
REMARKS ON THE BOREL PROPERTY

J.D. HILL

1. Introduction. In this note we study some implications of the results

obtained in [4] and [ 5 ] . To make the remarks essentially self-contained, we

summarize the background and results on which the sequel depends.

Let T denote an arbitrary method of summability corresponding to a real

matrix {anjί)9 by means of which a sequence \ s^} is said to be summable-7 to

s if each of the series in

tn= Σ anksk U = 1,2,3,...)
k = ι

is convergent, and if tn —>s.

We are concerned with the class X of all sequences x = ί (X̂  i, where the

Cί/c are 0 or 1 with infinitely many l ' s . A biunique mapping of the class X into

the real interval

Y = (0 < y < 1 )

is obtained by defining y as the dyadic fraction 0 CX1OC2OC3 ••- corresponding

to

x = (al9 α 2 , c ί 3 , . . . ) ,

and conversely. This enables us to employ the phrase, "almost all sequences

of O's and l ' s , " by which is meant a subset of X for which the corresponding

subset of Y has Lebesgue measure one.

If almost all sequences of O's and l ' s are summable-T to the value 1/2, we

say that T has the Borel property, or that T G (BP).

The following theorems are proved in [ 5 ] .

(1.1) THEOREM. In order that T £z{BP), the following conditions are

necessary:
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(1.2) ^ a-nk converges for each n and tends to 1 as n —> oo

(1.3) Λn - £, ank < °° for each n

(1.4) lim α ^ = 0 for each k;

(1.5) lim An = 0.

n

We observe that conditions (1.2) and (1.4) are among the familiar Silverman-

Toeplitz conditions for the regularity of T. The remaining condition, namely,

oo

(1.6) Σ, |a**l = O(l ) ,

k=ι

is not necessary in order that T have the Borel property [5, p. 403].

(1.7) THEOREM. In order that T € (BP), the conditions (1.2) and

(1.8) i4Λ = o( I/log 7i),

are sufficient.

It is shown in [δ] that no condition of the form (1.8), with log n replaced

by φ(n)9 is necessary. However, (1.8) is the best possible condition of its

kind, in the sense that there exists a (regular and triangular) matrix ( c ^ ) that

does not have the Borel property, and which is such that

as Λ —> oo [5, p. 404].

On the basis of these results we proceed to derive a number of criteria

sufficient, respectively, to ensure that the methods of Riesz, Nδrlund, and

Hausdorff shall have the Borel property.

In the Hausdorff case the conditions are necessary as well as sufficient.

(The more specialized methods of Abel, Borel, Cesaro, and Euler are known
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[4] to have the Borel property.) Finally, we consider an extension to general

methods of the results of Buck and Pollard [ l ] concerning the (C$ 1 )-sum-

mability of a sequence and its subsequences.

2. Simple Riesz means. Let {R9p^) denote the method of simple Riesz

means defined by the matrix

where p^ >_ 0, pι > 0, and

Pn = Pi + P2 + ••• + Pn U = 1> 2, . . 9n; n = 1, 2, 3, ) .

The conditions (1.2) and (1.6) are automatically satisfied, and (1.4) reduces

to Pn —» oc as n —» oo. Thus:

(2.1) // (R9 pfo) E (BP ), then (R9 p^ ) is regular, and the latter is equivalent

to Pn —> oo.

In case the sequence ί p, \ is nonincreasing (p, 4-) we have the following

result, the proof of which is independent of Theorem (1.7).

(2.2) In order that (R9p, I) G ( β P ) , it is necessary and sufficient that it

be regular.

The necessity follows from (2.1), and the sufficiency follows from the facts

that a regular (R,p^i) includes (C9 1) [6, p . I l l ] , and (C, 1) has the Borel

property.

The criterion that follows is given in [ 4 ] , where it is shown that the con-

vergence of (2.4) is not necessary.

(2.3) In order that a regular (R9pk) € (BP), it is sufficient that the series

oo

(2.4) Y

be convergent.

The next two results throw light on the range of applicability of (2.3).

