TRANSFORMATIONS OF SERIES OF THE TYPE ${ }_{3} \Psi_{3}$

Margaret Jackson

1. Sears [3] has given relations between series of the type ${ }_{3} \Phi_{2}$. Generalizations of some of these results are included in, or may be obtained from, the following two formulae established by Slater [4]:

$$
\times \frac{\left(1-q^{r+1} / a_{M+2}\right) \cdots\left(1-q^{r+1} / a_{2 M+1}\right)}{\left(1-q^{r+1} / a_{1}\right) \cdots\left(1-q^{r+1} / a_{M}\right)} \quad M_{M}\left[\begin{array}{c}
a_{M+2}, \cdots, a_{2 M+1} ; x \\
b_{1}, \cdots, b_{M}
\end{array}\right]
$$

$$
=q / a_{1} \prod_{r=0}^{\infty}\left[\frac{\left(1-a_{1} x \xi q^{r-1}\right)\left(1-q^{r+2} / a_{1} x \xi\right)\left(1-b_{1} q^{r+1} / a_{1}\right) \cdots}{\left(1-a_{1} q^{r}\right)\left(1-q^{r+1} / a_{1}\right)\left(1-a_{1} q^{r} / a_{2}\right) \cdots}\right.
$$

$$
\begin{align*}
& \left.\times \cdots \frac{\left(1-b_{M} q^{r+1} / a_{1}\right)\left(1-a_{1} q^{r} / a_{M+2}\right) \cdots\left(1-a_{1} q^{\left.r / a_{2 M+1}\right)}\right.}{\left(1-a_{1} q^{r} / a_{M}\right)\left(1-a_{2} q^{r+1} / a_{1}\right) \cdots\left(1-a_{M} q^{r+1} / a_{1}\right)}\right] \tag{1.1}\\
& \times{ }_{M} \Psi_{M}\left[\begin{array}{l}
q a_{M+2} / a_{1}, \cdots, q a_{2 M+1} / a_{1} ; x \\
q b_{1} / a_{1}, \cdots, q b_{M} / a_{1}
\end{array}\right]
\end{align*}
$$

$+(M-1)$ similar terms obtained by interchanging a_{1} with $a_{2}, a_{3}, \cdots, a_{M}$,

$$
=q / a_{1} \prod_{r=0}^{\infty}\left[\frac{\left(1-a_{1} x \xi q^{r-1}\right)\left(1-q^{r+2} / a_{1} x \xi\right)\left(1-b_{1} q^{r+1} / a_{1}\right) \ldots}{\left(1-a_{1} q^{r}\right)\left(1-q^{r+1} / a_{1}\right)\left(1-a_{1} q^{r} / a_{2}\right) \ldots}\right.
$$

Received February 12, 1953. This work was included in a doctoral thesis approved by the University of Nottingham.

Pacific J. Math. 4 (1954), 557-562

$$
\begin{align*}
& \left.\times \frac{\left(1-b_{M} q^{r+1} / a_{1}\right)\left(1-a_{1} q^{r} / a_{M+2}\right) \cdots\left(1-a_{1} q^{r} / a_{2 M+1}\right)}{\left(1-a_{1} q^{r} / a_{M}\right)\left(1-a_{2} q^{r+1} / a_{1}\right) \cdots\left(1-a_{M} q^{r+1} / a_{1}\right)}\right] \tag{1.2}\\
& \times{ }_{M} \Psi_{M}\left[\begin{array}{lc}
a_{1} / b_{1}, \cdots, a_{1} / b_{M} ; & b_{1} \cdots b_{M} \\
a_{1} / a_{M+2}, \cdots, a_{1} / a_{2 M+1} & \frac{x a_{M+2} \cdots a_{2 M+1}}{}
\end{array}\right] \\
& +(M-1) \text { similar terms obtained as in }(1.1),
\end{align*}
$$

where

$$
M \geq 1, \quad \xi=\frac{a_{M+2} \cdots a_{2 M+1}}{a_{1} \cdots a_{M}},|x|<1, \text { and }|q|<1 .
$$

