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1. Introduction. As in [ 3 ] , we shall say that an integral domain 0 is n-

dimensional if in 0 there is a proper chain

(0)cPι C . C P Π C ( 1 )

of prime ideals, but no such chain

In Theorem 2 of [3] it was shown that if 0 is rc-dimensional, then O[x] is at

least (rc + 1 )-dimensional and at most (2n + 1 )-dimensional: here, as throughout,

x is an indeterminate. After preparatory constructions in Theorems 1 and 2

below, this theorem is completed in Theorem 3 by showing that for any integers

m and n with n + 1 < m < 2n + I, there exist rc-dimensional rings 0 such that

0[x] is m-dimensional. The other theorems mainly concern 1-dimensional rings.

Such rings 0 can be divided into those for which 0[%] is 2-dimensional and

those for which this condition fails, the so-called F-rings. The paper [3 ] was

concerned with the existence of F-rings and showed [3, Theorem 8] that the

1-dimensional ring 0 is not an F-ring if and only if every quotient ring of the

integral closure of 0 is a valuation ring. Below, in Theorem 5, we show more

generally that if 0 is 1-dimensional but not an F-ring, then 0 [ # i , , xnλ is

{n + 1 )-dimensional, where the x{ are indeterminates: this theorem depends on

the essentially more general Theorem 4, which says that if O is an m-dimen-

sional multiplication-ring, then 0\_xu * , xn] is (m + n )-dimensional. In the

case that the xi are not indeterminates, one can still say (Theorem 10) that

dim O[xt , 9 xn] ~ 1 + degree of transcendency of 0 [ x ι , , x n I/O ,

provided that the intersection of the prime ideals (^ (0)) in 0 is = (0), where

0 is a 1-dimensional ring such that 0[x] is 2-dimensional. For F-rings 0,

Theorem 6 shows that

n + 2 < dim 0[x{, , xn] < 2rc + 1,
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where the %ι are indeterminates, while Theorem 7 constructs for any N and n

with

τι + 2 <N < 2rc + 1

an F-ring 0 such that 0[xχ, , xn] is /V-dimensional. Similar results for

rings of dimension greater than 1 would be interesting if one could get them.

2. Simple extensions. Let us call the integral domain 0 of type (n>m) if

dim 0 = n and dim 0 [ x ] - m .

THEOREM 1. Let 0 be integrally closed and of type (n,m\ let K be its

quotient field, and let K' be a proper extension of K in which K is algebraically

closed. Let Σ be any field having a discrete rank 1 valuation with K' as resi-

due field. Let 0* be the set of elements whose residues are finite and in 0.

Then 0* is integrally closed and of type (n + 1, m + 2).

Proof. L e t α e Σ , w i t h (X i n t e g r a l over 0 * ,

α s + o L (X s " 1 + ••• + as = 0 (ai e 0*),

an equation of integral dependence. Dividing this equation by (Xs and supposing

1/θC to have residue 0, we get the contradiction 1 = 0. So Cί has finite residue,

and

α s + a{ α s " 1 + •• + a~s = 0,

where the bars indicate residues. Since K is algebraically closed in K'9 we have

Cί £ K; and α € 0 , since 0 is integrally closed. Hence 0* is integrally closed.

Let P be the set of (X G 0* having residue 0. Then P is a prime ideal. From

the definitions one obtains

whence 0* is at least {n+ 1 Vdimensional. If P ' is a prime ideal in 0*, P' Φ

then P ' 3 P I n fact, let g G P ' since g is 0*, we have v(g) = s >_ 0, where t>

is the given valuation (and the group of integers is the valuation group). Then

the (s + 1 )th power of any element in P is divisible by g, whence ? C f , From

this it follows that 0* is at most (n + l)-dimensional

The quotient ring O* is integrally closed and has only one prime ideal
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(•£ (0 ) ) . Moreover it is not a valuation ring. In fact, let (X £ Σ be an element

having residue in K' but not in K. Since (X can clearly be written as a quotient

of two elements of positive value, we have that (X is in the quotient field of

0*; but neither (X nor 1/cc has residue in K, so neither Cί nor 1/α is in 0 * .

Thus 0* is not a valuation ring, and hence is an F-ring, by [3, Theorem 8]. It

follows at once that 0 * [ # ] P is not minimal in 0 * [ * ] . Now

0*[x]/0*[x] P ~ O*/P[xλ ~ 0[x],

so 0 * [ # ] is at least (m + 2 )-dimensional.

