NOTE ON THE SCHWARZ TRIANGLE FUNCTIONS

JoserPH LEHNER

1. Introduction. In his classical investigation of the hypergeometric series,
Schwarz discussed the function which maps the upper half w-plane onto a curvi-
linear triangle in the z-plane with angles 6n, €m, n@(8+ €+ 7 < 1). The in-
verse, w = ¢ (z), of this function is automorphic with respect to the group got
by reflecting the triangle in its sides, reflecting the new figure in its free sides,
and so on. In order that this process shall lead to a properly discontinuous
group, it is necessary and sufficient that 1/5, 1/¢, 1/9 be positive integers or
. We take in particular 6=1/q, €=1/2, n=0(¢ =3, 4,5, --- ), and place
the triangle in the upper half plane with vertices at —exp 7i/q, i, and icc. The
group ['(A) of transformations is then generated by

Siz—z+A and T:z—— —,
2z

where A = 2 cos 7/q(q =3, 4,5, ---). (We restrict A to this countable set from
now on.) The automorphic function ¢, (z)=¢(z) having a simple pole at
z =i« thus has the period A, and we normalize its Fourier expansion as fol-

lows:

2niz

(1.1) ¢A(z)=¢(z)=x'1+20n()\)x", x = exp

n=0
This makes ¢ (z) unique except for an additive constant; ¢ is called a triangle
function.
Concerning the Fourier coefficients c,()), we wish to make the following

observations:

I. All the Fourier coefficients of any triangle function ¢y are rational

numbers.

1. The Fourier coefficients ¢, (A) have the asymptotic value
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1 6477\/7/)\
(1.2) cp(A) ~y/— —mm, n—>x.
2N n3/4

Both results can be extended to a wider class of Fuchsian groups; this will

be done in future publications. *

2. Proof of I. Let z= ¢ (w) be the function inverse to ¢; that is, i) maps
the upper half w-plane onto the triangle in the z-plane. It is well known [1,
p. 304 f] that ¢ is the quotient of two independent solutions of the hypergeo-
metric equation

2

(2.1) w(w-—l)—z2 +[(C(+B+1)w—y];—z'+<xﬁz=0,
w

dw

where

In this case (o = ), Fricke [2, p.115, (18)] has given an explicit representa-

tion of a system of independent solutions valid at w = w0

Z

w*F(a, o —y+1,1; 1/w),
(2.2)
Z,

w[Fi(a, e —y+1; T/w)-logw:-F(a,x-y+1,1; 1/w)],

where F is the ordinary hypergeometric series, and F, is a series with co-
efficients rational in «, 8 [2, p.114, (15)],

- fB (1 1 2)
F : = — —_— - cee,
I(O(,B,u) 1.1 O(+ B 1 u +

Both series converge for {w| > 1.
For our purposes we take for z = ¢y (w) the combination
2niz Z, Fy 44 4,

=——=logw—-— =1lo +— = f e
A Zl & F B 1w w w2 ’

1When ¢ (z) is Klein’s absolute modular invariant J(z), (1.2) is an immediate
consequence of the Petersson-Rademacher [3, p. 202; 4] series for J (z).
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where, as we see from (2.2), 4,, 4,, +++ , are rational numbers. Hence with

x =exp 2miz/\, we have

4, 4, By B,
= w . exp —+—+---) =wl|l + — +—+---),

w 102 w w2

x-l

where again the B, are rational.

We now invert this equation, setting
(2.3) w=¢(z)=x"(1+cox + crx2+-22),
and have:

2

wl =x(l+dox + dyx? +002),

xR
|

=x " (1+cor + cpx? +eee)(L+Bix(1+dox +dyx? +-02)

+ Byx?(1+dfx + dix?+ee)4eee),

The last equation determines the ¢, uniquely in a step-by-step manner. They

clearly are rational numbers. Furthermore, (2.3) agrees with (1.1). This proves

I.

3. Proof of II. From (1.1) we have

1 .
R -2minz /A
cn(A) = y /;¢(z)e2 dz (n > 0),

where C is a path connecting any two points in the upper half plane at the same

height and at a distance A apart. We take C to be the horizontal line

i A
z=x+—, |x|] < —;

2

N > 0 will eventually be taken of the order of 1.

