
TRANSFORMATIONS OF SYSTEMS OF RELATIVISTIC

PARTICLE MECHANICS

HERMAN R U B I N AND P A T R I C K S U P P E S

1. Introduction. In [7] the axiomatic foundations of classical particle

mechanics were investigated; and in [ 8] the transformations which carry systems

of classical particle mechanics into systems of classical particle mechanics

were determined. The purpose of the present paper is a similar investigation of

relativistic particle mechanics (in the sense of the special theory of relativity).

Some remarks on the general orientation of these studies are to be found in

[7, § 1 ] and in [ 9 ] .

In regard to our axiomatization of relativisitic particle mechanics, we want

to emphasize that we have in no sense attempted to use primitive notions which

are logically or epistemologically simple. Investigations with these latter aims

are to be found in [ l l ] , [12], [13], and [14]; but these studies are incomplete

in the sense that they do not give axioms adequate for relativisitic particle

mechanics as it is ordinarily conceived by physicists. We have attempted to

present such a complete set of axioms in a mathematically clear way.

The main result of the present paper is the determination under a certain

weak hypothesis of the set of transformations which always carry systems of

relativistic particle mechanics into systems of relativistic particle mechanics.

Although this set of transformations is not a group (under the usual operation)

we are able to show that it is essentially a Brandt groupoid. It is difficult

precisely to compare our results with those in [ 6 ] , but our results seem to

represent an improvement in three respects: ( i ) we work within an explicit

axiomatic framework; ( i i ) we consider transformations of the units of mass and

force as well as position and time; (i i i) we consider transformations from one

value for the velocity of light to another.

We briefly summarize the mathematical notations we use, most of which are

standard. We denote the ordered rc-tuple whose first member is al9 whose second

member is α 2 , and so on, by
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( a l 9 , a n ) β

By an rc-dimensional vector we mean an ordered rc-tuple of real numbers. Opera-

tions on vectors are defined in the usual way. We use the symbol " 0 " to denote

the real number zero, the ^-dimensional vector all of whose components are

zero, and the matrix all of whose elements are zero. If A = ( α L , •• , α π ) is any

vector, the length | A \ of A is defined by

| / l | = Y α + +α

and by [A }il9i2, ,ir

 w e mean the r-dimensional vector ( α ^ , α j 2 , , α l r ) .

Thus if A = (4,7,5), then M]2,3 = (7,5) . If A is a vector, we sometimes write

"A2" for " | ; 4 | 2 . " If a is a matrix, we denote the transpose of Q by " G * , "

and the determinant of G> by " | a | . " ^ e denote the identity matrix by "c$L"

Although we treat vectors as one-rowed matrices, if A is a vector we always

mean by | A | the length of A and not the determinant of A: the meaning should

be clear from the context. We use both matrix notation and usual vector notation

for the inner product of two vectors A and B. Thus we sometimes write: AB*,

and sometimes: A β, whichever is more convenient.

We use Menger's notation for derivatives (see [10]) . If / is a function,

then D (f ) is the derivative of /. Thus, for example,

D (s in) = cos, [D (s in)] (x) = cos x9 and [ D 2 ( s in)] (%) = - s i n % .

In this connection, we use the standard notation for sums, products, quotients,

square roots, and so on, of functions. Thus, for example, if / and g are functions

of a real variable, by f+g we mean the function h such that for every real

number x

If / is a one-to-one function, /"* is the inverse function of / . It is also con-

venient to introduce a special symbol for the composition of two functions: if

/ and g are functions of a real variable, by g o / we mean the function h such

that for every real number x

h(x) = g(f(x)).

To make some of our equations involving derivatives more perspicuous in re-

lation to the notation ordinarily used in physics, we introduce formally the
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following two symbols: if / and g are functions of a real variable, then the func-

tion df/dg is defined by the following equation (for all real numbers x )

and the function d2f/dg2 by the equation

d2f (D[Df/Dg]\
— : (*) = ) (x)
dg2 \ Dg I

Finally, we also use the following notation: / is the set of all positive

integers, R is the set of all real numbers, R+ is the set of all positive real

numbers, and En is the set of all ^-dimensional vectors. We sometimes use

geometrical language, referring to vectors in En as points in ^-dimensional

Euclidean space, and so on.

2. Primitive notions. Our axioms for relativistic particle mechanics are

based on six primitive notions: P, 3, πι9 s9 f, and c. P is a set, 3 and m are

unary functions, s is a binary function, / is a ternary function, and c is a con-

stant.

The intended physical interpretation of P is as the set of particles. For

every p in P, c3 (p ) is to be interpreted physically as a set of real numbers

measuring elapsed times (in terms of some unit of time and measured from some

origin of time). There is a good physical reason for assigning (possibly) dif-

ferent sets of real numbers to different particles, instead of having one set of

elapsed times for the whole system, as in [7]: two particles which have a

simultaneous "life-span" with respect to one inertial frame of reference may

have life-spans which do not even overlap with respect to another inertial frame.

For every p in P, m (p) is to be interpreted physically as the numerical

value of the rest mass of p. For every p in P and t in 3 (p ), s (p, t) is a vector,

to be thought of physically as giving the position of p at time t. Thus the primi-

tive s fixes the choice of a coordinate system. It is also possible to take as a

primitive the set of all admissible (that is, inertial) coordinate systems; this

procedure is followed in [ 3 ] . We remark that for a fixed p in P, it is usually con-

venient to use in place of s the function sp9 which is defined on θ(p) and is

such that, for every t in 3 (p ),

Sp(t ) = S (p9t) .
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For every p in P and t in 3 ( p ) , and for i any positive integer, f(p9t,i) is

a vector giving the components (parallel to the axes of the coordinate system)

of the ΐth force acting on p at time t. For further discussion of this primitive,

applicable to relativistic as well as classical particle mechanics, see [ 7 ] .

Our primitive constant c is to be interpreted as the numerical value of the

velocity of light.

3. Axioms. Using the six primitive notions just described, we now give our

axioms for relativistic particle mechanics.

An ordered sextuple Γ = ( P , 3, m,s,f, c) which satisfies the following Axioms

A1-A7 is called an n-dimensional system of relativistic particle mechanics

(or sometimes, simply a system of relativistic particle mechanics, for abbrevia-

tion, S.R.P.M.):

KlNEMATICAL AXIOMS

Al. P is a nonempty, finite set.

A2. If p G P , then <3 (p ) is an interval of real numbers.

A3. // p G P and t E c 3 ( p ) s then Sp(t) is an n-dimensional vector', and,

moreover, the second derivative of sp exists throughout the interval 3 ( p ) .

A4. The constant c is a positive real number such that for every p inP and

t in 3 (p ),

\(Dsp)(t)\ < c.

DYNAMICAL AXIOMS

A5. // p G P, then m(p) is a positive real number.

Aβ. If p £P and teS(p), then f (p, t, 1) , / (p, t, 2 ) , are n-dimensional

vectors such that the series

is absolutely convergent.