Finally, let (0) C P ι C P 2 C C Ps C (1) be a chain of prime ideals in

0*[%]. Let Pi be minimal; then P t n 0* = (0), as otherwise

P t n 0 D P and Pi D 0*[x] . P .

Similarly one concludes that if no chain of prime ideals P ' C P " can be inserted

between (0) and P 2 , then

P 2 n O* = P and P 2 = 0 * [ * ] . P

(by [3, Theorem l ] , P 2 cannot contract in 0 to ( 0 ) ) . From this it follows at

once that 0 * [ # ] is at most (m + 2)-dimensional, and the proof is complete.

REMARK. The above construction stems from an example of Kπill showing

that an integrally closed integral domain with only one proper prime ideal need

not be a valuation ring; see [2, p.670f].

THEOREM 2. Let 0, K, K', Σ , O* be as in Theorem 1 except that we

assume K = K'. Then 0* is integrally closed and of type (rc + 1, m + 1).

Proof. The proof follows exactly the lines of the proof of Theorem 1, except

that here Op is a valuation ring, as one easily sees.

THEOREM 3. For every n and m such that n + I < m <2rc + l there exist

integrally closed rings of type {n>m).

Proof* Any field is of type (0,1) . Theorem 1 gives us an integrally closed

ring of type (1,3), and Theorem 2 gives us one of type (1,2) —the required

valuations obviously exist. Suppose now by induction that for some n and each

m, n+I<^m<L2n+l, we have an integrally closed ring of type (n9m). If

n + 3 <ra <2rc + 3, then n + I <_ m - 2 < 2̂rc + l , and from an integrally closed

ring of type {n, m~2) we get, by Theorem 1, an integrally closed ring of type
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{n+ 1, m). If m = n + 2, we apply Theorem 2 similarly to get an integrally closed

ring of type (n + 1, m ).

As for simple algebraic extensions 0[cί] of an rc-dimensional ring 0, it is

clear that dim 0[cί] <_ 2τz. On the other hand, let 0 be an integrally closed ring

of type (ns m) and let 0* be a ring constructed as in Theorem 1; also let Σ and

P be as in Theorem 1. Let

α e Σ , a £ 0 * , l/oc £ 0 * .

Then

0*[<x]/0*[oc] P ~ O*/P[x] ~ 0[χ],

by [3, Theorem 7], so 0*[C(] is at least (m +1 )-dimensional; it is also at most

(m +1 )-dimensional, since 0*[%] is (ra + 2)-dimensional. Hence

(τz + 1) + 1 < dim 0*[θt] < 2 U + 1 ) .

It is thus clear that for any n' > 0 and m' with rc'-i-l £ m' < 2ra', there exists

an rc'-dimensional ring 0* such that for some (X in the quotient-field of 0* we

have dim 0* [α ] = m '. - Also

dim 0 [ α ] < dim 0

is possible. In fact, let 0 be a valuation ring of rank n, (0) C p C C p C ( l ) ,

the chain of prime ideals in 0. Let c Epi + ι, c ^ p ; then dim 0 [ l / c ] = 1. In

short? dim O[(x] covers precisely the range from 0 to In as 0 varies over the

n-dimensional rings 0.

3. Multiple transcendental extensions. We recall that a multiplication-ring

may be defined as an integral domain 0 such that 0p is a valuation ring for

each prime ideal p in 0 (see [2, p. 554]).

THEOREM 4. If 0 is an m-dimensional multiplication-ring, then 0[xi9 9xn]

is (m + n)-dimensional9 where the X( are indeterminates.

Proof. To facilitate the proof, we define the dimension of a prime ideal P in

an extension 0 ' = 0 [α 1 ? ,0^] of a finite-dimensional ring 0 (relative to 0 )

as follows:

dimP = d.t. ( 0 7 P ) / ( 0 / P ) +dim 0/p,

where p = P n 0 (and " d . t . " abbreviates "degree of transcendence"). The
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following points ( a ) , (b) do not assume 0 to be a multiplication-ring.

(a) Let O\ 0, P, p be the images of 0\ 0, P, p, respectively, under a

homomorphism with kernel contained in P. Then dim P = dim P.

In fact, O'/P = 0 VP and 0/p = 0/p; also P n 0 = p .

(b) Let M be a nonempty multiplicatively closed system in 0 not meeting p,

Then

dim P - dim 0/p = dim OM P - dim 0M /0M - p .

In fact, the rings O'/P and 0^/0^ P have the same quotient field, as do

the rings 0/p and 0^/0^ p. Note also that 0^ P n 0 ^ = 0 ^ p, whence the

required equality follows.