(2 .5 ) In order that (R9pk) e(BP), where pk=O(P£"€) for some ε ( 0 <

6 < 1) , it is necessary and sufficient that it be regular.
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The necessity is clear from (2.1). To prove the sufficiency we note that,

since P^ —> oc, the series Σp^/Pj^ is convergent for Cί > 1 by the Abel-Dini

theorem [6, p. 299]. The conclusion then follows from (2.3) and the relation

& = l k=l

(2.6) // (R9 p, ) is regular, and (2.4) convergess then there is a constant c

such that Pn <^ exp (en ) for all n sufficiently large.

From the Schwarz inequality we obtain

k=ι k=ι k=ι

Consequently, for all n such that Pn > 1,

where the last fraction, by a theorem of Cesaro [6, p. 301], tends to 1 as n—»oc.

Then we must have

log Pn = 0(n*),

from which the conclusion follows at once.

As a corollary of (2.5) we obtain the following result, which includes (2.2)

as a special case.

(2 .7) In order that (R,p^) G (BP), where {p^ \ is bounded, it is necessary

and sufficient that it be regular.

For the case of an unbounded sequence { p^ }, (2.5) provides a lower esti-

mate, and (2.6) an upper estimate, for the admissible rate of increase in so

far as the criterion (2.3) is concerned. That some restriction is necessary,

regardless of the criterion, is shown by the example of {R9 e ). The latter is

regular, but fails to have the Borel property since the necessary condition (1.5)

is violated. We shall see, however, as a consequence of the following considera-

tions, that the restriction imposed by (2.6) is not in general essential.
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According to Theorem (1.1), the condition

is necessary in order that (R9p^) £ (BP), This condition can be characterized

as follows.

( 2 . 8 ) In order that An = o ( 1 ) , the conditions ( i ) Pn—> oo, and ( i i ) pn =

o(Pn), are necessary and sufficient.

The sufficiency follows from the inequality

A Σ

since the right side is the regular {R9 p^ )-transform of the null sequence

\ PL/PL !• The necessity is clear from the relations

( P / V <An and (Pn/Pn)
2 <An.

It is doubtful whether ( i ) and ( i i ) are sufficient in order that {R,p^) E (BP),

but the question remains open. However, from Theorem (1.7) we obtain the fol-

lowing sufficient condition, together with the corollaries (2.11) and (2.13).

(2.9) The method (R^p^ ) will have the Borel property if

(2.10) ]Γ p2

k = o

fc = i

(2.11) If Mn = max ( p 1 ? p 2 , , pn ), and

(2.12) Mn = o{

then (R,pk) e(BP).

For we have

<Mn

n

k=ι
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so that (2.12) implies (2.10).

The next criterion may be compared with (2.5) if we write the condition
given there in the form

Then in case pn is nondecreasing (pn t) we can replace P € , which is >̂  {p n)€,
by log n, provided we replace "0" by " o . "

(2.13) The method (R, p^) will have the Borel property if

(2.14) pn = o(Pn/logn).

Now let

pk =exp kV\

Then

the final condition in (2.6) is violated, and hence the criterion (2.3) fails. On

the other hand, the conditions in (2.13) are satisfied, and hence the method

(/?, exp k'2) £ (BP). It is of interest to observe in passing that this method is

definitely weaker than (C, 1). This is a consequence of the known facts that

(R9 p^ t) is always included in (C, 1), and will be equivalent to (C, 1) if and

only if pn =0{Pn/n).

Since condition (2.14), and therefore (2.10), does not imply the convergence
of (2.4), the question of the converse arises. Consider the following example,
in which the notation P(i) is used as alternative to P; . Let

and

= P ( 2 m 4 - l ) / U 2 ( l o g 2 ) 1 / 2 - l ] for 2m4 < k < 2 ( m + l ) 4 (m = 2,3,4, . ).

Then it is not difficult to verify that { p, ! is nondecreasing and unbounded, that
the series (2.4) is convergent, and that
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(log 7i) 5 " pi /P2 > (log n)(p /P ) 2 = 1 for n = 2m (m = 2, 3, 4, ) .

Consequently, of the criteria (2.3) and (2.9) (or (2.13)), neither includes the

other.

For the case of an unbounded sequence \ pk } it would be of interest to have

a sharper limitation on the permissible rate of increase than is provided by

(2.3) and (2.9). At the present time, however, we know of no such result.