A7. IfpePandteΰ(p), then

m(p)\υ
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Since this set of axioms is similar in many ways to that given for classical

mechanics in [ 7 ] , a large number of remarks to be found in § 3 of that paper

are also applicable here and will not be repeated. From Axiom A7 it is clear

that the force concept we are using is that of Minkowski. In the solution of

special problems this concept is not always the most useful one, but the rela-

tive simplicity of its transformation properties more than justifies its use here.

Some readers may feel that there are good physical grounds for taking the notion

of relativistic mass as primitive instead of that of rest mass; however, it is

easy to define the notion of relativistic mass in terms of the notion of rest mass

and our other primitives, and the use of the notion of rest mass as a primitive

emphasizes the considerable formal similarity between our axioms for relativis-

tic mechanics and the axioms in [7] for classical mechanics.

For p in P$ 3 ( p ) is a time interval for the particle p (with respect to the

frame of reference fixed by our choice of primitives). It may seem that it would

have been simpler to take 3 (p ) as the interval of proper time of the particle p.

However, this approach would complicate the treatment of systems of particles.

In the main, the notion of proper time is most convenient in discussions re-

stricted to the consideration of a single particle. From the remark in the pre-

vious section it is clear that it is not reasonable to require that the intervals

3 ( ρ ) be overlapping. A second argument against such an assumption is the

prominence in modern physics of elementary particles with very short life-

spans. x We note, however, that in studying certain special problems, such as

that of defining a reasonable notion of center of mass of a S.R.P.M., it is de-

sirable to restrict the discussion to systems in which a (p ) = (— oo, -f oo) for

every p in P.

If ( i ) " c " is replaced by "1/fc" in the inequality of Axiom A4 and the

equation of Axiom A7, ( i i) k is treated as a primitive replacing c, and (ii i)

Axiom A4 is modified to read: "The constant A; is a nonnegative real number

such that , " then, by adding appropriate further axioms, we can get either

classical or relativistic particle mechanics. Thus an additional axiom asserting

that k = 0 gives us classical mechanics; and the assertion that k > 0 gives us

relativistic mechanics.

xPaulette Destouches-FeVrier [2, pp. 5-6] advocates the use of a three-valued
logic to describe the creation and annihilation of elementary particles. Actually, the
situation is easily handled by the simple device of introducing the function cJ defined on
P instead of a fixed interval T for the whole system. Indeed, to our mind, her drastic
proposal cannot be taken seriously until we know a great deal more about the mathe-
matics which goes with a multi-valued logic. Even if such a body of mathematics existed
(as it does not—we do not have even the general outlines of elementary set theory in
three-valued logic ), it would be reasonable to adopt such a proposal only after every
feasible alternative in standard mathematics had been explored.
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We close this section with a number of definitions which will be useful later.

For p in P and t in 3 (p ), we set

vp(t)= (Dsp) ( ί ) ;

Vp(t) is, of course, the velocity of p at time t. With respect to a fixed element

t0 in 3 ( p ) , we define the function τtQ (for p in P and t in 3 ( p ) ) as follows:

ft / \Vp(t)

*° P* " Λ o * c 1

τ ί ( ) (p, ί ) is the proper time of p. Since we are interested only in the derivative

of this function with respect to ί, and since the derivative is independent of

ί0, we shall usually drop the subscript.

For p in P and t in 3 (p ), we define the function q as follows:

q (p, t) = (s (p, ί ) , ί ) .

It is natural to call q the space-time function.

For p in Ps t in 3 (p), and i any positive integer, we define what we call the

relativistic force function fτe as follows:

, / f(p,t,i) vp(t)\

c 2

Although it is not usual to adopt a special name for this function, the function

itself is used frequently in textbook treatments of relativity.

By a c-particle path (for any positive number c) we mean a set & of points

(that is, vectors) in En + ι for which there exists a S.R.P.M. ({ 1}, 3, m, s9 /, c)

such that for every point X of En + ί9 X is in & if and only if there exists a t in

3 ( 1 ) such that X = (s (1 , t), ί) , 2 It is obvious that if g is any twice-differenti-

able function defined on an interval T of real numbers and taking vectors in

En as values, then the set of vectors (g(t),t) for t in T is a c-particle path,

provided that | (Dg ) (t) \ < c for all t in T.

By the slope of a line OC in £Vι + i> whose projection on the (n + 1 )st-axis

2 The intuitive interpretation of En + ι is as the space-time manifold of special rela-
tivity with the (rc+l)st coordinate representing the time coordinate. Thus, if (Z, x) is
a point of En + lt then under the intended interpretation, the ^-dimensional vector Z gives
the spatial coordinates of the point and x its time coordinate.
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is a nondegenerate segment, we mean the ^-dimensional vector W such that for

any two dist inct points \ Z U xγ) and ( Z 2 , x2) of OC,

{ - Z2

xι ~ x2

= W.

By the speed of Cί we mean the nonnegative number \W\. By a c-inertial path

we mean a line in En + ι whose speed is less than c. We note that every segment

of a c-inertial path is a c-particle path, but is not necessarily a c-inertial path

(since a c-inertial path must be a whole line). By a c-line we mean a line in

En + i whose speed is equal to c. The notion of a c-line corresponds to the in-

tuitive notion of a light line.

If we want to refer to a S.R.P.M. Γ with numerical constant c, we shall

write: S.R.P.M. Γc .

4. Transformation theorems. We begin by defining the notion of a generalized

Lorentz matrix. An intuitive discussion of such matrices follows Theorem 1.

DEFINITION 1. Let c, c', and λ be positive real numbers. Then a matrix

& of order n + 1 is said to be a generalized Lorentz matrix with respect to

(c9c\λ) if and only if there exist numbers 8 and β, an ^-dimensional vector

U, and an orthogonal matrix 8 of order n9 such that

and

0

o\

c

c '

/ε

0

0

δ

υ*υ -
βϋ*

-βU β

The following two lemmas simplify the statement and proof of Theorem 1.

LEMMA 1. Let ( { 1 ί, 3, m, s,/, c) be a S.R.P.M., let c' and λ be positive

real numbers^ and let Q be a generalized Lorentz matrix with respect to (c,c'9
λ ) . Let the function h be defined by the equation (for every t in o ( 1 ) ) :

h(t)~[(sι(t),t)(l]n+ι.
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Then the function Dh exists; its values are either always positive or always

negative; and the function h is one-to-one.

Proof. From Definition 1 and the hypothesis of the lemma we see that there

are numbers 8 and β, an n-dimensional vector U, and an orthogonal matrix c,

such that

-£)-'
and

a
ε

(j8-l)8ί/*ί/\ λβEϋ*\

λcδβu

c'

c

λcδβ

c'

Thus

λcδβt λβSl(t)&U* I \cδβ\ I δsi
,(t) = - — = — \t

1 c / \

(t

Hence

'(DA)(ί) vi(t)88(J*

δλβc cc

Using Axiom A4 and the fact that S is orthogonal, we have

c'(Dh)(t)

δλβc

Since \U\ < c', the function Dh is bounded away from zero, and it thus follows

from Rolle's theorem that h is one-to-one.