Let Pu P2 be two prime ideals in 0\ Pγ C P 2 , pi = P tn 0, i = 1, 2. We want

to compare dim Pi with dim P 2 . If p t =P2> then, passing to a residue class

ring, we may assume pχ - p 2 = (0) . Taking M - 0 - (0), we pass to the quotient-

ring Oy, which is a finite integral domain. Thus dim Pt > dim P 2 if p t = P2

This conclusion holds also if p t C p 2 provided O is a multiplication-ring.

(c ) If Pi and P 2 are prime ideals in 0 [ x t , , xn ] and Pγ C P 2 , then

dim Pι > dim P 2

also

dim Pv - dim P 2 >̂  dim 0/pγ - dim 0/p 2 ,

provided that 0 is a multiplication-ring.

In fact, we may suppose p C p , and have only to prove the second point.

Also, by (b), we may pass to any quotient-ring Oy, where M does not meet p 2.

Taking M = 0 - p 2 , we may assume that 0 is a valuation-ring and that p2 is its

ideal of non-units. Let zι, 9zr be elements of 0 ' which are algebraically

dependent mod Pi over 0. Then they are also dependent mod P 2 . In fact, let

/ ( * „ . . . , z r ) s
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where the coefficients of the polynomial / are in 0 but not all in p 1 # Dividing

by a coefficient of least value, we may suppose / to have a coefficient equal

to unity. But then we have a relation mod P 2 . This proves that

d.t. (O'/P2)/(O/p2) < d.t. ( O 7 P ι ) / ( O / P ι ) ,

that is, (c) is proved.

The theorem now follows from (c) since dim (0) = m + n,

COROLLARY. If 0 is an m-dimensional multiplication-ring then

dim O[al9 9CLn] <7?2+r,

where

r = d.t. 0[aί,..., an]/O.

Proof. The foregoing proof shows that

dim 0[xί 9 ••• 9xn~\ <_ dim ( 0) = m + d.t. 0 [ x t , , xn ] /O $

and in doing so makes no use of the fact that the X[ are indeterminates; this

fact is used only to get that

dim 0 [ % ! 9 9Xn\ >_m + n.

THEOREM 5. If 0 is a 1-dimensional ring such that O[x] is 2-dimensional,

then

dim O[θtχ, . , an] < 1 + d.t.

if the OCj are indeterminates, then

dim O[Cίl5 , &„] = 1 + n.

Proof. We may suppose 0 to be integrally closed. In that event, 0 is a

multiplication-ring, by [3, Theorem 8] . The present theorem now follows im-

mediately from the preceding corollary.

THEOREM 6. If 0 is 1-dimensional, then O[xί9 9xn] is at most (2n + l)-

dimensional$ where the X{ are indeterminates.

Proof. Let ( 0 ) C p 1 C p 2 C « C p s C ( l ) be a chain of prime ideals iin
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0[xi9 ,xn]. Let K = quotient field of 0. If p s n 0 = ( 0 ) , then the above

chain extends to a chain of s prime ideals in K[xχ9 , # n ] , so s <_ ra Suppose,

then, that

. + i

( 0 ) ,

whence also P i + £ n 0 = p, since 0 is 1-dimensional. P a s s i n g to & [%1? , xn ],

we see that i < n; and pass ing to

we have s — (i + 1) <_ rc? since 0/p is a field. Hence s < 2n + 1.

THEOREM 7. / / 0 is α/z F-ring9 then O[xχ, •• 9 xn] is at least {n + 2)-

dimensίonal and at most (2n + \)-dimensional. For any /V, n + 2 < N <_ 2τz+l9

ί/iere is an F-ring 0 such that 0[x ι , ,xn ] is N-dimensional, where the xι

are indeterminates.

Proof. Let K be a field, x9 yχ, , ym inde terminates. Let

K ' = K ( y x , . , y m ) , X = « ' ( * ) ,

and let v be the discrete rank 1 valuation of Σ obtained by placing

v {aι%1 + aι+ιxι 1 + +as xs ) - i,

where α; € X ^ a{ £ 0. Let 0 * be the set of elements whose residues are finite

and in K, The ring 0 * consis ts of the elements in K{x,yί9 ••• , ym ) which can

be written in the form

α U , y 1 ? ' - - , y m ) / β ( χ , y i 9 •• > y m ) ?

where

a, β£K[x,Yι, ••• , y m ] , j8(0, y l f . . . , y m ) ,έ 0 ,

By Theorem 1, 0* is an F-ring; and 0* contains only one proper prime ideal,

namely the ideal P consisting of the elements d/β with

α ( 0 , xl9 . . . ,χm)/β(09 %i, , Λ Λ ) = 0 .
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We s h a l l prove t h a t for m <_n, 0 * [xi9 ••• 9 % n ] i s (m + n'+1 ) - d i m e n s i o n a l . In

0*[xl9 . . 9 χn~\ l e t Pm be the idea l of p o l y n o m i a l s which v a n i s h for %ι =

yi ( i = 1 , , m ) . We claim t h i s i d e a l i s in

0 * [ * ι , , * J . P = P ' .

