ < 27/3 — ¢/n, where c is
fixed, ¢ > 0. Since

[3/(2n+3)1% . csc?¢p/2+ [1 ~sin?¢/2]°1,

as a function of sin® ¢/2, is convex from below, it obtains its maximum at one
or both end-points of the interval. Thus in order to prove the inequality (3.2) it
is sufficient to consider only the end-point values of #/n < ¢ < 27/3 - ¢/n.
It easily follows that (3.2) is satisfied by ¢ = #/n. Now study ¢ =2#/3 ~c¢/n.
Since
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sin"2 ¢/2=0(1), cos?¢/2=1/4+(1+y3-c/n)+0(1/n?),
the left side of (3.2) then can be written as

[3/(2n+3)12. 0(1)+4[1+V3-¢/n+0(1/n?)]!

=4(1-v/3-¢/n)+0(1/n?),

which indeed is less than 4 provided n is sufficiently large. The minimum value
of n is a function of c. Thus it now is established that x;(¢) < 0 for 0 < ¢ <
27/3 — ¢/n, if n is sufficiently large, n > n,(c), where ¢ is an arbitrary posi-

tive fixed magnitude.
3.2, Next let ¢ = 27/3. By (3.1) it follows that
%5(27/3)=-(2n+3)/6V 3+ (1 —cos 27n/3)~1/6 - sin 27n/3.

Three possible cases for the n arise. For n = 0(mod 3), x,;(27/3) = 0; whereas
for n=1, 2 (mod 3), x;,(27/3) < 0. Thus the behavior of x,(¢) in the neighbor-
hood of ¢ = 27/3 must be examined more fully, n = 0 (mod 3). Let

x5() = r($) s (e),

where

r(¢) =1/8+cos ¢/2 - csc® /2
and

s(g)==(2n+3)=(n+3/2)- cos(n+3/2)¢ - sec ¢/2
+3/2+sin(n+3/2)¢ + csc ¢/2.

As s = 0 for ¢ = 27/3, then

% (2a/3)=r(22/3) - s’(27/3).
Upon letting N = n + 3/2, we see that

s(2a/3)= 0, x7°(27/3)=0.

An examination of the third derivative shows that

%7 (27/3)=1r(27/3) - s(2a/3).
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As r(27/3) > 0, sgn x,"(¢) = sgn s (¢ ). Since
s”(¢)= N3 sec ¢/2« cos N + O(N?),

then s”(27/3) =~ 2N3 + O(N?), and for n sufficiently large s”’(27/3) < O.
It is now known than x;(¢) < 0 for 0 < ¢ < 27/3 if n is sufficiently large.

3.3. This section extends the investigation beyond ¢ =2#/3. For this
purpose let ¢ = 27/3 + ¢/N, where again N = n + 3/2. The substitution of this
value of ¢ into (3.1) yields

.3
(3.3) 25in” /2 xf(f)=—2N L LeosQan/3+c)] 3 (2mn/3+c)
cos ¢/2 2 cos ¢/2 9 sin ¢/2

Any easy calculation shows that
sin ¢/2=v3/2+c/4N +c*. 0(1/N?),
cos ¢/2=1/2-+/3+¢c/AN +c?.- O(1/N?).

The remainder of the section will study the separate cases of n (mod 3 ).

n= 0(mod 3). Let us rewrite (3.3) as follows:

8 sin® ¢/2  xp(p)

(3.4)
cos ¢¢/2+ 2(1~cosc)
V3 [c-cosc—sinc c? 1
=——N+ + ‘0<_')0
2 l1-cosc l1-cosec N
Let
F(c)=[c+cosc~sincl-[1-cosc]’.
Since

F’(¢)=sinc+[sinc—cl[1~cosc]?,

it is easily seen that F(c) is decreasing for 0 < ¢ < 7 and increasing for
7 <c < 2m It follows that x;(¢) < 0 for 0 < ¢ < 27/3 + ¢/N, where 7 < ¢ <

27~ €, € afixed positive number. Now
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c=2n-8/VN,
5 a fixed positive number for n sufficiently large. Then
F(c)=4n/82-N+O0(1/N),
so that, for the above value of ¢, (3.4) becomes

4 sin®¢/2 - x5 (@)

—_ _. 2
cos ¢/2+ (L—cosc) N+2my3-N/8%+0(1).

In addition,

(l—cosc)'l=(l—cosS/V’W)'l=0(N).

Thus
x5(¢) <0 if 27 3/8% <1,
and
xp($) >0 if 27/ 3/82> 1.
Thus |

5=(27)/2 . (3)V/4
furnishes the critical value of ¢. It has been shown that, for n = 0 (mod 3),
Zp () <0 for 0 < ¢ < 2n/3

and

x5 (4) <0 for 0< ¢ <2n/3+ 2m/N-0(N3'2),
for n sufficiently large.

n=1(mod 3). It is possible to rewrite (3.3) so that the right side becomes

—2N[1~cos(c+2n/3)]

+v3le. cos(c +2n/3) —sin(c +2a/3)1+c2- O0(1/N).

By reasoning as in the previous case, one finds x;(¢) < Ofor 0<c < 47/3 ~ ¢,

€ > 0, for n sufficiently large. Let



MAPPING PROPERTIES OF CESARO SUMS 117
c=4n/3-8/\VN.
Then the right side of (3.3) reduces to

-8%2 4 4a/\/3 + O(1/VN).