The following lemma is a theorem of matrix theory.

LEMMA 2. Let c9 c\ and λ be positive real numbers. Then a matrix U of

order n + 1 is a generalized Lorentz matrix with respect to ( c, c', λ) if and

only if
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μ o \ /a o \
( i ) α α* = λ2

\θ - c ' 2 / \ 0 - c 2 /

Proof, The proof of necessity is obtained by direct application of Definition

1.

For the proof of sufficiency, let

IU K*\α-L
\ L ml

where U is a matrix of order n9 K and L are ^-dimensional vectors, and m is a

real number. From ( i ) we obtain at once:

(1)

(2)

(3)

From ( 3 ) it follows that

(4)

We define:

( 5 ) β

( 6 ) 8

( 7 ) U

UU*-

UL*-

LL*-

c'\ m \

cλ

m

L
— - i — ,

m

Since the right member of equation ( i ) of Definition 1 can be written
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( j8- l)8£/*£/ xβSu*
, ' 2

λcδβu

in order to complete the proof it suffices to show that

(i)

(Π)

x ε
u2

λcδβU

λcδβ

(HI) r— = L>

(IV)

(V) S2 = l ,

(VI)

(vπ) ε ε * = «a.

E q u a t i o n ( I I I ) f o l l o w s i m m e d i a t e l y f rom ( 5 ) , ( 6 ) , a n d ( 7 ) , e q u a t i o n ( I V ) from

( 5 ) a n d ( 6 ) , e q u a t i o n ( V ) f rom ( 6 ) , a n d e q u a t i o n ( V I ) f rom ( 3 ) , ( 5 ) , a n d ( 7 ) .

F r o m ( 2 ) a n d ( 7 ) w e g e t

( 9 )

a n d t h e n f rom ( 8 ) a n d ( 9 ) w e h a v e

n π . 1 L (β-l)c'2K*u\
do)

1
UU*

βU2 ,

8 - l ) c ' 2

\u*
{β-l)c'2U*K

2 Π2
β2υ

[β{-c'2K*)K + βK*(-c'2K)

+ (β-l)c'2K*K]
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1

λ 2
UU*

β2

λ2 I β2U2

From (VI) , ( 1 ) , and ( 1 0 ) we conclude that

which establ ishes equation (VII) . Multiplying both s ides of ( 8 ) on the right

by —λβU /c ' , and using ( 9 ) , we get equation ( I I ) . Equation ( I ) follows from

( 8 ) and ( I I ) , completing the proof of the lemma.

The following theorem is a generalization of the well-known result that the

relativist ic equation of motion is covariant under a Lorentz transformation.

THEOREM 1. Let ( P9 3, m9 s9f9 c ) be an n-dimensional S.R.P.M. Let c\

γ9 and λ be positive real numbers, let B be an (n + 1)-dimensional vector, and

let u be a generalized Lorentz matrix with respect to \c9c'9 λ ) . For each p in

P let the function hp be defined as follows (for all t in 3 (p )) :

hp(t) = [(sp(t),t) Q + B]n + ι .

(By Lemma 1 the inverse function hp exists,) Let the function c3 be defined

as follows: for p in Ps 3 (p) is the range of the function hp; and let the func-

tions m'$ s '9 and f be defined by the following equations (for p in P$ t' in

c3 ' (p ) and i in 1):

m'(p ) = γm(p)9

Γ(P, «',;) =
f(p,hpHt'),i)-vp(h-p

ι(n

> α i, ,n

ThenΓ'= (P93',m',s',f'9c') is an n-dimensional S.R.P.M.

Proof. It will suffice to show that Γ ' satisfies Axioms A4 and A7, since

the proof for the other axioms is trivial. Let
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It is easy to show that for p in P, and i ' in c3 (p ),

(vp(h pHt'),i)
( 1 )

(vp{hpHt'),i)(E*)

with the denominator of the right member of (1) always unequal to zero. (Since

in this proof we always consider a fixed particle p, we drop the subscript " p "

from this point on.)

We have, from Axiom A4,

(2) λ a ( | t ; ( λ - ι U ' ) ) | 2 - c 2 ) < 0;

but

λ 2 ( | i ; ( A - ι ( n ) | 2 - c 2 ) - λ 2 ( i ; ( A - ι ( ^ ) ) , l > ( _ ^ 2 ) ( v {h' ι(t')), 1 >* .

Then by Lemma 2 we have

°( 3 ) λ 2 ( | t ; ( A - 1 ( ί ' ) ) | 2 - c 2 ) = , . . . . , . , _ , ,

\0 -c'

T h e r i g h t member of ( 3 ) i s e q u a l to

( 4 ) (v(h-ι(t')\

- c ' 2 ( « , ( λ - ι ( t ' ) ) , l ) Γ

and u s i n g ( 1 ) we s e e t h a t ( 4 ) i s e q u a l t o

•E*"2

E*

(5) ((v(h HtΊ)Λ)^*\v'(t')\ -c'2({v(h-ι(t'),i)(E*y\

From (2), (3), (4), and (5) we conclude that
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\ υ ' { t ' ) \ 2 - c ' 2 < 0 ,

which verifies Axiom A4 for Γ .

It is not difficult to show that from Axiom A7 we have

Setting ς r ' ( έ ' ) = (s'(t'), t') for all ί ' in 3 ' ( p ) , we conclude from the hypo-

thesis of our theorem that

and thus

(7) ((Dq')°h){t)(Dh)U)=(Dq)(t)(ί.

Directly from the definition of q and q' we obtain

(8)

and

(Dq){t)l °) ((Dq)(t))*=\v(t)\2-c2,
\ 0 — c I

(9) ((D<?'W)(ί)( M ({{Dq')oh)(t))*=\(v'°h)(t)\2-c'2.
\ 0 —c /

U s i n g L e m m a 1, L e m m a 2, a n d ( 7 ) we o b t a i n , from ( 8 ) a n d ( 9 ) ,

| ( » Ό A ) ( ί ) | 2 - c ' 2 = ( | t ; ( ί ) | 2 - C

2 ) ,

((Dh)U))2

and thus

do)
c

[i
' 2 c ' 2 ( ( D Λ ) ( ί ) ) 2 1 c 2

By Lemma 1, (Dh){t) is either always positive or always negative; the re-

mainder of our proof i s analogous in the two c a s e s , so that we shall only con-

sider the case where it is always positive. We then have, from ( 7 ) and ( 1 0 ) ,
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(Dq') ° c'(Dq)(t)(l
_

{ l - \ { v ' ° h ) ( t ) \ 2 / c ' ψ ~ λc{l-\v(t)\2/c2)^ '

and hence

(11)
Dq'