Jn fact, let

be in P m , and write

where ci^ in £ K$ ^ ι i *ιn ^ ^* This polynomial vanishes for xι = y., ί = 1, ,

m; hence also for xι = γι 9 i — 1, , m, x = 0. Hence

£ ' C ί ι . . . l n x ι . . . Λ;Λ

vanishes for X( — y^ $ i — 1, , m$ whence

and

Let Py be the ideal of elements in 0* [x ι , • ,xn ] which vanish for χι = y.9

ι = l , •••,/. Then Py is prime and (0) C Pi C C P m C P ' Since any chain

of rc prime ideals in 0*/P [xι , ,%R] gives rise to such a chain in 0* [ x ι , ,

%n ] containing P ' , we see that 0* [ # i , , xn ] is at least (m +n + 1 )-dimen-

sional. On the other hand, 0*[xι, ,xn] is of degree of transcendency

m + 7i + 1 over K, and so 0*[xι , 9 xn] is at most (m + n+ 1 )-dimensional.

This last point follows from the following lemma, the proof of which is exactly

as in the well-known case that 0 is a valuation ring.

LEMMA. Let 0 be an arbitrary integral domain containing a field K, and let

0 be of degree of transcendency r over K. Then 0 is at most r-dimensional.

Proof. This follows at once if we can show that the degree of transcendency
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of 0/P over K is less than r for any proper prime ideal P in 0. If θi9 Θ29 9

θs G 0 map into (given ) algebraically independent elements in 0/P, and 0 G P,

θ £ 0, then θ9 Θι9 9θs are algebraically independent over K, Hence

d.t. 0/K > d.t. (0/P)/K.

4. Arbitrary finite extensions. Let 0 be an arbitrary integral domain which

is not a field, it is certainly possible, for appropriate 09 that some simple ring

extension O[cc] of 0 will be a field. In fact, let 0 be such that the intersection

of all its prime ideals (^ (0)) is not the ideal (0); for example, any integral

domain with a finite, positive number of prime ideals (^ ( 0 ) ) will do. If c (£ 0)

is an element in all the prime ideals, then O[ 1/c] is a field; for if P is a prime

ideal in 0 [ l / c ] , P £ (0), then

P n O = p ^ (0)

and

1 = (1/c) c eθ[l/c] . p C P .

We also have the converse.

THEOREM 8. Given an integral domain 09 there exists a field F which is a

simple ring extension of 0 if and only if the intersection of all the prime ideals

in 0 is £ (0) .

Proof. Let F - 0[a]. Here α must be algebraic over O9 say

c o α m + c 1 α m ' 1 + + c m = 0, C J G O , c 0 £ 0 .

Then c0CC is integral over 0, as is the ring Oγ = O [ c o 0 t ] Let Fι = 0^ [ a ] ;

then Fι is a field [ l , p. 253]. Over every prime ideal in 0 there lies a prime

ideal in Oχ; since Oχ is algebraic over 0, if the intersection of the prime ideals

(^ (0) ) in 0χ is ^ (0), then the like is true in 0. Hence we may assume that

O = 0ί9 that is, that Cί is in the quotient field of 0. By a similar reasoning we

may suppose 0 is integrally closed. From the fact that l/cc £ 0 [cί ], one finds

that 1/Cί is integral over O9 hence in 0. Thus (X = 1/6, 6 G 0. The element 6

must be in every prime ideal p ( ^ (0)) ; in fact, if b £ p, then O [ l / 6 ] (I Op,

whence 0[l/b] = O[(x] is not a field. This completes the proof. —This theorem

has been previously proved in [4, p. 76].

A study of algebraic extensions of 0 must therefore separate the cases that
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t h e i n t e r s e c t i o n o f t h e p r i m e i d e a l s ( ^ ( 0 ) ) i s = ( 0 ) o r i s = / ( 0 ) .