In particular we see that (1.2), with $M=3$, is a generalization of the basic analogue of the fundamental three-term relation [$3, \S 10$, result IV a] for ${ }_{3} F_{2}$ to which it reduces if we take $a_{1}=a q, a_{2}=b q, a_{3}=c q, a_{5}=\dot{a}, a_{6}=b, a_{7}=c$, $b_{1}=q, b_{2}=e, b_{3}=f$, and $x=e f / a b c$. Similarly, (1.1) and (1.2) may be used to obtain many more of the relations given by Sears. It will be noted, however, that the parameters occurring in the Ψ series in (1.1) and (1.2) are related in a very symmetrical way, and consequently these formulae can only be expected to provide generalizations of the two-, three-, and four-term relations between ${ }_{3} \Phi_{2}$ which are of a symmetrical nature; in particular, they do not provide a generalization of the basic analogue of the fundamental two-term relation [3, $\S 10,1]$. In this paper, one such generalization is obtained which, when used in conjunction with (l.1), will yield generalizations of all Sears' formulae and provide basic analogues of known transformations [2] of ${ }_{3} \mathrm{H}_{3}$.
2. To obtain the required generalization, we establish the basic analogue of the formula [2, §2.1] which was used to obtain the generalization of the fundamental two-term relation between ${ }_{3} F_{2}$. The method by which this result can be obtained has been indicated by Bailey [1], who obtained a particular case of the following formula (2.1). We use the fact that a basic bilateral series ${ }_{8} \Psi_{8}$ which terminates below can be expressed in terms of an ${ }_{8} \Phi_{7}$, which can in turn be transformed into two series ${ }_{4} \Phi_{3}$, one of which can be replaced by a ${ }_{4} \Psi_{4}$ which terminates below. Then, proceeding to the limit, we obtain a transformation which can be restated in the form (2.1). The analysis is straightforward, though rather lengthy, so we just state the result:

$$
\begin{align*}
& \sum_{n=-\infty}^{\infty}\left[\frac{(q \sqrt{a})_{n}(-q \sqrt{a})_{n}(b)_{n}(c)_{n}(d)_{n}}{(\sqrt{a})_{n}(-\sqrt{a})_{n}(a q / b)_{n}(a q / c)_{n}(a q / d)_{n}}\right. \tag{2.1}\\
& \left.\times \frac{(e)_{n}(f)_{n}(-1)^{n} q^{n^{2} / 2+n}}{(a q / e)_{n}(a q / f)_{n}}\left(\frac{a^{3}}{b c d e f}\right)^{n}\right] \\
& =\prod_{r=0}^{\infty} \frac{\left(1-a q^{r+1}\right)\left(1-q^{r+1} / a\right)\left(1-a q^{r+1} / b c\right)}{\left(1-q^{r+1} / d\right)\left(1-q^{r+1} / e\right)\left(1-q^{r+1} / f\right)\left(1-a q^{r+1} / b\right)\left(1-a q^{r+1} / c\right)} \\
& \times\left\{\prod_{r=0}^{\infty} \frac{\left(1-a q^{r+1} / d e\right)\left(1-a q^{r+1} / e f\right)\left(1-a q^{r+1} / d f\right)}{\left(1-a^{2} q^{r+1} / d e f\right)}\right. \\
& \times{ }_{3} \Psi_{3}\left[\begin{array}{ll}
b, c, a^{2} q / d e f ; & a q \\
a q / d, a q / e, a q / f & \frac{a c}{b c}
\end{array}\right] \\
& +\prod_{r=0}^{\infty} \frac{\left(1-d q^{r} / a\right)\left(1-e q^{r} / a\right)\left(1-f q^{r} / a\right)}{\left(1-q^{r+1} / b\right)\left(1-q^{r+1} / c\right)} \\
& \times \frac{\left(1-a^{2} q^{r+2} / b d e f\right)\left(1-a^{2} q^{r+2} / c d e f\right)\left(1-q^{r+1}\right)}{\left(1-a^{2} q^{r+2} / \operatorname{def}\right)\left(1-\operatorname{def} q^{r-1} / a^{2}\right)} \\
& \left.\times{ }_{3} \Phi_{2}\left[\begin{array}{l}
a q / e f, a q / d f, a q / d e ; q \\
a^{2} q^{2} / b d e f, a^{2} q^{2} / c d e f
\end{array}\right]\right\} .
\end{align*}
$$