( 1 - v'\2/c'2ΫA

c'(Dq)(t)&

λc(l-\v{t)\2/c2ΫA

Differentiating both sides of (11), and using (6), we obtain

From (10), (12), and the hypothesis of our theorem, we infer that

(13) γm(p) D
Al-\v'\2/c'2YAi

°h\ ( t )

(v'oh)(t)\2

and from (13) we conclude immediately that Axiom A7 holds for Γ . 3

REMARK 1. All the transformations mentioned in Definition 1 and Theorem

1 have a clear intuitive interpretation if we consider ( P, 3, m9 s s f$ c) as a

physical system whose mechanical properties are observed and measured with

respect to some (inertial) frame of reference and some set of units of measure-

ment, and ( P , 3 ί ^ ' j 5 ' ) / ' ^ ' ) as the same physical system observed and meas-

ured with respect to some other (inertial) frame of reference and some other

set of units of measurement. Thus, c is the old and c* the new velocity of

light. The introduction of the number y amounts to changing the unit of mass

by an amount 1/y, and the vector B corresponds to shifting the origin of the

spatial frame of reference by - [ β ] i , . . . , r t , and the origin of time by an amount

3Readers familiar with the standard treatments of relativistic mechanics will note
that (in the interests of rigor and explicitness ) we have replaced " ί ' " by "hp(t)."
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— [β]n+i The number λ represents a uniform stretch of space and time. When

3 = - 1, we have a reversal of the direction of time. The matrix 8 represents

(for n <^ 3) a rotation of the spatial coordinates —or a rotation followed by a

reflection. The vector U represents the relative velocity of the two inertial

frames of reference, and the number β, which is determined by V and c', is the

well-known Lorentz contraction factor. Finally, it is easy to check that the

last matrix in the factorization of the matrix fl yields the ordinary Lorentz trans-

formations. We note that the rather complicated transformation of the forces is

the velocity-dependent transformation to be expected in relativistic mechanics.

REMARK 2. Theorem 2, our main result, is a sort of converse of Theorem

1: roughly speaking, we show that the transformations described in Theorem 1

are the only transformations which always take systems of relativistic particle

mechanics into systems of relativistic particle mechanics. To facilitate the

formulation and proof of Theorem 2, an additional lemma and some definitions

will be useful.

L E M M A 3. Let A[i = \ Z 1 , % 1 ) , ^2 = ( Z 2» %2 )* an^ ^ 3 = ( 2 3 , X 3 / be any

three points in £ ^ + i such that ( i ) x± < x2 < #3* ( ϋ ) there is a c-inertial path

through Xι and X2, and ( i i i ) there is a c-inertial path through X2 and X3. Then

there is a c-particle path through Xl9 X2$ and X$.

Proof. In v i e w of t h e r e m a r k n e a r t h e end of § 3, i t w i l l suf f ice to c o n s t r u c t

a f u n c t i o n g w h i c h : ( a ) i s d e f i n e d on the c l o s e d i n t e r v a l [ % i s # 3 ] ; ( b ) t a k e s

v e c t o r s in En a s v a l u e s ; ( c ) i s t w i c e d i f f e r e n t i a t e ; ( d ) i s s u c h t h a t for e v e r y

t in[xl9x3], \(Dg){t)\ < c ; a n d ( e ) i s s u c h t h a t

g(xχ) = Zi, g ( * 2 ) = Z 2 * a n c l £ ( * 3 ) = Z 3

L e t

a = x2 — Xγ 9 b = x3 — x2 s

2c log 2 aV log cosh γb + bW log cosh γa
γ = : , ^ =

(c - max (I V |, I If I )) min (α, 6 ) α log cosh γb Λ- b log cosh yα

α & y ( I F - F )
B =

a log cosh γb + b log cosh γa



578 HERMAN RUBIN AND PATRICK SUPPES

T h e r e a d e r may verify t h a t t h e funct ion g de f ined by the fo l lowing e q u a t i o n

(for t in [xϊ9 x3 ] ) h a s p r o p e r t i e s (a) - ( e ) :

B
g(t) = Z 2 + (t- x2)A + — [ l o g c o s h γ(t - x2)].

Y

DEFINITION 2. Let φ be a function mapping R* into /?+; let φ be a func-

tion which is a one-to-one mapping of En + ± into itself; and let φ be a function

mapping E2n into £ Λ . Then we call the ordered triple ( φ^9 φ2,φ3) an eligible

transformation.

DEFINITION 3. Let Φ = {φγ9 φ2,φ3) be an eligible transformation; let

Γ = ( P s 3 , m, s, /, c ) be a S.R.P.M.; and for each p in P let the function Hp be

defined as follows (for every t in 3 ( p ) ) :

Then by the Φ-transform of Γ (which we also write: Φ ( Γ ) ) , we mean the ordered

quintuple \ P, a $ m '9 s '9 f ) , where for p in P:

m'ip) = ^ ^ ^ ( p ) ) ;

o ( p ) is the range of the function Hp', and s ' and / ' are defined by the following

equations for t' in 3 ' ( p ) , if the pre-image H'1 {t') of t' under Hp is unique,

and otherwise they are undefined:

s'(p,t') = ίφ2(s (p, H'p
l(t')9

for i >_ 1.

We are now in a position to state and prove the main result of this paper.

THEOREM 2. 4 Let Φ= (φι9 φ2, φ3) be an eligible transformation, and let

4 The statement of Theorem 2 would be made more symmetrical to Theorem 1 if
φ>2 were replaced by two functions φ' and φ " such that

φ'(Z,x)=[φ2{Z,x)]n+ι and φ"(Z,x) = [φ2(Z,x)]lιm..,n.

This procedure was followed in [8] for classical mechanics; but in relativistic me-
chanics, it is natural to introduce the single transformation Φ2 for the space-time
manifold.
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c and c' be positive real numbers such that ( i ) for every n-dimensional system

of relativistic particle mechanics Γ C ϊ \ Φ ( Γ C ) , c / is a system of relativistic

particle mechanics? and ( i i ) φ carries no c-line into a c'-particle path. Then

there exist positive real numbers γ and λs an {n + \)-dimensional vector B^ and

a generalized Lorentz matrix U with respect to \ c9 c'% λ)? such that? for any

vectors Zx and Z 2 in En with \Z2\ < cf every x in R, and γ in 7?+

s

Proof. We first want to show that if Z is any vector in En such that \Z\ <

then

Setting P = ί 1 !, 3 ( 1 ) = (-oc, oo), m ( l ) = 1, and, for t in 3 ( 1 ) ,

/ ( 1 , ί, i) = 0 for i > 1,

we see that ( P9 3 , m, s, fs c) is a S.R.P.M. Since for every t in 3 ( 1 ) , Z = v (1, ί ) ,

we conclude from the hypothesis of our theorem, Definition 2, and Axiom A6

that the ser ies

is absolutely convergent. Hence

(1) 0 3 ( O , Z ) = O.

For every segment & of a oinertial path there exists a one-particle S.R.P.M.

