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Introduction. The number N^iD) of solutions (u, w) of the congruence

(1) uk + D s w; 2(modp)

can be expressed in terms of the Gaussian cyclotomic numbers (i,j) of order

LCiM(A;, 2) as has been done by Vandiver [ 7 ] , or in terms of the character sums

introduced by Jacobsthal [4] and studied in special cases by von Schrutka

[ 6 ] , Chowla [ l ] , and Whiteman [ 8 ] . In the special cases k = 3, 4, 5, 6, and 8,

the answer can be expressed in terms of certain quadratic partitions of p, but

unless D is a kth power residue there remained an ambiguity in sign, which we

will be able to eliminate in some cases in the present paper. Theorems 2 and 4

were first conjectured from the numerical evidence provided by the SWAC and

later proved by the use of cyclotomy. They improve Jacobsthal's results for

all p for which 2 is not a quartic residue. Similarly Theorem 6 improves von

Schrutka's and Chowla's results for those p's which do not have 2 for a cubic

residue. Only in case k = 2 and in the cases where k is oddly even and D is a

(k/2)th but not a A th power residue is N^iD) a function of p alone and is in

fact p — 1. This result appears in Theorem 1. In case k - 4, Vandiver [7a]

gives an unambiguous solution, which requires the determination of a primitive

root.

1. Character sums. It is clear that the number of solutions N^iD) of (1)

can be written

[ ( ) ]
u = o I V P 'I u = o

or

(2) Nk{D) = p + ( - ) + Φk(D)9
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where the function

(3)
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- Σ (

is connected with the Jacobsthal sum

ι t = ι

by the relations

(5)

and

(6) <A2

Other pertinent relations are

φk(D) = ( - I φk(D), k odd and DD = l(modp),

φk{D).

(7) φk{mkD)=(-\ φk(D)

k
ψk(mkD)=(-\ φk{D)

(m 4 0(modp))

and

(8) ψ A ( D ) = - { -

(k even)

Also, for k odd and p a primitive root,

(9)

v=o

These relations are either well known or are paraphrases of known relations
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and are all easily derivable from the definitions. If k is odd, it follows from

(5) and (6) that

(10) φ2k(D) = φk(D) + L\ φk(D).

If D i s a kth power residue, then so is D and hence by ( 7 ) for k odd φ^D) =

), and we have

+ 1

( I D ^ ( ^ [ ( 7 ) )

2φΛD) if (-} =

° ίf ( ) - 1

Hence from ( 2 ) we obtain:

THEOREM 1. If k is odd and if D-m , where m is a nonresidue of p-2kh+l9

then the number N2k(m ) °f solutions (u,w) of

u2k + mk s M;2 (mod p)

is exactly p - 1.

Since φχ{D) = - 1, it follows from (11) that Φ2(D) = - 2, if D is a residue,

and zero otherwise. Hence by (2), N2(D) ~ p — 1 for all /)• This is a well

known result in quadratic congruences. We will next discuss the case k = 4,

which is connected with Jacobsthal's theorem.

Jacobsthal [4] proved that if D is a residue and if p = x2 + 4y2, then

(12) φ2{D) = - 2* ί— I * Ξ I(mod4);

but if D is a nonresidue then he was able to prove only that

(13) ψ2(D) = ± 4 y .

Hence for D a residue, it follows from the fact that φ2(D) = - 2, using (6) and

(2), that

(14) N4(D) = p - 1 - 2x ( • — j , z s i (rood 4 ) .
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However, the corresponding result for D nonresidue would read

(15) /V4(D) = p - l ± 4 y .

In order to eliminate this ambiguity in sign at least for some cases we now turn

to the cyclotomic approach.

2. Cyclotomy. If we define as usual the cyclotomic number (i9j)k as the

number of solutions (v9 μ ) of the congruence

(16) gkvH + 1 Ξ gW (modp)

then if D belongs to class s with respect to some primitive root g (that is, if

indgD = s (mod k))9 we can write the number of nonzero solutions of (1) for

k even as follows:

k/2

(17) N£(D) = 2k Σ, (k~s> 2 v - * ) * .
v-\

We now assume that 2 is a nonresidue and choose g so that 2 belongs to the

first class, or s = 1; then

(18) iV4(2) = Λ/4*(2) = 8 [ ( 3 , l ) 4 + ( 3 , 3 ) 4 ] .