3. NOrlund means. Let (N9pk) denote the method of Nδrlund means cor-

responding to the matrix a

nji — Pn.iί^ι/Pn9 where the sequence { p, } satisfies

the defining conditions for (R9pk)9 as given above. The conditions (1.2) and

(1.6) are again automatically satisfied, but (1.4) in this case reduces to

p = o(Pn) We therefore have:

(3.1) // (N9pk) E (BP), then (N9 pk ) is regular, and the latter is equivalent

to pn = o(Pn).

A comparison of the matrices of (R9pk) and (N, pk) suggests that the be-

havior of one for increasing (or decreasing) { p, } will correspond in some sense

to the behavior of the other for decreasing (or increasing) { p, }. This observa-

tion is supported by the next result, and, to a certain extent, by those that

follow.

(3.2) In order that (N9 p^ ΐ) £ (BP ) it is necessary and sufficient that it

be regular.

The necessity is clear, and the sufficiency is implied by the fact that a

regular (N,pk t) includes (C, 1) [2, p. 67].

Since the expression for An is the same in each case, we note that (2.8),

(2.9), and (2.11) apply to (/V?p^). With this in mind we shall refer to them as

(2.8)*, (2.9)*, and (2.11)*. It remains an open question here also whether ( i )

and (ii) of (2.8)* are sufficient in order that (N,pk) e(BP). We remark that

(2.13) is, of course, valid for (N9p,), but the fact is of no interest in view of

(3.2).

In the general case of (/V, Pjc)9 where { ρk } may be unbounded, the criteria

(2.9)* and (2.11)* are all we can state at the present time. If ί pk \ is subject

to suitable restrictions the criteria that follow may be obtained. As the first

of these we have the following analogue of (2.7).
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( 3 . 3 ) If pk = 0 ( 1 ) and lim inf pk > 0, then (N, pk) G (BP).

T h e c o n d i t i o n s i m p l y t h e e x i s t e n c e of p o s i t i v e c o n s t a n t s Cχ9 c29 k0 s u c h

t h a t

Pk l ) a n d p^. >. c 2 ( & > & ( > ) •

T h e n

^ π >. Pk0 + (n - ko)c2 ior n > k0 9

so that

A n < C ι / [ P k o + ( n - k o ) c 2 ] .

The conclusion follows from (2.9)*.

The condition, lim inf pk > 0, in (3.3) can be removed if Pn increases faster

than log n.

(3.4) lfpk = 0(1) and log n = o{Pn), then (N,pk) e{BP).

This follows from (2.9)* in view of the fact that Λn = 0(1/Pn).

If pk —> p / 0, the conditions of (3.3) are satisfied. If p = 0, the following

holds.

(3.5) Ifpk = o(l)α/ιrflog w = O(Pn), then (N,pk) e(BP).

It follows that Pn —>oo, and hence that

since we have here the regular (R$ pk )- trans form of the null sequence ί pk

Consequently,

and the conclusion follows from (2.9)*.

Finally, if we strengthen the first condition in (3.4) or (3.5), the second

can be weakened, as follows.
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(3.6) // 2^ Pk < °° and log n = o(Pn

2), then (N,pk) e{BP).

This follows from (2.9)* and the inequality

CO

An < Σ. P2

k/Pn

2

In the event that p. decreases monotonically to zero, it would be of interest

to know if criteria sharper than the preceding exist. It appears likely that such

is the case.

We point out that (3.5) and (3.2) combine to give another proof that (C,

α > 0) G (BP) [4, p. 557 and p. 561]. For (C,α) is a Nδrlund method, where

p,α is the binomial coefficient C, , , f , ,, and P α = C , , ,. The con-
r k k - 1 + < x - lfk-1 n /ϊ-l+α,n-l

elusion follows from ( 3 . 5 ) , if 0 < a < 1, and from ( 3 . 2 ) if α >_ 1.

4. Hausdorff means 1. We denote by (H$ Cί) the convergence-preserving

method of Hausdorff means defined by the matrix of elements

hnk= fl Tnk(u)da(u) U = 0 , 1 , 2 f . . . , n ; 71 = 0 , 1 , 2 , . . . ) ,

where

Tnk(u)=Cn>k uk{l-u)n-k o n ί / = (0 <u < 1),

and d(u) is a function of bounded variation on U, normed by the condition

d ( 0 ) = 0. The regularity of (//s (λ), which we do not assume, is characterized

by the well-known conditions Cί(0 + ) = Cί(0) and α ( 1 ) = 1.