( ί 1 ί, 3S m, s, f, c ) such that, for every t in 3 (1),

f (p9t,i) = 0 for i > 1 ,

and for every vector X in En + U X is in J& if and only if there is a t in 3 ( 1 )

such that
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X=(s(l,t),t) .

Hence it follows immediately from (1) and the hypothesis of our theorem that:

(2) φ carries segments of c-inertial paths into segments of c'-inertial

paths.

Let Γ c = \ P9 3, m, s ^ c ' ) be any S.R.F.M. with constant c. By hypothesis,

\ Φ ( Γ c ), c) is a S.R.P.M. For any p in P, if tι and t2 are in 3 (p ) and tγ Φ t2,

then

Φ2(s {p,tι),tι) Φ φ2(s (pit2),t2),

since φ2 is one-to-one. Suppose now that

[φ2(s(p,ti),tι)]n+i = [φ2(s(pft2)9t2)]n + ι

Then we must have

ί φ 2 ( s ( p 9 t ί ) 9 t ί ) ] l f . . . f Λ Φ [ φ 2 ( s { p 9 t 2 ) y t 2 ) ] u . . . t n

but then \ Φ ( Γ C ), c ' ) is not a S.R.P.M., for p is required to be in two places

at the same time, which violates Axiom A3. We thus conclude:

(3) φ is one-to-one in the last coordinate along the space-time path of any

particle of a S.R.P.M. also, Γ c , and thus the pre-image under φ2 of any point

ί' in 3 (p ), is unique.

Furthermore, since by hypothesis φ2 takes the interval 3 ( p ) into an in-

terval 3 (p ), we have:

(4) φ is continuous in the last coordinate along the space-time path of

any particle of a S.R.P.M.

From (4) and the fact that any two points \Zsx) and \Z$y) lie on a c-

inertial path, we obtain:

(5) For any point (Z,x) and any € > 0, there exists a δ > 0 such that for

any point (Z9y) if | x - γ \ < δ, then | * ' ~ y Ί < €, where

We next show that

(I) φ2 is continuous.
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Let \ZuXι) be any point of En + l9 and let e be any positive number. Let

e* = e / [ 2 ( l + c ' ) ] . Using ( 5 ) , let δ* be a positive number such that if

i x ι "~ y I < δ* then | x^ - y' \ < €*, where

x[ = and y ' = [<£2 ( Z l f y ) ] n + 1

and let δ = cδ*/( 3c + 2). We shall show that if ( Z 2 Ϊ Λ ; 2 ) i s a n y point of En + X

such that

(6 ) \ ( Z U X ι ) - ( Z 2 , x 2 ) \ < δ ,

then

Suppose for definiteness that

\ ί / Λ> γ S Λ>2

We may choose x0 and x3 so that

I 7 - 7 17 7
2 1 9 "~ 1

(8) Λ;2 — — — ^ — — δ < Λ Q ^ *2 "~ — — —

and

\Z2-ZX\ \Z2-ZX\
( 9 ) xx + < χ3 < xx + + δ

c c

From ( 7 ) , ( 8 ) , and ( 9 ) , we obtain

\Z2-Zί

( 1 0 ) 1*3 - * o I < | * 2 - * i I +

and from ( 6 ) and ( 1 0 ) we t h e n infer t h a t

S i n c e f r o m ( 7 ) , ( 8 ) , a n d ( 9 ) w e h a v e

( 1 2 ) x0 < x2 < %i < x3
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we obtain from ( 1 1 )

1*3 - * 1 I < δ * ,

\Xί -XQ I < § * .

Consequently, by ( 5 ) ,

and thus, by the triangle inequality,

( 1 3 ) 1 * 3 - * ό I <

where

From the second part of ( 8 ) it follows that there is a c-inertial path through

\Zux0) and \ Z 2 , Λ : 2 ) ; and from ( 7 ) and the first part of ( 9 ) it follows that

there is a c-inertial path through \ Z 2 , # 2 / a n < ^ \Zuχ$)' ^ ' e thus conclude

from Lemma 3 that there exis ts a c-particle path through \Zl9x0), \ Z 2 , ^ 2 ) >

and \Z l9 x3) . As before, for abbreviation, we set

Z2'

Since φ is one-to-one and continuous in the las t coordinate along any c-particle

path, it is monotone in the last coordinate along any c-particle path, and we

thus have: either

( 1 4 )

x0 < * ,

x0 <x2 <χ3;

< < < < <
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Also, since segments of oinertial paths are carried by φ into segments of

c'-inertial paths, we have:

( 1 5 ) l Z n ~ Z

2 I 1 I Z H ~ Z 1 3 I + I Z 1 3 ~ Z 2 I < C l % ! - %

3 I + C I X

3 ~ X

2 »

a n d

(16) i z ^ - z i < I z;x - z;o i + i z;o - z;ι < c ' | * ; - « 0 ' | + C ' | * O ' - * 2 Ί .

We o b t a i n from ( 1 4 ) , ( 1 5 ) , and ( 1 6 ) :

(17) i\z[x - z ; | < c ' t i ^ ' - ^ i + ! % ; - < ! + U ; - * 2 Ί + I < - < Π

< 2 c ' | x 3 ' - < l

Thus from (13) and (17) we conclude that

I Z ^ - Z i < 2 c ' e * ,

and from (13 ) and (14) that

\x[-xί\ < 2e*;

and since e* = e/[ 2 (1 + c')], we infer that

| < £ 2 ( Z i * * l ) - ^ 2 ( Z 2 S ^ 2 ) | < 6>

which establishes ( I ) .

We now establish:

(II) φ carries parallel segments of oinertial paths into parallel segments

of c'-inertial paths.

It is clearly sufficient to show that φ carries parallel c-inertial paths into

parallel segments of c'-inertial paths. Let η and τ?2 be two parallel c-inertial

paths, and let 77 be a c-inertial path which intersects 77 and 77 in the points

Aι and /1 2 , respectively (obviously such a c-inertial path 77 exists). (See

Figure 1, on following page.) As previously, we use a prime to designate the

image under φ2 of a point, line, and so on. We may construct a fourth c-inertial

path which intersects 77 between /l t and A2 and which intersects 77 and 77 at
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Figure 1

points distinct from Aι and A2. Consequently, we infer from ( 2 ) that the seg-

ments 77j and 772 lie in the same plane in the image space of φ .(See Figure 2 on

following page.) Suppose now that 77̂  and 77̂  are not parallel . We extend (if

necessary) 77̂  and 77' to their point of intersection, say / ' . We next se lect

B' on 77' between / ' and A' (we use " b e t w e e n " in such a way that B' must

be distinct from / ' and A'); similarly, we select Ώ' on 77' between / ' and

A^ We now consider the pre-images, B and D, of B' and D ' . Since φ2 is one-to-

one and continuous, it is clear that B and D must be on the same side of η3;

that is , the segment BD does not intersect 773 Let E be a point on 773 between

A{ and A2> Then, since η3 is a c-inertial path, one of the numbers [ ^ 2 ^ + 1 "

[E]n + ι and [A ί]n + ί - [E]n + ί is positive, and the other is negative. Since

ηι and 772 are parallel, [B]n+ί -[Aι]n + ί and [ D ] π + i - [A2 ]n + ι have the same

sign. We then construct a line through D ' parallel to 77̂  or through B' parallel
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Figure 2

to η^9 according to whether [A2 ]n + ι - [ E ] n + 1 or [Ai]n+i - [ £ ] n + i agrees in

sign with [ B ] ^ + i — [A ] n + i Suppose, for definiteness, ( s e e Figure 1) that

[/42]rc + i ~[E]n + i agrees in sign and that this sign is posit ive. Let F ' be the

point of intersection of η' with the line through D' parallel to η'. By construc-

tion F ' is between Af and A£9 and thus F is between Ax and A2

We then have:

< c ( [ D ] n + ι - [ F ] n + ι ) .