We obtain a generalization of the basic analogue of the fundamental two-term relation by interchanging both b and d and c and e in (2.1), then replacing a by $d e f / a q^{2}, d$ by $e f / a q, e$ by $d f / a q, f$ by $d e / a q$, leaving b and c unaltered, and replacing $d e f / a b c q$ by σ, we obtain:

$$
\prod_{r=0}^{\infty} \frac{\left(1-\sigma q^{r}\right)}{\left(1-a q^{r+2} / e f\right)\left(1-a q^{r+2} / d f\right)\left(1-\sigma c q^{r}\right)\left(1-\sigma b q^{r}\right)}
$$

$$
\begin{align*}
& \times\left\{\prod_{r=0}^{\infty} \frac{\left(1-a q^{r+1} / d\right)\left(1-a q^{r+1} / e\right)\left(1-a q^{r+1} / f\right)}{\left(1-a q^{r}\right)} \quad{ }_{3} \Psi_{3}\left[\begin{array}{ll}
a, b, c ; & \frac{d e f}{a b c q}
\end{array}\right]\right. \\
& +\prod_{r=0}^{\infty} \frac{\left(1-q^{r+1} / d\right)\left(1-q^{r+1} / e\right)\left(1-q^{r+1} / f\right)}{\left(1-q^{r+1} / b\right)\left(1-q^{r+1} / c\right)} \\
& \left.\times \frac{\left(1-a q^{r} / b\right)\left(1-a q^{r} / c\right)\left(1-q^{r+1}\right)}{\left(1-a q^{r+1}\right)\left(1-q^{r} / a\right)} \quad{ }_{3} \Phi_{2}\left[\begin{array}{l}
a q / d, a q / e, a q / f ; q \\
a q / b, a q / c
\end{array}\right]\right\} \\
& =\prod_{r=0}^{\infty} \frac{\left(1-a q^{r+1} / f\right)}{\left(1-q^{r+1} / b\right)\left(1-q^{r+1} / c\right)\left(1-d q^{r}\right)\left(1-e q^{r}\right)} \tag{2.2}\\
& \times\left\{\prod_{r=0}^{\infty} \frac{\left(1-\sigma q^{r}\right)\left(1-f q^{r} / b\right)\left(1-f q^{r} / c\right)}{\left(1-f \sigma q^{r-1}\right)} \quad{ }_{3} \Psi_{3}\left[\begin{array}{ccc}
e f / a q, d f / a q, f / q ; & a q \\
b, & c, & f
\end{array}\right]\right. \\
& +\prod_{r=0}^{\infty} \frac{\left(1-q^{r+1} / c \sigma\right)\left(1-q^{r+1} / b \sigma\right)\left(1-q^{r+1}\right)}{\left(1-a q^{r+2} / e f\right)\left(1-a q^{r+2} / d f\right)} \\
& \left.\times \frac{\left(1-q^{r+1} / f\right)\left(1-d f q^{r} / b c\right)\left(1-e f q^{r} / b c\right)}{\left(1-\sigma f q^{r}\right)\left(1-q^{r+1} / f \sigma\right)} \quad 3_{3}\left[\begin{array}{l}
f / c, f / b, \sigma ; \\
d f / b c, e f / b c
\end{array}\right]\right\} .
\end{align*}
$$

The two ${ }_{3} \Phi_{2}$ which occur in this formula are not connected by a two-term relation, and it would appear therefore that (2.2) is probably the simplest generalization of the fundamental two-term relation for ${ }_{3} \Phi_{2}$ to which it reduces when $f=q$. This is the only relation between ${ }_{3} \Phi_{2}$ which can be obtained from (2.2).

