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1. Introduction. The first of the two Rogers-Ramanujan identities [ 1 , Chap.

19] states that

l l
-x* ι ) ( l - * ) μ=o (1 -x) (1 - * )• (1 ~ % )

where the left side is the generating function for the number of partitions into

parts not congruent to 0, ±2 (mod 5). This paper shows that as a generaliza-

tion of (1) the generating function for the number of partitions into parts not

congruent to 0, ±k (mod 2k + 1), where k is any positive integer, can be ex-

pressed as a sum similar to the one appearing in (1); in fact in general the

are replaced by polynomials G, {x), so that we have the following theofem:
2

THEOREM 1. The following identity holds:

( 2 ) Π _

Gk (x)

μ = C

where the left side is the generating function for the number of partitions into

parts not congruent to 0, ±k (mod 2k + 1) . The G, (x) are polynomials in x

and reduce to the monomial x^1 for k = 2, that is, for the Rogers-Ramanujan

case.

While the right side of (1) is the generating function for the number of
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partitions into parts differing by at least 2, no similar interpretation of the

right hand of (2) is possible. In particular, it follows from a theorem of the

author [2] that the right side of (2) cannot be interpreted as the generating

function for the number of partitions of n into parts differing by at least d, each

part being greater than or equal to m, unless d = 2, m = 1, that is, unless we

have the Rogers-Ramanujan identity (1 )•

As a generalization of the second of the Rogers-Ramanujan identities:

(3) π
0

we have again that not only the generating function for the number of partitions

into parts not congruent to 0, ± 1 (mod 5), but in general the one for the number

of partitions into parts not congruent to 0, ± 1 (mod 2 k + 1) can be expressed

as a sum; in fact again the xμ are replaced by the same polynomials G^ {x)

appearing in (2), so that we have the following theorem:

THEOREM 2. The following identity holds:

1

Do ( I ~ χ ( 2 k + ί ) v + 2 ) ( l - . χ ( 2 k + ι ) ^ 3 ) . . . ( l - χ { 2 k + ι ) v + 2 k ' 1 )

= hh ( i - % ) ( i - % 2 ) . u - % μ )

More generally, it can be shown that identities involving the generating

function for the number of partitions into parts not congruent to 0, ± (A; — r)

(mod 2& + 1), where 0 < r <̂  k - 1, can be obtained, of which (2) is the

particular case where r = k - 1, that is, for each modulus 2k + 1 there are k

identities.

2. Proof of Theorem 1: If we replace, in Jacobi's identity,

v=0 α = -oo

y by χ^+ι)/2 a n d χ b y _ χ i
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μ =

so that, dividing both s ides o f ( 6 ) b y ( l — # ) ( 1 - x2) ( 1 - x3 )• , we obtain

oo

π —( 7 )

v =0

To prove Theorem 1, we therefore have to show that the right s ide of ( 7 ) i s the

same as the right side of ( 2 ) .

We use the auxiliary function

( 8 ) CKi{y) = 1 - y V

ϊ

which was first used by Selberg [ 3 ] and is a generalization of the function

used in some proofs of the Rogers-Ramanujan identit ies [ 1 , Chap. 1 9 ] . The

function ( 8 ) converges if | y \ < 1 and if k is real and > - 1/2. In our case k

ana : will be nonnegative integers. For i — k and y = 1, ( 8 ) reduces to

(9) C

k,k
(1) = Σ, {~l)

μ — —oo

Since the C^ -(y) satisfy the equation
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it is easily seen that we can find a functional equation for the C^ ^,(y), which

can be found to be of the form

d o ) ckfk
(^y>ί = Σ Ak,μ(y*

μ=ι

If we let

(11) Qk(γ)= —

(10) reduces to

k

If, for instance, k = 3, (12) becomes

(13) Q3(y) = (l+yx)Q3(yx) + y2 x2 Q3(yx2) ~ y3 x5 Q3(yx3),

while for k = 4 we would have

(14) <?4(y)=(l+y:O<24(y*) + y 2 * 2 ( l + y * + y * 2 ) ( M y * 2 )

In order to solve (12) for (?fc(y) we try a solution of the form

where Bkt0(x) = (?^(0)= 1 by use of (11) and (8) .