Hence the line through D and F is a c- inertial path. This line intersects η at a
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point, say G, and, furthermore, by construction DFG is a segment of a c-inertial

path, and hence the image D'F'G' is a segment of a c'-inertial path. But D ' F '

is parallel to 77', and the image of G does not lie on the extension oίD'F',

which is a contradiction. Thus η and 77 are parallel, and the proof of (II) is

complete.

We next show that

(III) φ2 carries the midpoint of any finite segment Cί of a c-inertial path into

the midpoint of CX.'.

We consider a fixed plane containing (X and a line parallel to the ί-axis

(the (n + 1 )st-coordinate axis). In this plane we construct, with Cί as a diagonal,

a parallelogram whose sides and other diagonal are segments of c-inertial paths.

Let the speed of the c-inertial path containing Cί be k. It is clear that through

any point of our fixed plane there are exactly two lines with speed Z, for every

positive number Z. Obviously, we may construct a parallelogram 1° with Cί as

one diagonal, with the other diagonal a segment of a c-inertial path with speed

(1/4) {3k + c ), and with one side a segment of a c-inertial path with speed

(1/2) (k -f c ). The other side of the parallelogram I is then a segment of a

c-inertial path with speed (1/6) (5A: + c ). We conclude from (II) that P is

carried by φ into a parallelogram P ' , and the diagonals of P are carried into

the diagonals of P ' . Iΐence the midpoint of (X is carried into the midpoint of

Cί' and (III) is established.

We next show that

(IV) φ carries arbitrary lines into lines.

Let α be an arbitrary line in En + U and let \Zί,xί) and ( Z 2 ί % 2 ) be any two

points on Cί. We now construct an " inert ial" parallelogram through these two

points. For definiteness, we assume:

xι > x2 .

We set

Z t + Z 2

and we choose x0 and x3 so that:

Z l ~ Z l \ \ Z l ~ Z 2
, X3 > XΛ +

2c 2c
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\(ZuXι) _ ( Z 0 > % 3 )

I (Zuχ{) - (ZOίxo) I =

Let (see Figure 3 )

Figure 3

D

C + D

Since the sides of the parallelogram ACBD are by construction segments of c-

inertial paths, we conclude from (II) that A'C'B'D' is a parallelogram, where

A ' - φ2 (A ), and so on, and that the sides of A'C'B'D' are segments of c'-

inertial paths. Moreover, it is clear that by construction CED9 FEG, and HEK

are segments of oinertial paths, and consequently CΈ'D'9 F'E'G', and
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H'E'K' are segments of c'-inertial paths. Hence, by (III), F'f G', H'9 and

K' are the midpoints of the respective sides of A'C'B'Ώ\ Thus E\ the point

of intersection of the segments F ' C and H'K', is the point of intersection of

the diagonals of A'C'B'D'. Consequently, E' is the midpoint of the segment

A'B\ Since midpoints of finite segments are carried into midpoints of finite

segments, and φ is continuous, the proof of (IV) is complete.

From (IV) and the fact that φ is one-to-one and continuous, we immediately

infer that φ2 is a protective transformation, and since it takes no finite point

into a point at infinity, we conclude that

(18) φ2 is a nonsingular affine transformation; that is, for every point (Z, x)

(19) φ2(Z,x)= (Z,x) Q + β,

where G is a nonsingular matrix of order n + 1 and B is an (n + 1 )-dίmensional

vector.

Now let

/j9 £*\
(20) CU and B=(Bub),

\F g I

where J9 i s a matrix of order n; Bί9 E, and F are n-dimens ional v e c t o r s ; and b

and g are rea l numbers . T h e n

( 2 1 ) φ2 ( Z , x) = ( Z J9 + xF + B ί , Z £ * + gx + b > .

L e t a be a c-l ine such that , for any two d i s t i n c t p o i n t s (Zl9xι) and \ Z 2 , Λ ; 2 )

of α ,

Zγ — Z 2

= W .
xx -x2

Obviously, \W \ = c. Now 0L is carried by φ2 into a line OC'. We want to show that

α is carried into a c'-line. From (21) it follows that the slope W of α ' is given

by

WB + F
(22) F'-=ri

WE + g



TRANSFORMATIONS OF SYSTEMS OF RELATIVISTIC PARTICLE MECHANICS 589

By the hypothesis of our theorem,

(23) |JT | > c'.

Consider now a sequence of c-inertial lines Cί 1? CX2> •> whose slopes Wu W2,

are such that

lim Wi = W.
I —* oo

From (21) and the hypothesis of our theorem we have

I HP * I =
W Ei β + £

< C .

Hence, if WE* + g £ 0, then

(24) W'\ =
WB

W E1 *
lim

Suppose now that WE* + g = 0. Then

lim (

and therefore

lim (

Hence

but then

( w , i ) Q = o ,

which is impossible, since 0, is nonsingular. Thus we have

(25) | I T | = c ' .

For subsequent use we observe that for any S.R.P.M., \ P$ 3, m, s9 /, c /, and

any p in P and ί in 3 (p ),
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v{p9t)E*+g £ 0 .

590

(26)

For v (p91) Φ- 0, the argument is the same as afe©ve; in case v (p, t) = 0 for some

t, on the supposition that υ {p, t) E* + g = 0, we must have # = 0 and F = 0,

which again contradicts the nonsingularity of Q.

From ( 2 2 ) and ( 2 5 ) we get

= c

and hence

(27)

Since (27) holds for an arbitrary c-line, we may replace W by -W9 and thus

conclude that

Therefore, since the direction of W is arbitrary,

(28) ®F* = c'2E*g.

In view-of the fact that (26) holds for v (p, ί ) = 0, we have

and we may then obtain, from (28),

(29)
J9F*

Using (20) and (29), we obtain

QI

and since Q is nonsingular, we have

(30)
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From ( 27 ), ( 28), and ( 30 ) it follows that

J9i9*-c'2£*£ ± 0.