THEOREM 9. If 0 is a l-dimensional ring such that O[x] is 2-dimensional9

and the intersection of the prime ideals { Φ ( 0 ) ) in 0 is = (0) , then the like

is true of any simple algebraic ring extension 0[(X] of 0 {where it is assumed,

of course, that 0 [ α ] is an integral domain).

Proof. By Theorem 5, we know that 0[(X] is 0- or l-dimensional, and the

previous theorem excludes the first alternative. Also 0[dsx] is 2-dimensional,

for otherwise O[γ,x]9y an indeterminate, would be of dimension more than 3,

contradicting Theorem 5. Thus it remains to prove that the intersection of the

prime ideals (φ (0 ) ) in 0[<χ] is = ( 0 ) . Let

c0d
n + cidn" + + cn - 0, Cj E 0 f c 0 / 0,

and let 5 = ί p } be the set of prime ideals (^ (0)) in 0 which do not contain

co; S is not empty. Then Π p = (0), for if d GDp, d Φ 0, then c0 d is in every

prime ideal (^ (0) ) of 0, Over every prime ideal p ES there lies a prime ideal

P in O-[(x]. If T = { P \ is the set of prime ideals in 0[cί] contracting to prime

ideals in S, then one concludes immediately that ΠP = ( 0 ) . A fortiori the inter-

section of all prime ideals (^ (0)) in O[(λ] is = (0) . This completes the proof.

If 0 is an integral domain in which the intersection {ftp) of the prime ideals

(φ ( 0 ) ) is ?£(0), then for every r it is possible to define a finite extension

O[cί ι ? •• , an] of 0 such that

dim O[(Xl9 . . . , an] = r

and

d.t. O [ α 1 ? . . . , α J / 0 = r;

namely, we adjoin to 0 an element 1/c, c £(Ίp, so that O [ l / c ] is the quotient

field of 0, and thereupon adjoin r indeterminates The situation is different

for a l-dimensional ring which is not an F-ring and in which the intersection of

the prime ideals ( φ (0) ) is = (0) .

THEOREM 10. Let 0 be a l-dimensional ring such that 0[x] is 2-dimen~

sional9 and let the intersection of the prime ideals ( Φ ( 0 ) ) in 0 be = ( 0). Then

for any integral domain 0[(λl9 ««- , Cί^],
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dim O[alf . . . , an] = 1 + d.t. 0[θLi9 . . . , an]/O.

Proof. Let

K = quotient field of O$ r = d.t. 0 [α t , , α n ] / 0 .

Then K[al9 . . . , α Λ ] is r-dimensional and a chain ( 0) C Pt C . . . C P Γ C ( 1 )

of prime ideals in K[al9 , Cί^] contracts to a chain

(0) C P ι C . . . C p r C ( 1 ) , and p. n 0 = ( 0 ) , ; = 1, . . . , r .

Moreover, pr is not maximal, for if it were, then

O[al9 - . , α Λ ] / p Γ = 0 [ α l f . . . , o c j

would be a field; hence also K[(Xί9 «•« , dn] would be a field, whence the (X;

would be algebraic over K9 therefore also over 0, This contradicts the previous

theorem. Hence

dim O [ α i , ••• , α Λ ] > 1 + d.t. 0[aι, . . . , an]/0,

and we have already seen the reverse inequality.

Since the theory of 1-dimensional rings must separate the cases that the

intersections of prime ideals ( ^ ( 0 ) ) i s = ( 0 ) o r ^ ( 0 ) , it may be of interest to

have an example of a 1-dimensional ring, not an F-ring, with infinitely many

prime ideals ( ^ ( 0 ) ) having intersection £ ( 0 ) . We construct such a ring 0 as

follows. Let K be a field containing all roots of unity, x an indeterminate, L the

algebraic closure of K{x)9 S the integral closure in L of K[x], and 0 , the

quotient-ring of S with respect to the multiplicatively closed system of poly-

nomials in i£[x] which are not divisible by x. Infinitely many prime ideals in

5 lie over (x) in X [ # ] ; to see this, let n be any integer not divisible by the

characteristic of K? aΪ9 ««« , an the nth roots of unity, y = y l + x. In K[x9y]

there lie n prime ideals over {x)9 namely (x$ y - α ^ ) , since (0, α;) is a point

of yn - 1 + x. Going up to S, we see that there exist at least n prime ideals

over {x). Every prime ideal in 0 which differs from ( 0 ) contains x, and there

are infinitely many such ideals. We now verify immediately that 0 is a ring of

the required type.
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