TRANSFORMATIONS OF SERIES OF THE TYPE ¥,

MARGARET JACKSON

1. Sears [ 3] has given relations between series of the type 3@,. Generaliza-
tions of some of these results are included in, or may be obtained from, the

following two formulae established by Slater [41]:
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In particular we see that (1.2), with ¥ = 3, is a generalization of the basic
analogue of the fundamental three-term relation [ 3, $ 10, result IVal for 3F2 to
which it reduces if we take a; =aq, a; =bq, az3=cq, as =a, ag="b, ay; =c,
by=gq, by=e, b3 =f, and x = ef/abc. Similarly, (1.1) and (1.2) may be used
to obtain many more of the relations given by Sears. It will be noted, however,
that the parameters occurring in the ¥ series in (1.1) and (1.2) are related in
a very symmetrical way, and consequently these formulae can only be expected
to provide generalizations of the two-, three-, and four-term relations between
,@, which are of a symmetrical nature; in particular, they do not provide a
generalization of the basic analogue of the fundamental two-term relation [3,
$10, 11. In this paper, one such generalization is obtained which, when used in
conjunction with (1.1), will yield generalizations of all Sears’ formulae and

provide basic analogues of known transformations [ 2] of _H, .

2. To obtain the required generalization, we establish the basic analogue
of the formula [2, $2.11 which was used to obtain the generalization of the
fundamental two-term relation between ,F, . The method by which this result
can be obtained has been indicated by Bailey [1], who obtained a particular
case of the following formula (2.1). We use the fact that a basic bilateral
series ¥, which terminates below can be expressed in terms of an @, which
can in turn be transformed into two series ,®,, one of which can be replaced
by a ,¥, which terminates below. Then, proceeding to the limit, we obtain a
transformation which can be restated in the form (2.1). The analysis is straight-
forward, though rather lengthy, so we just state the result:
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We obtain a generalization of the basic analogue of the fundamental two-term
relation by interchanging both b and d and ¢ and e in (2.1), then replacing a by
def/aq?, d by ef/aq, e by df/aq, f by de/aq, leaving b and c unaltered, and
replacing def/abcq by o, we obtain:
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The two ,®, which occur in this formula are not connected by a two-term
relation, and it would appear therefore that (2.2) is probably the simplest
generalization of the fundamental two-term relation for ,®, to which it reduces
when f=g. This is the only relation between ,®,6 which can be obtained from

(2.2).

There are some relations involving ,¥,, which generalize more than one
,@, transformation. Such a formula can be obtained from (2.1) by interchanging
the parameters b and d, then replacing a by def/aq?, d by ef/aq, e by df/aq,

f by de/aq, but leaving b and c unaltered:

a, b, Cs def
3\P3
dye, f  abed
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If e (or f{)=g¢q, (2.3) reduces to a two-term relation; but it reduces to a
four-term relation between ,®, when ¢ = 1. This particular result is not stated

explicitly by Sears but can be deduced from his results.

It will be seen that the ¥ transformations are more complicated than the

analogous ,H , transformations. For this reason, no more such results are given,
but they can all be obtained from (1.1) and (2.2).

3. Corrigenda. In (2.3) and (2.4) of [2], the terms I'(1+b~0), ['(1+c-0)
should be I'(1-b-0), '(1-c-0), in (5.1) the factor I'(d—c) on the left
should be in the denominator of the first term on the right, and there should be

a factor I'(d) in the denominator on the left.

REFERENCES

1. W.N. Bailey, Series of hypergeometric type which are infinite in both directions,
Quart. J. Math., Oxford Ser., 7 (1936), 105-115.

2. M. Jackson, Transformations of series of the types 3Hz with unit arguments,
J. London Math. Soc. 27 (1952), 116-123.



562 MARGARET JACKSON

3. D.B. Sears, On the transformation theory of basic hypergeometric functions,
Proc. London Math. Soc. (2) 53 (1951), 158-180.

4, L. ]J. Slater, General transformations of bilateral series, Quart. J. Math., Oxford
Ser. (2) 9 (1952), 73-80.

THE UNIVERSITY, NOTTINGHAM