Thus, from (27), we have

W (J9J9* - c'2 E*E) W* = — - L i . | Π 2 .

c2

Using again the fact that the direction of W is arbitrary, we infer that

/ c '2 2

(31) ®8*-c'2E*E=Γ 8

' 2 2 _ I Γ | 2 \8 J '
where μ = [ c ' 2

g

2 - | F | 2 ] / c 2 . From (28) and (31) we obtain

'<& 0 \ „.,. h&*-c'2E*E SF*.
(32) Q

0 - c ' 2

\ ί \ " /

_/μ<Sl 0 \ _ / l 0 \
= (o v ) = > -c2]

We next want to show that μ i s posit ive. Let \Zi9xι) and \Z29X2/ be two

points in En + ι such that

μ t-z2 |
< c,

\xl ~%

and let

V=(ZlfXι) - (Z2,x2)

and

F ' = VQ.

From (32) we obtain

Hence
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v-A
By the hypothesis on V,

< !><••

and from the fact that c-inertial paths are carried into c'-inertial paths, we have

VI o )(V)* < 0.

m

Thus μ is positive since it is the ratio of two negative numbers. We set

(33) λ

We then conclude from (32), (33), Definition 1, and Lemma 2 that

(34) Q is a generalized Lorentz matrix with respect to ( c, c', λ ) .

We now turn to the function φ which transforms the forces. In deducing the

form of φ3 it will be convenient to make use of the functions r , q, and fτe

defined in § 3 (in the course of the present proof we obtain their transformation

properties). It is also useful to introduce the function H defined by the following

equation for every p in P and t in 3 (p ),

H (p, t) = [φ2 ( s ( p , ί ) , ί ) ] 7 l + 1 .

We thus have that, for i ' the element in <3'(p ) corresponding to t in <3(p),

We obtain, from ( 21),

(35)

For any S.R.P.M. Γ = v , S, ra, s,/, c ) ,, the following equation is a direct con-
sequence of Axiom A7 and the appropriate definitions (for any p in P and t in
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(36)
dτ

P

and also, under the hypothesis of our theorem,

(37)
dr'p

2

/•rel i

We now obtain the relationship between

,2 / τ2
a qp a qp

(Hp(t)) and ί(t).

dr;2 p di

Using (35), we obtain

(38)
drn

\(t)

[(Dr^)(Hp(t)][DHp)(t)]

(DτD)(t)

y/l-\v^Hp{t))\2/c'2 (vp(t)E*+g)

y/l-\vp(t))\2/c 2/c2

It is easy to show that

(39)
vp(t)E*-

hence, using (39) and squaring (38), we get

40) (" rr,

Using (27) to give us the expansion of the right member of (40) and then using

(32) to simplify the result, we obtain
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(41)

hence

Drn

( t )
c2-\vp(t)\

λ 2 ;

(42) (Drp)(t),

where δ2 = 1. We have, from ( 2 1 ) and Definition 3,

and thus

(43)

Since

(Dqp-)(Hp(t))(DHp)(t) I Dq'p

D{τ'pohp)

it is easily shown that

(Dτ'p)(Hp(t)){DHp)(t) \Dτp

T ( # p ( i ) ) ,

/2 >

(44)

From (42), (43), and (44) we infer that

' 2

(O =
2λ2

( ί ) Q .
c2λ

Now let A and Y be any two vectors in En with A ̂  0 and \Y \ < c. Then we

set:

3 ( i ) = -

\z
-1 Y

ΪTΓ ) •
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and for all t in 3 (1),

{ ( 1, t, 1) =
vι(t)(Z. Vι(t))

- \Vl(t)\2/c: (l-\vι(t)\2/c2)
2 / 2 \ 2

/ (1, t, i) = 0 for ί > 1.

It is easy to verify that Γχγ - \P, 3, m, s, /, c) is a S.R.Γ.M., and consequently

so is ( φ (VXY ), c'f . Thus there is a positive number γ such that

We note next that at t = 0:

S l ( 0 ) = 0, ( D s , ) ( 0 ) = y ,

Vve thus have from (37), for t - 0,

= Z , and / (1, 0,

y
rfr.'

and thus, from (45),

γc

c 2 λ 2
dτ\

- (0)G
If ••• *n

hence, from (36),

(46)
γc

2 x 2
C λ

In view of (1), (46) also holds for X = 0.

Now let A; be any positive real number. Then we set:

for ί in ΰ (1),
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xS xvi{t)(δ - vγ

-f

c 2 ( l - | " i U ) | 2 / c 2 ) 2

/( l , ί , i) = 0 for i > 1

We easily verify that Γ^ = (P, 3, m, s,/, c) is a S.R.P.M. such that for all t in

3(1),

Furthermore, we infer from (36), (37), and (45) that, for every t in 3 ( 1),

,/ ΦΛX) c'2 °°
r e l ( i « ( ί ) i ) Σ / Γ e l ( i ί i ) α ;

(47) £ / r

x c*λ2 -

hence, from (46),

(48) φγ(x) = γx.

Our theorem now follows from (19), (33), (34), (46), and (48).

REMARK 3. We want to emphasize the physically reasonable nature of the

hypothesis of the theorem just proved. We have assumed that systems of rela-

tivistic mechanics are carried by our transformations into systems of relativistic

mechanics and that light lines are not carried into particle paths. No assump-

tions concerning the continuity of either φ , φ , or φ have been made. Our

assumption that φ2 is one-to-one may be justified physically by the argument

that any two space-time positions of a particle distinct with respect to one

observer must be distinct with respect to every observer.

The standard presentations of the special theory of relativity vary a good

deal in their "derivations" of the Lorentz transformations. Almost without

exception, however, the assumptions underlying these derivations are not clearly

and completely stated. For the physicist who wants to begin with a set of

axioms for relativistic particle mechanics with respect to a fixed coordinate

system, our Theorem 2 provides a rigorous approach to the derivation of the
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Lorentz transformations. The transformations we obtain in Theorem 2 are, of

course, more general than the Lorentz transformations, but it is obvious how the

hypothesis of Theorem 2 may be strengthened so as to obtain just the ordinary

Lorentz transformations.

Theorem 2 is also pertient to discussions of the relativity of size, (see,

for example, [ 4 ] ) , since the determination of φ^ φ2, and φ3 tells us exact-

ly how the system of units of measurement may be changed in passing from one

inertial frame of reference to another.

It is interesting to note that the set of transformations admissible (that is,

satisfying the hypothesis of Theorem 2) in relativistic particle mechanics

differs sharply from the set of those admissible (see the hypothesis of Theorem

3 of [ 8 ] ) in classical particle mechanics: in the latter case, but not in the

former, admissible transformations can change the unit of distance differently

along different coordinates (with correspondingly different changes in the unit

of force). Thus, although classical mechanics can in a certain sense be re-

garded as a limiting case of relativistic mechanics, the set of transformations

admissible in classical mechanics is in no sense a limit of the set of transfor-

mations admissible in relativistic mechanics.