There are some relations involving ${ }_{3} \Psi_{3}$, which generalize more than one ${ }_{3} \Phi_{2}$ transformation. Such a formula can be obtained from (2.1) by interchanging the parameters b and d, then replacing a by $d e f / a q^{2}, d$ by $e f / a q$, e by $d f / a q$, f by $d e / a q$, but leaving b and c unaltered:

$$
{ }_{3} \Psi_{3}\left[\begin{array}{ll}
a, b, c ; & \frac{d e f}{} \\
d, e, f & \overline{a b c q}
\end{array}\right]
$$

$$
\begin{align*}
& =\prod_{r=0}^{\infty} \frac{\left(1-a q^{r}\right)\left(1-a q^{r+2} / e f\right)\left(1-\sigma c q^{r}\right)}{\left(1-q^{r+1} / b\right)\left(1-d q^{r}\right)\left(1-\sigma q^{r}\right)} \tag{2.3}\\
& \times \frac{\left(1-d q^{r} / c\right)\left(1-e q^{r} / b\right)\left(1-f q^{r} / b\right)}{\left(1-a q^{r+1} / e\right)\left(1-a q^{r+1} / f\right)\left(1-e f q^{r-1} / b\right)} \quad 3_{3} \Psi_{3}\left[\begin{array}{ll}
c, e f / a q, e f / b q ; & \frac{d}{c} \\
\sigma c, e, f
\end{array}\right] \\
& +\prod_{r=0}^{\infty} \frac{\left(1-q^{r+1} / e\right)\left(1-q^{r+1} / f\right)\left(1-a q^{r+1} / b\right)}{\left(1-a q^{r+1} / d\right)\left(1-q^{r+1} / b\right)\left(1-q^{r+1} / c\right)} \\
& \times \frac{\left(1-q^{r+1}\right)\left(1-a q^{r}\right)\left(1-c \sigma q^{r}\right)}{\left(1-a q^{r+1} / e\right)\left(1-a q^{r+1} / f\right)\left(1-\sigma q^{r}\right)} \\
& \times\left\{\prod_{r=0}^{\infty} \frac{\left(1-q^{r+1} / c \sigma\right)\left(1-e f q^{r} / b c\right)\left(1-d q^{r} / c\right)}{\left(1-e f q^{r} / b\right)\left(1-b q^{r+1} / e f\right)\left(1-d q^{r}\right)} \quad{ }_{3} \Phi_{2}\left[\begin{array}{l}
a q / d, f / b, e / b ; q \\
a q / b, e f / b c
\end{array}\right]\right. \\
& \left.-\prod_{r=0}^{\infty} \frac{\left(1-\sigma q^{r}\right)\left(1-q^{r+1} / d\right)\left(1-a q^{r+1} / c\right)}{\left(1-c \sigma q^{r}\right)\left(1-a q^{r+1}\right)\left(1-q^{r} / a\right)} \quad \Phi_{3}\left[\begin{array}{l}
a q / d, a q / e, a q / f ; q \\
a q / b, a q / c
\end{array}\right]\right\} .
\end{align*}
$$

If $e($ or $f)=q$, (2.3) reduces to a two-term relation; but it reduces to a four-term relation between ${ }_{3} \Phi_{2}$ when $c=1$. This particular result is not stated explicitly by Sears but can be deduced from his results.

It will be seen that the ${ }_{3} \Psi_{3}$ transformations are more complicated than the analogous ${ }_{3} H_{3}$ transformations. For this reason, no more such results are given, but they can all be obtained from (1.1) and (2.2).
3. Corrigenda. In (2.3) and (2.4) of [2], the terms $\Gamma(1+b-\sigma), \Gamma(1+c-\sigma)$ should be $\Gamma(1-b-\sigma), \Gamma(1-c-\sigma)$, in (5.1) the factor $\Gamma(d-c)$ on the left should be in the denominator of the first term on the right, and there should be a factor $\Gamma(d)$ in the denominator on the left.

References

1. W. N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math., Oxford Ser., 7 (1936), 105-115.
2. M. Jackson, Transformations of series of the types ${ }_{3} H_{3}$ with unit arguments, J. London Math. Soc. 27 (1952), 116-123.
3. D. B. Sears, On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc. (2) 53 (1951), 158-180.
4. L. J. Slater, General transformations of bilateral series, Quart. J. Math., Oxford Ser. (2) 9 (1952), 73-80.

The University, Nottingham