These cyclotomic constants have been calculated by Gauss [3] in terms of

x and y in the quadratic partition p = x2 + 4>y2 and are for p = Sn + 5

(19) 16 (3,3 ) 4 = p - 2* - 3, 16 (3,1 ) 4 = p + 2x - 8y + 1.

Substituting this into (18) we obtain

(20) /V4(2) = p - l - 4 y ,

To determine the sign of y we recall a lemma of our previous paper [5] which

states that (0,s ) is odd or even according as 2 belongs to class s or not. Hence

in our case (0,0) is even, while (0,1) is odd. These numbers have been given

by Gauss as follows,

(21) 16(0,0) 4 = p + 2 * - 7 ,

Hence
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p + 2 x - 7= 0(mod 32) and p + 2* + 8y + 1 Ξ 16(mod 32) .

Subtracting the first congruence from the second we have, dividing by 8,

(22) y Ξ I ( m o d 4 ) .

This makes (20) unambiguous, and returning to (2) we find by (6), since

0 2 ( 2 ) = O, that for ( 2 / p ) = ~ 1

(23) 0 4 ( 2 ) = ( £ 2 ( 2 ) = - 4 y , y = l ( mod 4 ) .

Hence by (7)

(24) ψ2(2m2) = -4

This gives a slight strengthening of Jacobsthal's theorem, namely:

THEOREM 2. If 2 is a nonresidue of p = x2 + 4y2, where x = y = 1 (mod 4),

then

( m \
— I, if D = m (mod p )
PI

- 4 y / - V if D= 2m2 (modp).
\ p /

Hence by (2) we have:

THEOREM 3. // 2 &'s a nonresidue of p = x2 + 4y2, x = y = 1 (mod 4) ίAen

ίAe number of solutions of u + D = w (mod p ) is given by

( m\
, if D ~ m (mod p )

p \ if D^ 2m2 (modp).

We now suppose that 2 is a quadratic residue but a quartic nonresidue, hence

we may choose g such that γ2 belongs to class 1 and calculate /V(γ2) by

(18). The cyclotomic constants of order 4 for p = Sn + 1 are

(25) 1 6 ( 3 , l ) 4 = p - 2x + 1, 1 6 ( 3 , 3 ) 4 = p + 2* + 8y - 3 .
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Hence by (18)

(26)

but in this case y turns out to be even, so that it is not sufficient to determine

y modulo 4 and it is necessary to introduce the cyclotomic numbers of order 8

to determine the sign of y. It also becomes necessary to distinguish the cases

p = 16/ι + 1 and Iβn + 9.

Case 1. p = 16/ι + 1 = x2 + 4y2 = α 2 + 2 6 2 , * = O Ξ I (mod 4 ) .

Since γ 2 belongs to class 1, 2 belongs to class 2 and by our lemma (0, 0) 8 is

even, while (0, 2) 8 is odd. Dickson [2] gives

(27) 64(0,0)8 = p~23 + 6x.

Since (0, 0) 8 is even, we have

(28) 6%=-p + 23 (mod 128).

In order to complete our discussion it was necessary to calculate (0,2) 8 and

(1,2) 8 by solving 15 linear equations involving the constants (i$ j)8 given by

Dickson, which we list in the Appendix. We obtained

(29) 64(0,2) 8 = p - 7 - 2*-16y - 8α, 64(1, 2) 8 = p + 1 - 6x + 4α.

Substituting p - 23 for - 6x from (28) into 64 (1, 2) 8 we obtain

(30) 2α= 11-p (mod 32).

Since (0, 2) 8 is odd we have, multiplying (29) by 3,

(31) 3 p - 2 1 - 6 * - 4 8 y - 24α = 3p - 21 + (p - 23) - 48y - 12(11 - p)

= 64 (mod 128);

or, dividing out a 16 and solving for y, we get

(32) y = 3 ( p + l ) = - 2 ( m o d 8 ) .

Case 2. p = lβn + 9. In this case Dickson gives

(33) 64(0,4) 8 = p + 1+ 6x + 24α ,
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while we have calculated [see Appendix]

(34) 64(0,2)8 = p + l ~ 2% + 16y ,

(35) 64(2,0)8 = p - 7 + 6x,

(36) 64(1,2) 8= p + 1+ 2x- 4α.

From (35)

(37) 6 X Ξ E 7 - P (mod 64).

Substituting this into (36) we find

(38) 12α= 2p + 10 (mod 64).