5. Algebraic structure of the set of admissible transformations. Let Φ be an

eligible transformation which satisfies the hypothesis of Theorem 2 with res-

pect to the positive real numbers c and c'. We then call the ordered triple

( Φ, c, c ' / an admissible triple; and, corresponding to the informal usage at

the end of the previous section, we call an eligible transformation an admissible

transformation if it is the first element of some admissible triple. Since the set

of admissible transformations is not a group under the obvious operation of com-

position, it is natural to ask what is its algebraic structure. We shall show that

the structure of the set of admissible triples is that of a Brandt groupoid (for-

mally defined below). Roughly speaking, the main difference between Brandt

groupoids and groups is that a Brandt groupoid is not assumed to be closed

under the binary operation corresponding to the group operation. Consequently,

a Brandt groupoid may contain many identity elements, that is, many elements

e such that % * e = % = e * % whenever x9 % * e, and e * x are in the groupoid.

If there is an e in the groupoid such that, for all x in the groupoid, e * x = x -

x * e9 then the groupoid is also a group. For this reason, we introduced the

notion of an admissible triple: the admissible transformation which carries

every S.R.P.M. into itself is an identity element whose composition with every

admissible transformation is defined; consequently, the set of admissible trans-

formations is neither a group nor a Brandt groupoid.
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The notion of a Brandt groupoid was first defined in [ l ] ; we use the formal

definition given in [ δ ] .

DEFINITION 4. An algebraic system Q = ( GΦ *, Λ " 1 ) (where * is an

operation on a subset of U x V to U, J is a subset of U and ~ι is an operation

on U to U) is called a Brandt groupoid if and only if the following conditions

are satisfied:

( i ) For x9 y, z in G, if x * y G G and y * z G G, then (^ * y ) u EG and

( % * y ) * z = % * ( y * z ) .

( i i) For #, y, z in G, if x * y £ G and x * y = # * z, then y = 2.

(i i i) For Λ;, y, z in G, if Λ; * z G G and Λ; * 2: = y * z9 then x = γ.

(iv) For Λ; in J9 x * ac = x.

(v ) For x in G, / ι * % E / and x * ΛΓ
 ι G /.

(vi) For #, z in /, there exists a y in G such that %*y GG and y * 2 G G.

Rather than deal directly with admissible triples, we find it somewhat simpler

to use the following representation. From Theorem 2 we conclude that to each

admissible triple there corresponds a unique ordered sextuple ( fl, Bf ys λ, c, c' ) ,

where B is an (ra + 1 )-dimensional vector, y, λ, c, and c ' are positive real

numbers, and Q is a generalized Lorentz matrix (of order n + 1) with respect to

( c,c',λ). Such an ordered sextuple ( Q, B, γ, λ, c, c ' ) we shall call a carrier.

From Theorem 1, together with Theorem 2, it then follows that there is a one-

to-one correspondence between the set of carriers and the set of admissible

triples.

We say that the carrier \ G', B\ y\ \\ cXy c2 ) is left-conformable to the

carrier ( G, Bf γ, λ, c 3 s c4 ) if and only if c t = c 4 . By the conformable subset

J9 of K x K we mean the set of ordered pairs of elements of K such that the

first element is left-conformable to the second.

We now define what we call the carrier system.

DEFINITION 5. By the carrier system we mean the ordered quadruple

K= (K9 *, /, - ι ) , where:

( i ) K is the set of all carriers;

(i i) * is the operation on J9 to K such that if the carrier \ G', B', y', λ\cί9 c2 )

is left-conformable to the carrier ( G, B, y, λ, c 3 , c 4 ) then

( G ' , β ' , y ' , λ ' , C l , c 2 ) * < α , β s y , λ , C 3 , c 4 ) = < Q Q ; β Q ' + β ' , y y ' , λ λ ' , c 3 > c 2 )
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(ii i) / is the set of carriers of the form ( <&, 0, 1, 1, c, c ) , where <S is the

identity matrix of order n + 1; and

(iv) - 1 is the operation on K to K such that if (G, B, y, λ, c$ c' ) E K then

( α , δ s y , λ ί C , c ' ) " l = (Cί- ι,-βCL-\l/y, l / λ , c ' , c > .

We have then the following theorem, the proof of which we omit.

THEOREM 3. The carrier system is a Brandt groupoid.

We remark first that the operation * of the carrier system corresponds to the

composition of admissible triples; that is, if ( φ , c, c / corresponds to ( Q,B,

γ,λ,c,c'), and ( ψ , c ' s c " ) corresponds to ( G', β',y', λ', c', c " ) , then

( GG',βG' + B\γγ\ λλ', c, c " ) corresponds to ( 0, c, c " ) , where ( (9, c, c " ) is

is the admissible triple such that, for any S.R.P.M. Γ c ,

( Ψ ( ( Φ ( Γ C ) , C ' ) ) , C " ) = (θ(Γc),c").

Similarly, the inverse operation "* of the carrier system corresponds to the

natural inverse operation on admissible triples; that is, if \ Φ , c , c / corres-

ponds to ( Q , B9 y3 λ, c9 c' ) , and { Ψ, c'^c) corresponds to ( G" ι , — BΌΓ ι , 1/y,

1/λ, c ' , c ) , then, for any S.R.P.M. Γ c ,

( Ψ ( ( Φ ( Γ c ) , c ' ) ),c ) = Γ C .

It thus follows as a corollary to Theorem 3 that the set of admissible triples

is a Brandt groupoid under the natural operations of composition and formation

of inverses.

It is natural to ask how the hypothesis of Theorem 2 may be strengthened

so that the set of eligible transformations satisfying it form a group. We state

without proof some results concerning this question.

THEOREM 4. Let Φ = (φ *Φ2iφz) be an eligible trans formation which

carries every system of relatiυistic particle mechanics into a system of rela-

tivistic particle mechanics. Then there exist positive real numbers δ$ γ$ λ, and

pf an (n + l)~dimensional vector B9 an orthogonal matrix t of order n9 and a

matrix G of order n + 1, such that

δ 2 = l ,
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and for any vectors Zι and Z 2 in En} any x in R, and y in R ,

φι(y) = γyt

ΦΛ(zϊfx)= ( z l i X ) α + s ,

The interpretation of 8, y, λ, B, and C is the same as that stated in Remark

1. The number p is the ratio c/c' of the absolute values of the old and new

velocities of light. The matrix ΰ is a generalized Lorentz matrix with U = 0,

which intuitively means that the old and new spatial frames of reference are

at rest with respect to each other. The fact that the hypothesis of Theorem 4

thus excludes the possibility of transforming from one inertial frame of reference

to another moving with respect to it is sufficient reason to regard this hypo-

thesis as unnecessarily strong from the point of view of our intended physical

interpretation. On the other hand, it is, of course, clear that the set of trans-

formations satisfying this hypothesis constitute a group under the obvious oper-

ations.
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