Therefore
x(B) <0 if 8> 2. 72 . 3714,
and
xi($) >0 if §<2. /2. 3714,
for n sufficiently large. It follows that x;(¢) < 0 for 0 < ¢ < B,, where

Bn = 27/3 + 47/3N - O(N3/%),
for n sufficiently large.

n=2(mod 3). In this case the right side of (3.3) becomes

—~2N[1=cos(c+4nr/3)]

+vV3lc-coslc+4n/3)~sin(c+4a/3)1+0(1/N).

It follows that x;(¢) < 0 for 0 < ¢ < 27/3 — €, € > 0, for n sufficiently large.
Let

27/3 - 8/V'N.

c

Then the right side of (3.3) is equivalent to
—8% + 20/VT + O(NV/2).
Thus

x7(p) < 0 if &> (2m)1/% . 31/4

and

x7(p) > 0 if &< (27)1/2 . 314,
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for n sufficiently large. It has been shown that x;(¢) < 0 for 0 < ¢ < B,

where
Brn =2n/3 + 2a/3N — O(N3/2),
for n sufficiently large.

If n + 3/2 is substituted for N, then the results expressed in Theorem 2 are

proved.
4. Proof of Theorem 3.

4.1 The Curvature of an image is defined to be

Vp=11+8 z.f"(z)/f(2)]-[|z - f(2)|]".

If the point w = f(z) traverses a closed, single-valued curve in a preassigned

positive direction, then the curve is called convex if
(4.1) L+R[z- f”(2)/f(z)] > 0.
Let us examine the inequality (4.1) for the function
f(ei®) = s2(ei®) = x ($)+i-y ()

if z = ¢’®. By the employment of differentiation and elementary algebraic steps

after substituting the derivatives in the left side of (4.1), one obtains
L+ Rz« f2(2)/f ()1 =xp ey’ = 25" ynd - [x7? + 72170

Thus the condition for the mapping to be convex is satisfied if

(4.2) Xn s yn = %+ yn > 0.

4.2. The next section studies the previous condition of convexity for the

function w = s’f(z), z= ei¢, where ¢ =1vy/n, y > 0, for n sufficiently large.

In the present case the expressions for y,(y/n) and x7(y/n), for which see
(2.1) and (3.1), become

yi(y/n)=n*/y* [-ysiny—-3cos y+3~y%/2+0(1/n)],

xp(y/n)=n*/y*[~=2y =y cos y + 3 siny + O0(1/n)].
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Substitution of the latter expressions into (4.2) yields directly
(2siny-ycosy-y)(-2y—~ycosy+3siny)
~(~2+ysiny+2cosy)(~ysiny~-3cosy+3-y2/2)+0(1/n) > 0.

Further simplification of the previous inequality, which establishes the re-

quirement for convexity of the image of |z| =1, leads to the convenient form
(4.3) sin y (tan y/2 - y/2) (6 = y2/2 =3y cot y/2) + O(1/n) > 0.

The remainder of the section is devoted to determining the maximum value of
¢ = y/n which satisfies (4.3). In particular it is shown that the maximum angle
¥, = y/n for which the mapping of |z |=1 by w = s3(z) is convex, where z = e'®,
is determined by 27 < y < 37, for n sufficiently large.

4.3. Consider the elementary function
v(y) =siny [tan (y/2) - y/2].
Define y, by the equality tan (y,/2) = y;/2. Then it is easily shown that

(4.4) >0,0<y< 2m,
v(y) ) <0,27 <y <y,,

> 0, Yo <Y < 3,
Let us define
fly) = 6 — y2/2 — 3y cot (y/2).
Then the image of |z| =1 is convex if

(4.5) >0,0<y<2m,
f(y) <0,277<y<y0,
>O,yo<y<377,

for n sufficiently large.

Next it is shown that the first two inequalities for f(y) in (4.5) are satis-
fied, however, for y, < y < 3p, one finds that f(y) < 0. Since

fry) sin?(y/2) =-ysin?(y/2)~3/2 - siny + 3y/2,



120 S. E. RAUCH

by a further differentiation with respect to y one can obtain

d/dylf’(y) -« sin?(y/2)}=1~cos y - y/2 sin y,
=sin y{tan(y/2) - y/2} = v (y).

Consider the interval 0 < y < 27. By (4.4), v (y) > 0. Also f*(y) - sin?(y/2)=
0 if y = 0. Thus f*(y) sin?(y/2) > 0 for 0 < y < 2, and consequently f’(y) > 0

for the same interval. Finally,

f(0) = lim f(y)=0,
y—ot
which establishes the fact that f(y) > 0 in the interval 0 < y < 27.

In the interval 27 <y <y, v(y) < 0; therefore the function f’(y) sin®(y/2)

is decreasing. It follows that
f"(yy) - sin®(y,/2) =y, [3/2 - sin?(y,/2)]1-3/2 .« sin Yo »

and thus f*(y, ) - sinz(y0/2) > 1/2(y, —3) > 0. Consequently f*(y) sin? (y/2)
and also f’(y) are positive in the interval 27 < y < y . Hence f(y) is in-

creasing. As f (y) has no lower bound as y approaches 2 7 from above, and
fly,)=6-y2/2=3y, cotly,/2) <-yi/2 <0,

then it can be concluded that f (y) < 0 for 27 <y < y,.

Finally consdier the interval y, <y < 3. Since v(y) >0, f*(y,) sinz(yo/2)>
0, and thus f’(y,)>0, then f’(y)>0 holds for y, <y 37 Hence f(y) is in-

creasing. But
f(37) =6 -97%/2 <0,

so that a y exists such that f (y) < 0 occurs in the interval.

It was shown in (4.5) that if the image of |z| =1 was to be convex for
Yo <Y < 3m, then f(y) > 0. Thus the image is not convex for the complete
interval, which completes the proof of Theorem 3.
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