Since (0,4) 8 is even we obtain, using (38),

(39) p + 1+ 6% + 2 4 α Ξ p + 1+ 6x + 4p + 20= 0 (mod 128).

This gives an improvement of (37), namely,

(40) 6* = - ( 5 p + 21) (mod 128).

Finally substituting all this into (0, 2 ) 8 which is odd, we have, after multiply-

ing (34) by 3,

3p + 3 - 6x + 48y = 3p + 3 + 5p + 21 + 48y = 8p + 24 + 48y = 64 (mod 128),

or dividing out an 8 and noting that p = 9 (mod 16) we obtain

y = + 2 (mod 8 ) .

Hence the sign of y in (26) is now determined as follows if ( γ 2 / p ) = - 1:

(41) N4(\f2) = P - 1 + 4y, where y/2 = - ( - l ) ( ^ l ) / e (mod 4 ) .

From this we have as before by (2) and (6) for (y/2/p) = — 1:

(42) 04(VΓ2") = 02(λ/
r2") = - 4 y , where y/2 Ξ ( ~ l ) ( P " ι ) / 8 (mod 4 ) ,

and we can write a slight improvement of Jacobsthal's theorem in the case in

which 2 is a quadratic but not a quartic residue of p:
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THEOREM 4. // 2 is a quadratic residue, but a quartic nonresidue of p

x2 + 4y 2 = Sn + 1, then

= m2m2 (moάp)- \ if D=

-4y/-\ if D^yfϊm2 (inodp),

where x = l (mod 4 ) and y / 2 = (~l)n (mod 4 ) .

THEOREM 5. // 2 is a quadratic residue? but a quartic nonresidue of p «=

x 4- 4y2 = Sn + 1, ίλerc ίAe number of solutions (u,w) of u + D = w (mod p)

is given by

- 1 - 2%/-\ j / D = m2 (mod p )

p-l--4y/-j if D=j2m2 (modp),

where x= 1 {mod 4) and y/2 = ( - 1 ) " (mod 4).

In order to obtain an improvement on Jacobsthal's theorem in the case in

which 2 is a quartic residue, or to improve the results for φΛ and φ4 in order

to obtain Ng9 it appears necessary to examine the cyclotomic constants of

order 16, or to go through a determination of a specified primitive root as in

Vandiver [7a] . The known results for φ4 and φ4 are as follows:

— 4α[ —I if D = m 4 (modp)
w

0 if D = m2 φ ml (modp)

±46 otherwise,

and

-2x(-\ - 2 if D = m2 (modp)

±4y otherwise.

It follows from this that
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(43)

( m\
- j if D^m4 (modp)

if D = m2 φ τn\ (modp)

p - 1 ± 46 ± 4y otherwise.

3. Case A; = 3. The known results for the case k = 3 can be stated as

follows:

(44)
- 2 / 1 - 1 if D is a cubic residue

A ± 3B — 1 if D is a cubic nonresidue,

where p = ^ 2 + 3 β 2 = 6n + 1, A = l (mod 3).

This can be obtained either by summing the appropriate cyclotomic con-

stants of order 6, or by using the results of Schrutka or Chowla, as was done

in Whiteman [ 8 ] , From this it follows by (2) and (5) that

(45)

P - ί - 2Λ if D is a cubic residue

/D\
p + ( — ι ( / 1 ± 3 J 3 ) if D is a cubic nonresidue.

\pl

We are again faced with an ambiguity in sign in case D is a cubic non-

residue, which can be resolved in case 2 is a cubic nonresidue. For in this

case by ( 9)

(46)

By (44), <£3(1) = - 2/i - 1, while Chowla proved that 0 3 ( 4 ) = L - 1, where

4p = L2 + 27M2, L = 1 (mod 3). Hence by (46)

(47) φΛ2) = 2A — L — \ ( 2 a cubic nonresidue )•

Hence by (7) we can write a slight generalization of Chowla's or Schrutka's

theorem:

THEOREM 6. // 2 is a cubic nonresidue of p -A2 + 3 β 2 , and if 4p = L2 +

27/W2, A = L=l (mod 3), then
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[-(24 + 1) i / D Ξ m 3 ( m o d p )

I 24 - L - l ifD=2m3 (modp)

[ L - l i/D = 4m3 (modp).