We make use of the following estimate [ 3 , p. I l l ] ,

(4.1) There is a constant K such that for n = 1? 2, 3, , k = 0, 1, 2, , n,

and 0 < u < 1, we have

Tnk(u) < K[nu(l-u)Ty\

1 Theorem (4.4) and its proof were communicated to the author by George Piranian
in a letter of May 13, 1953. With his permission the original and partial results of this
section have been replaced by this complete result. We understand that the same theorem
has been obtained independently by G. G. Lorentz.
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From (4.1) and Theorem (1.7) we deduce the following lemma.

(4.2) // (H9 OC) is regular, and there exists a 8 > 0 such that d(u) = 0 for

0 < u < 8 and such that α ( u ) = l / o r 1 - δ < it < 1 , then (H, α ) G (BP).

Using ( 4 . 1 ) , we obtain

B [ ™ ( l - κ ) Γ X \da(u)\ <Kγn
lA ( A = 0 , l , 2 , . . . , Λ ) ,

where Kγ i s a constant. Consequently,

tik<Ki \hnk\n\

and since Σ ^ | An^ | = 0 ( 1 ) it follows that An - 0(n" ) . The conclusion is

apparent from Theorem (1.7).

The following proposition is an immediate consequence of (4.2).

(4.3) // (λ(u) is of bounded variation on U^ and there exists a 8 > 0 such

that Ci(u) = 0 for 0 < u < δ and such that a (u) = a (1) for 1 - 8 < u < 1,

almost all sequences of O's αnc? l 's are summable-(H9 (λ) to 0l(l)/2.

(4.4) /ra orί/er ίAaί (//, (X) G ( # P ) ziί is necessary and sufficient that (hnk)

be a regular matrix whose diagonal elements hnn tend to zero.

To prove the necessity we assume (//, α) G (BP) and apply Theorem (1.1).

Condition (1.2) reduces to CX(1) = 1, and condition (1.4) for k = 0 implies

Cί(O + ) = α ( O ) . Therefore (H, a) is regular. The condition (1.5) evidently

implies hnn —> 0, and this completes the proof of necessity.

To show that the stated conditions are sufficient we assume for the moment

that (λ(u) is nondecreasing, and we introduce two sequences of nonnegative

and nondecreasing functions defined as follows for m = 1,2,3, . On the

intervals

(0 < u < 2-"1-1), (2" m - 1 < u < 2-m), ( 2 ' m < u < 1 ) ,

the function CXml (u) is defined as

0, α U ) - a(2"m"M, α ( 2 " m ) ~

respectively. On the intervals
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( 0 <u < l - 2 ~ m ) , ( l - 2 ~ m < u < 1 - 2 " 7 7 7 " 1 ) , (l-2'm-1 <u < I ) ,

t h e f u n c t i o n Cim2{u) i s d e f i n e d a s

0, αU)- α(l-2"m), αU-2"7 2"1)- α( l- r f f l ) ,

respectively. We need now the known [ 7 , p. 189] and easi ly establ ished fact

that hnn —> 0 is equivalent to the continuity of α ( u ) at u = 1. Setting

am(u) = α m l U ) n am2 U ) ,

and using the continuity of 0ί(u) at α = 0 and ix = 1, one readily sees that the

series Σ t am(u) converges uniformly to C; (ix) for 0 < u < 1.

Since the method (//, Ot̂  ) satisfies the conditions of (4.3) it follows that

almost all sequences of 0's and l ' s are summable-ί^, 0Cm ) to the value CXm(l)/2.

Let Xm denote the latter set of sequences, and let ^L* denote the intersection

of all the sets Xm Consider the transformations

k=o k=o

where (hnk) and ( / ^ ) are? respectively, the matrices of (fl, Oί) and (//, 0,m),

and where % = { %̂ . \ is any sequence in A*. For the double sequence

the inequality

0 <yn(χ)-snp(x) < ] Γ α m ( l

p + 1

is easily seen to hold3 and this establishes the relation

limp snp(x) = yn(x)9

uniformly in n On the other hand, we have

P
limn snp(x) = 22 Cίm(l)/2

1
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for each p. These facts imply the existence and equality of the corresponding

iterated limits, and we therefore obtain

m

1

αm(l)/2 = α(l)/2=l/2

for each x E l * , that i s , for a lmost a l l x. T h i s p roves the theorem when a(u)

i s n o n d e c r e a s i n g .