The line C cuts a finite number of fundamental regions of I'(A) = Ry,

Ry, «++, Rs; the corresponding segments are [;, Iy, <>+, ls. Thus

Aep(A) = 3 /l. ¢ (z)e2minz/A gy

j=u
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There is a unique substitution

a;z + b;
(3.1) s
C]'z +d]‘

of I'(A) which carries R; into R, the standard fundamental region with cusp
at ico; the coefficients aj, bj, <+« are real, and ¢j # 0. Thus because of the

invariance on ¢ on I', we get

S
Acp(AN) = Z f (75(2’)8-2 minz /A dz,
I
where z’ lies in R,.

Now, by (1.1), write

¢(z)=e-2wiz/)\+ Y(z), ¥(z) = z cmezwimz/h;
0

then

S S
(3.2)  Acy(A) = Z ./l-e-zm'(z +nz2)/N g, Z‘[l//(z')e'”mzm dz

j=1 j j=1r

S
= ZH]+52 =S]_+Sz.

j=1

In the following estimates, 4 will denote a constant, not the same one at each
appearance, independent of N and n but possibly depending on A; 6 is an ab-

solute constant of modulus less than unity.

We know that ¢y (z”) is bounded in R, because ¢ is regular in the upper
half plane except for a simple pole at ico; put |4 (z”)| < A. Hence

(3.3) 1S, | SAez'nn/N)\/ |dz| < Ae277"/N)‘.
c =

The principal contribution to S; will come from the segment lying in the
fundamental region, R, say, which is the map of Ry by T: z°=-1/z. R, is

bounded by an arc of the unit circle and by two arcs passing through the origin,



NOTE ON THE SCHWARZ TRIANGLE FUNCTIONS 247

the right-hand one having the equation

x — 1\? ) 1
( ) +oy? = — (z=x+iy).
A 22

Hence the endpoints of [, are *+ z; , where

Let K be the circle, described counter clockwise, with center at the origin and

passing through z;, z,, and L the larger of the arcs connecting z;, z,. We have

the integrands being the same as in the first term of the right member of (3.2).

The first integral on the right is calculated by the residue theorem. We have
z’=-1/z, so

; > 1 2 v
Jy=- / 2mi(1/z- nz)/)\dz__zﬂL Res Z 1 (%11) Z _( nznz)
v!

K ZO,LLO# Az =0 A

o 2 (2ava/NPTY 2 fAmn
e
VT v=o vi(v+ 1! N

where [, is the Bessel function of the first kind with purely imaginary argument.
To estimate J,, we note that on L we have

|2]? = 2% + 5% = |2z,]%

Thus

12|

IA

. 2
/|ez7”(1/z'”z)/>‘dz| < 2nm |z | max exp—77 Y +ny)
L L A O(2+y2

2z | 277( y ) ol 2| 27r( 1 )
= 2m|z; | max exp — +ny) = 2mjz;| exp — + nj,
L A\ )2 VR VPE
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so that

J, = 0AN"? exp 2n(n + 1)/NA.

Putting these results together, we find that

(3.4') H1=—— 11

NG

2 4
ﬂ ( ﬂ)\ﬁ)+0A exp 2an/N) .
We now estimate the summands of S; for which j # 1. Here the decisive
point is that, in (3.1), |¢j| > 1 if j # 1. This is because 1/|cj| is the radius
of an isometric circle. The largest isometric circle in the strip | Rz | < A/2 is

the one corresponding to the transformation T : z — ~1/z, for which ¢ = 1;
all the others are smaller. From (3.1) we get, with z"=x"+ iy ",

. y
(c]'ac-!»d]')2 + c?- y?2 c]?y yly

y

where y > 1 is the minimum of |c, |, |c3|, +++, | cs|. Hence

lHjl < /\e-zwi(z'+nz)/)\Hdzl < /e-zﬂ(l/yzy +ny)/N g
- ¥ Yl

)

= |1

2
. exp —1:(—/! +_n_) (j £ 1),
A y? N

where | /| denotes the length of the segment /;. Therefore,

S 27 ( N n
(3.5) ]% |H;| <A expT(7 +N)'

From (3.2), (3.3), (3.4), and (3.5), we now obtain

cn(A) =

+ 04 exp 27(n+1)/NA

N n \
+ 04 exp277(y—2 +N)/ .

24
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The first term in the right member is asymptotic to

1 exp 47\ n/A

\/T n374

by a well-known formula for the Bessel function [5, p.373]. The last term is
made as small as possible by the choice N =y /7, in which ase the exponent
becomes 47 +/n /yA. Since y > 1, this term, as well as the second one, is of
lower order than the first term, and (1.2) follows.
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