Using (5) and (2) we obtain the corresponding theorem for N3(D):

THEOREM 7. // 2 is a cubic nonresidue of p = A2 + 3S2^ απcί if 4p = L2 +

27M2, 4 Ξ L - 1 (mod 3),

2A-0
/D\

if D ΈΞ m3 (mod p )

i/D = 2m3 (mod p)

i/D s 4m3 (mod p ) .

For k ~ 6, it follows from (10) by substituting the values for φ3(D) from

(44) (remembering that D and D are either both cubic residues, or both non-

residues ), that:

(48)

-(24 is a cubic residue

- ί — 1 I otherwise .

Substituting this into ( 2 ) we have

[ /D\Λ
1 + I — l l — X if D is a cubic residue

\pl 1

Γ / D \ Ί Γ / D \ Ί
p + 4 1 + | - J ± 3 β l - ( - 1 - 1 o t h e r w i s e .

(49)

In case 2 is a cubic nonresidue, however, we can substitute more exact values

for φ3(D) from Theorem 6 into (10) to obtain:

THEOREM 7. // 2 is a cubic nonresidue of p = A2 + 3S 2 α/ic? j/4p = L2 +

27M2. 4 = L S 1 (mod 3), then
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-(2A + 1) if D = m3 (mod p)

» γ o = 2m3 (mod p)

Substituting these values into (2) we obtain:

THEOREM 8. If 2 is a cubic nonresidue of p = A2 + SB2 and if 4p = L2 +

27M2, A = L = 1 (mod 3), ίAen ίλe number of solutions of u6 + D = t;2 (mod p)

is give7i όy

if D = m3 (mod p )

Ϊ / D Ξ 2TΠ3 (modp)

if D = 4m 3 (mod p ) .

4. Congruences in three variables. In conclusion we can apply our results

to the number of solutions of congruences in three variables. We have:

p - 1 - 2 4 1 + -

,.l + l i |^[(£)-l]

THEOREM 9. The number

(50)

of solutions (u9 v, w) of

^w2 (modp)

is

if k is odd

i/ /: is even.

Proof. Replacing D by Dv in (2) and summing over v = 1, 2, , p - 1,

we obtain

D\ P'1 ιv-) £ -
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By (7) this becomes

£ N ( D k ) { l ) l \ Σ l \Nk(Dv

k)-p{p-l)+ l-\ Σ,l-\
\pt £ϊ\pl

But

[0 k odd

[ p — 1 k even,

while the number of solutions with v = 0 is p for k odd and 2p - 1 for k even

Hence

p(p — l ) + p = p 2 for A: odd

ϊ (D\ 1
p ( p - l ) + ( p - l ) ( — 1 + φΛD)\ + 2p - 1, k even.

l\pl J

Hence the theorem.

Using the expressions derived for special values of k earlier we can write

down the following special cases:

By (14),

/ V 4 , 4 ( D ) = p 2 - 2 x 1 — j ( p - l ) i f ί - ) = + l , * s l ( m o d 4 ) .

B y ( 2 4 ) ,

By (42),

= p2- 4y(p-l) if(-j=-l and y=l(mod4)

if — = - 1 and y/2 = (_l)<P-»>/ (mod 4).
P

By (48),
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By Theorem 7,

-\ - l j j ( p - l )
if 2 is a cubic nonresidue.

By ( 4 3 ) ,

We note that N6f6{m2) = p 2 if m is a nonresidue. It can be readily seen that

this is a special case of a general theorem, namely:

THEOREM 10. // k is oddly even and D is a k/2ύi power residue, but not a

A th power residue, then

This follows from Theorem 9 and the fact that the corresponding ιfj^(D) is

zero in this case by (11).

We hope to take up the cases k = 5 and k - 10 in a future paper.

A P P E N D I X : Cyclotomic constants of order 8.

The 64 constants (i,j)$ have at most 15 different values for a given p.

These values are expressible in terms of p, x, y, a and b in

\ U = C Ξ 1 ( m o d 4 ) ) .

There are two cases.

Case I. p = 16rc + 1.
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Table of (i, j)g

0

1

2

3

4

5

6

7

0

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(0,6)

(0,7)

1

(0,1)

(0,7)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,2)

2

(0,2)

(1,2)

(0,6)

(1,6)

(2,4)

(2,5)

(2,4)

(1,3)

3

(0,3)

(1,3)

(1,6)

(0,5)

(1,5)

(2,5)

(2,5)

(1,4)

4

(0,4)

(1,4)

(2,4)

(1,5)

(0,4)

(1,4)

(2,4)

(1,5)

5

(0,5)

(1,5)

(2,5)

(2,5)

(1,4)

(0,3)

(1,3)

(1,6)

6

(0,6)

(1,6)

(2,4)

(2,5)

(2,4)

(1,3)

(0,2)

(1,2)

7

(0,7)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,2)

(0,1)

These 15 fundamental constants (0,0), , (2, 5) are given by the relations

contained in the following table.