Putting (15) into (12) we obtain a difference equation for the Bk9μ(x). It

can easily be verified that the Bk^{x) are of the form

(16) Bk Λx) = ,
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where the Gkfμ(x) are polynomials in x and reduce to the monomial xμ for

k - 2. In general these polynomials do not seem to possess any striking proper-

ties, even for small values of k and μ, as shall be illustrated below for k - 3

and k = 4.

Substituting now (16) into (15), and remembering (11), we obtain

so that we have, in view of ( 9 ) ,

(18) — = —

~~ M 2λ AM '

which completes the proof of the theorem.

In case k = 3, the difference equation for the B3fμ(x), which can easily be

obtained from (13), is the following:

(19) B39μ{x)(l-X^) = B39μ_ι(x)xμ'+B3tμ_2(x)χ2μ-2-B3>μ.3(x)χ3ίl'\

f r o m w h i c h w e c a l c u l a t e , r e m e m b e r i n g t h a t B3yQ{x) = 1 :

G3fi(x)=x,

+x6-xs,

- x ι \

+ x l 5 - x l 8 - x 1 9
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and so on.

It can easily be verified by induction that the degree of the G3 μ(x) is equal

to

5μ2 + μ
if μ = 0 or 1 (mod 3 ) ,

6

and is less than or equal to

5μ2 - μ - 6
— if μ= 2 (mod 3 ) .

6

Similarly, it can be shown that the term with smallest exponent in each

polynomial G3f/ji(x) is x*- ^μ ι)/2-ly s o that each polynomial has this power

of x as a divisor and no higher power.

For k — 4, we obtain the difference equation for the B4 μ(x) from (14):

(20) B4>μ(x)(l-x») = B4>μ.ι(x)xfl+B4)μ.2(x)x2^2

so that we obtain:

G4>0(x)=1»

G4>ι(x)=x,

G4>4(x) = x6 + x1 + xΆ - x9 - x ί 0 - x11 + x13 ,

G4tS(x) = x9 + x10 + x ι ι - x ι 4 - x ι 5 - χ 1 6 + x 2 \

G4y6(x) = x l 2 + x l 4

+ x i 5 + x ι 6 - x l 9 - 2 x 2 ° - x 2 l - x 2 2 + x 2 5 + x 2 6 ,

G4> 7 (x) = x l 7 + * 1 8 + 2x l 9 + x20 + x21 - x23 - 2x24 - 2x25 - 2x26 - x27 + x30

+ x 3 l

+ x 3 2 ,
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and so on.

In this case the term with smallest exponent can be shown to equal

l μ 2J/3J^ w h j } e f0Γ G$f μ{x) we would find the corresponding term to be
[ ( 2 ) / ]

3. Proof of Theorem 2. From the definition of C^^iγ) we find

( 2 1 )

Substituting now, in Jacobi ' s identity ( 5 ) , % ( 2 ^ + 1 > / 2 fQΓ y a n ( j _ Λ .(2A-i)/2

for z, and dividing at the same time both s ides by (1 - x) ( 1 - x2) ( 1 - Λ ; 3 ) ,

we obtain

(22) Π

; r 0
u - * ) ( i - * 2 ) ( i - * μ )

if we recall (11), (15), and (16).

Identities involving the generating function for the number of partitions

into parts not congruent to 0, ±(k — r) (mod 2k + 1), where 0 < r < k — 1, can

be obtained by noting that, using Jacobi's identity with y = x and

z = - Λ

( 2 r + l ) / 2 , we obtain
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where the right side, as can be verified, is expressible in terms of C/ϋf

which was shown already for r = 0 by Theorem 1 and for r = k - 1 by Theorem 2

and shall only be indicated here for r = 1, where we find

(23) C M ( 1 ) - xk'1 (1 - * ) U ~ χ2)Cktk{x2)

Vs (_1)MΛ.((2/c+l)μ2+3μ)/2β

μ = -oo

This method therefore allows us to find for each modulus Ik + 1 exactly k

identities, that is, one for each value of r in 0 < r £ k - 1.

REFERENCES

1. Hardy and Wright, Introduction to the theory of numbers, Oxford, 1938.

2. H. L. Alder, The nonexistence of certain identities in the theory of partitions
and compositions. Bull. Amer. Math. Soc. 54(1948), 712-722.

3. A. Selberg, Liber einige arithmetische Identitaten, Norske Videnskaps-Akademi,
Avhandlinger, 1936, 1-23 (No. 8).

UNIVERSITY OF CALIFORNIA, DAVIS




