
TRANSFORMATIONS OF SERIES OF THE TYPE 3 Ψ 3
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1. Sears [3] has given relations between series of the type 3 Φ 2 # Generaliza-

tions of some of these results are included in, or may be obtained from, the

following two formulae established by Slater [4]:
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+ (M - 1) similar terms obtained as in (1.1),

where

M 2 2M l

> 1, ζ = , I Λ; I < 1, and | qr | < 1 •

In particular we see that (1.2), with M - 3, is a generalization of the basic

analogue of the fundamental three-term relation [3, §10, result IVa] for 3F2 to

which it reduces if we take α t = aq, a2 = bq9 α 3 = cq9 a5 -a, a6 = 6, a7 = c,

bι = q> b2 - e9 63 = /, and Λ; = ef/abc. Similarly, (1.1) and (1.2) may be used

to obtain many more of the relations given by Sears. It will be noted, however,

that the parameters occurring in the Ψ series in (1.1) and (1.2) are related in

a very symmetrical way, and consequently these formulae can only be expected

to provide generalizations of the two-, three-, and four-term relations between

3 Φ 2 which are of a symmetrical nature; in particular, they do not provide a

generalization of the basic analogue of the fundamental two-term relation [3,

§ 10, 1] . In this paper, one such generalization is obtained which, when used in

conjunction with (1.1), will yield generalizations of all Sears' formulae and

provide basic analogues of known transformations [2] of 3H3 .

2. To obtain the required generalization, we establish the basic analogue

of the formula [2, §2.1] which was used to obtain the generalization of the

fundamental two-term relation between 3F'2> The method by which this result

can be obtained has been indicated by Bailey [ l ] , who obtained a particular

case of the following formula (2.1). We use the fact that a basic bilateral

series g Ψ g which terminates below can be expressed in terms of an g Φ 7 , which

can in turn be transformed into two series 4 Φ 3 , one of which can be replaced

by a 4 Ψ 4 which terminates below. Then, proceeding to the limit, we obtain a

transformation which can be restated in the form (2.1). The analysis is straight-

forward, though rather lengthy, so we just state the result:
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(2.1)
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We obtain a generalization of the basic analogue of the fundamental two-term

relation by interchanging both b and d and c and e in (2.1), then replacing a by

def/aq2, d by ef/aq, e by df/aq, f by de/aq, leaving 6 and c unaltered, and

replacing def/abcq by σ, we obtain:
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The two 3Φ which occur in this formula are not connected by a two-term

relation, and it would appear therefore that (2.2) is probably the simplest

generalization of the fundamental two-term relation for 3 Φ 2 to which it reduces

when f-q This is the only relation between 3 Φ 2 which can be obtained from

(2.2).

There are some relations involving 3 Ψ 3 , which generalize more than one

3 Φ 2 transformation. Such a formula can be obtained from (2.1) by interchanging

the parameters b and d, then replacing a by def/aq2, d by ef/aq9 e by df/aq,

f by de/aq, but leaving b and c unaltered:
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If e (or /) = q, (2.3) reduces to a two-term relation; but it reduces to a

four-term relation between 3 Φ 2 when c = 1. This particular result is not stated

explicitly by Sears but can be deduced from his results.

It will be seen that the 3 Ψ 3 transformations are more complicated than the

analogous H transformations. For this reason, no more such results are given,

but they can all be obtained from (1.1) and (2.2).

3. Corrigenda. In (2.3) and (2.4) of [2], the terms Γ (1 + b-σ), Γ (1 + c-σ)

should be Γ ( l - i - σ ) , Γ ( l - c - σ ) , in (5.1) the factor Γ(d~c) on the left

should be in the denominator of the first term on the right, and there should be

a factor Γ(GO in the denominator on the left.
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