F i n a l l y , if d(u) i s any function of bounded var iat ion defining a regular

(//, Cί), l e t C ί U ) = P(u) -N{u) where P (u) and N (u) a re , r e s p e c t i v e l y , the

p o s i t i v e and negat ive v a r i a t i o n s of C((u) on [ 0 , u]. E v i d e n t l y P ( 1 ) > 0, and

we may a s s u m e N ( 1 ) > 0. Then

P(u) N(u)
α U ) = P ( l ) — — - / V ( D — — • = O ι αι(u)-α2α2(u)9

P ( 1 ) N ( 1 )

where OĈ  and C(2 are regular and nondecreasing generating functions, each

continuous at u - 1. Since

(//, α) = α^//, Oil) -α2(H9 α 2 ) with α t - α2 = α( 1) = 1,

the proof is complete.

We point out the connection between Theorem (4.4) and a theorem of Lorentz

[7, p. 189]. According to Lorentz a (bounded) sequence ί s^ } is almost con-

vergent to s if

limp (sn + ι + sn + 2 + •• + sn+p) /p = 5

holds uniformly in n. He c a l l s a method T strongly regular if it e v a l u a t e s a l l

a l m o s t convergent s e q u e n c e s . His n e c e s s a r y and suff icient condi t ions for the

s t r o n g regular i ty of a convergence preserv ing (// ? 0() are p r e c i s e l y t h o s e of

Theorem ( 4 . 4 ) . H e n c e , (//, α ) h a s the Borel property if, and only if, it i s

strongly regular .

5. Summability of {s^a^iy)}. If f 5/c! i s a given s e q u e n c e , a biunique

mapping of i t s infinite s u b s e q u e n c e s {s/^.} onto the interval Y = ( 0 < y < 1 )

may be obtained by defining y = 0 α 1 α 2 C X 3 ( rad ix 2 ) by m e a n s of the equa-

t i o n s

OCfc = 1 (k = ki) and α * = 0 {k £ hi).
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The inverse correspondence is evident if we agree to use only the infinite

representation of y. The phrase "almost all subsequences of { s ^ }" will then

mean that the corresponding subset of Y has measure one.

The following results are due to Buck and Pollard [ l ]

(5.1) THEOREM. // ί s^ \ is ( C9 l)-summable to s9 and

(5.2)

then almost all of the subsequences are ( C9 l)-summable to s.

( 5 . 3 ) THEOREM. If almost all of the subsequences of {s^i are (C, 1 ) -

summable? then {s^ } is itself (C9l)-summable to a value s, and almost all of

the subsequences are in turn (C9\)-summable to s. Moreover^ it follows that

(5.4) Σ si = o(n2).

(5.5) THEOREM. Λ bounded sequence is (C9l)-summable if and only if

almost all of its subsequences are (C, l)-summable.

Tsuchikura [ δ ] has recently shown that the condition (5.2) can be weakened

to

n

(5.6) / Si = o\n /log log n),

and that "o" in the latter cannot be replaced by " 0 . "

In order to extend these theorems to a general method T - ( α ^ ) it appears

to be necessary to replace the subsequences [s^.] by the sequences ίs^.Cί^(y)},

where d^iγ) is the A:th digit in the infinite dyadic expansion of y. For (C, 1 ) ,

and apparently for ( C , 1) only, the summability of {s^d^iy)] can be given the

elegant formulation in terms of subsequences.

When {s^.} is replaced by { s^Cί^ (y ) 1 it should be noticed, in the event that

ί s^dj^iy)] is summable to a constant almost everywhere, that we can expect

this generalized limit to be only half that of ί-s&!, s ince, in the asymptotic

sense, half the terms of [s^d^iy) \ are zeros in almost all c a s e s .
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( 5 . 7 ) L e t 71 = ( α w / c ) be a n y m a t r i x method, a n d l e t {s^} be s u m m a b l e - T

to s £ 0. //

(5.8) Σ <k*l

then almost all of the sequences {SfcCLfc {y)} are summable-T to s/2 In (5.8),

"o" cannot be replaced by "0."