64(0,0)

64(0,1)

64(0,2)

64(0,3)

64(0,4)

64(0,5)

64(0,6)

64(0,7)

64(1,2)

64(1,3)

64(1,4)

64(1,5)

64(1,6)

64(2,4)

64(2,5)

If 2 is a quartic residue If 2 is not a quartic residue

p - 23 - 18* - 24α p - 23 + 6x

p - 7 + 2x + 4α + 16y + 166 p - 7 + 2x + 4α

p - 7 + 6x + 16y p - 7 - 2 # - 8 a ~ 16y

p - 7 + 2x + 4a - 16y + 166 p - 7 + 2x + 4a

p _ 7 _ 2x + 8a p - 7 - 10*

p ~ 7 + 2* + 4o + 16y-166 p - 7 + 2* + 4a

p - 7 + 6x - 16y p - 7 - 2 * - 8 α

p ~ 7 + 2* + 4a~16y~166 p - 7 + 2* + 4a

+ 2x - 4α

- 6x + 4α

+ 2x - \a

+ 2x - 4α

- 6x + 4α

p + 1 - 2%

p + 1 + 2# - 4α

p + 1 - 6% + 4α

p + l + 2 x - 4 α - 1 6 6

p + l + 2x-4α-f 16y

p + l + 2 % - 4 α - 16y

p + l + 2%-4α + 166

p + 1 + 6x + 8α

p + 1 — 6* + 4α
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Case II. p = lβn + 9.

Table of ( i , / ) 8

0

1

2

3

4

5

6

7

(0,0)

(1,0)

(2,0)

(1,1)

(0,0)

(1,0)

(2,0)

(1,1)

(0,1)

(1,1)

(2,1)

(2,1)

(1,0)

(0,7)

(1,7)

(1,2)

(0,2)

(1,2)

(2,0)

(2,1)

(2,0)

(1,7)

(0,6)

(1,3)

(0,3)

(1,3)

(1,7)

(1,0)

(1,1)

(1,2)

(1,3)

(0,5)

(0,4)

(0,5)

(0,6)

(0,7)

(0,0)

(0,1)

(0,2)

(0,3)

(0,5)

(1,3)

(1,3)

(1,7)

(1,0)

(1,1)

(1,2)

(1,6)

(0,6)

(0,3)

(0,2)

(1,2)

(2,0)

(2,1)

(2,0)

(1,3)

(0,

(1,

(1,

(0,

(1,

(2,

(2,

(1,

7)

7)

2)

1)

1)

1)

1)

0)

where

64(0,0)

64(0,1)

64(0,2)

64(0,3)

64(0,4)

64(0,5)

64(0,6)

64(0,7)

64(1,0)

64(1,1)

64(1,2)

64(1,3)

64(1,7)

64(2,0)

64(2,1)

If 2 is a quartic residue If 2 is not a quartic residue

p - 15 - 2x

p + l + 2#-4α + 16y

p + l+6% + 8α~ 16y

p + l + 2%~4α~ 16y

p + 1 - 18%

p + l + 2%-4α + 16y

p + l + 6% + 8α + 16y

p + l + 2 x - 4 α - 16y

p - 7 + 2x + 4a

p — 7 + 2% + 4α

p + l-6% + 4α + 166

p + 1 + 2% — 4α

p + 1 - 6% + 4α - 166

p - 7-2% -8α

p + 1 + 2x — 4α

p - 15-

p + 1

p + 1

p + 1

p + 1

p + 1

P + l

p + 1

p - 7

p - 7

p + l

p + l

p + l

p-7

p + l

+

-

+

+

+

-

+

+

+

+

-

+

+

- 1<

2x

2x

2x

6x

2x

%c

2x

2x

2x

2x

6x

2%

6%

6%

Ox - 8α

- 4 α -

+ 16y

- 4 α -

+ 24α

- 4α +

- 16y

- 4α +

+ 4α +

+ 4α-

-4α

+ 4α

-4α

+ 4«

166

166

166

166

16y

16y
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