Set ank=anksk^s a n ( ^ ^ e t ^* ^ e defined by t n e m a t r ix (α*^ ). Then Γ*

satisfies the conditions of Theorem (1.7), so that almost all sequences of 0's

and l ' s are summable-Γ* to 1/2. This is equivalent to the theorem.

To see that the result is not true when " o " is replaced by " 0 , " choose for

{anji) the matrix ( c n ^ ) mentioned in § 1 , and for \sji\ the sequence all of

whose terms are 1.

For the case in which s = 0, the following holds.

( 5 . 9 ) Let T - (anh) be a method satisfying ( 1 . 2 ) and ( 1 . 8 ) , and let {s^}

be summable-T to 0. // ( 5 . 8 ) holds then almost all of the sequences \ s^Qk^iy) \

are summable-T to 0.

Set bnk = ank (s/f + 1) and let Ύ' be defined by the matrix ( 6 ^ ). It is clear

that (bnfo) satisfies condition (1.2). Moreover,

Σ « n V l ^ l + i ) 2 = Σ
k-\ \sjc\ <

by ( 1 . 8 ) and ( 5 . 8 ) . T h e n T'e(BP) by Theorem ( 1 . 7 ) ; and s i n c e Te{BP)

by a s s u m p t i o n , the c o n c l u s i o n follows from the r e l a t i o n

k-l k-l k=l

It is an open question here whether "o" can be replaced by " 0 " in (5.8).
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(5.10) Suppose that T — ( α ^ ) satisfies (1.4), and that almost all of the

sequences {sj^Ci^iy)} are summable-T\ say to s (y). Then {sfc] is summable-T

to a value s, and s (y) = s/2 almost everywhere. Moreover, it follows that

(5.11)

The proof of this result is easily obtained by making appropriate modifica-

tions in the proof of Theorem (5.3) [ l , p. 926], and combining the latter with

the proof of (1.5) [5, pp. 401-402].

If we take T as (C, 1), then (5.7) and (5.9) give the equivalent of Theorem

(5.1), with the condition (5.2) replaced by the weaker condition

k=ι

The latter, however, is stronger than the ' 'bes t " condition, (5.6), of Tsuchikura.

On the other hand, (5.10) applied to (C, 1) yields the equivalent of Theorem

(5.3), and (5.11) reduces to (5.4).

As a corollary of (5.7), (5.9), and (5.10), we obtain the following extension

of Theorem (5.5).

(5.12) Let T be a method satisfying (1.2) and (1.8). Then a bounded se-

quence { Sfo } is summable-T if and only if almost all of the sequences { sk (X& (y)}

are summable-T.

To formulate the next two results we introduce the Rademacher functions,

Rk(y)9 defined as 1 —2(X^(y), where d^iy) is defined as above. It is shown

in [5] that the condition (1.8) is sufficient to imply the convergence to 0,

almost everywhere, of Σ ^ a^R^iγ). This remark gives rise to the following

observations.

(5.13) Let T and [s^] be such that (5.8) holds. Then the sequence

\ Sfc Rk(y)\ is summable-T to 0 almost everywhere. Moreover, the "o" in (5.8)

cannot be replaced by "0."

(5.14) Let T satisfy (1.8). Then for every bounded sequence {sj^}, the

sequence {s^R^iy)] is summable-T to 0 almost everywhere. The "o" in ( 1 . 8 )

cannot be replaced by "0."
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The final statement in each case here may be verified from the remark follow-

ing the proof of (5.7), by taking into account the relation

Since the sequence {^&(y)ί represents a random arrangement of + l ' s and

- l ' s , the observation (5.14) is of interest from the following point of view. If

T is a given matrix method, and a bounded sequence {ŝ  \ is given arbitrarily,

then it is extremely unlikely that ίs& } will be summable-J, even if T is regular.

On the other hand, if T satisfies (1.8), and the signs of the given s^ are varied

at random, then the probability is 1 that the resulting sequence { ±S£ \ will be

summable-T to 0.
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