APPROXIMATION OF IMPROPER INTEGRALS BY SUMS
OVER MULTIPLES OF IRRATIONAL NUMBERS

R. SHERMAN LEHMAN

1. Introduction and notation. Let & be a positive irrational number. The
multiples of «, the numbers o, 2«, 3a,+-., are equidistributed mod 1. Suppose
f(x) is a bounded function, Riemann integrable on the interval (0,1), and

periodic with period 1. It follows from Weyl’s theory of equidistribution [ 2] that

1 N
n o= zﬂna):/o‘f(x)dx.

The purpose of this paper is to determine what modifications of this result are

required when f (x) is improperly Riemann integrable.

Every positive irrational number o has an infinite continued fraction expan-

sion,

A =bo+ 1
b1+l
b2+1

by toee,

where the b; are integers such that by > 0, and b; > 0 for i=1,2,3,.... Let
pi/qi (i=0,1,2,...) be the convergents to &. The integers p, and g, are rela-
tively prime, and

Po = by, 9, =1,

pl=blb0+17 q1=bl’

Pi+1=bia1 P+ Py

Tyrr = Oir 9+ G

piqi-l-—qipi-lz(_-l)l-l (i=192939"')°
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Let A; = o= p;/q,. We shall make use of the inequalities

. 1 1
(-1) A; > 0 and ‘A,‘ < < P
9:9;+1 bi+lq,’

In our discussion we shall often omit the subscript i; thus ¢ = q;, A=A,

Denote by R(y) the fractional part of y, often expressed by the notation
y =yl

2. Theorem. We shall establish the following result.

THEOREM 1. Suppose f (x) is a periodic function with period 1, improperly
Riemann integrable on the interval (0,1), and bounded in every closed sub-
interval which excludes the points 0 and 1. Suppose further that f(x) is bounded

or monotone near 0 and bounded or monotone near 1 in (0,1). Then, for N — oo,

(1) 1N()f‘()d LSS flhga) s o(D)
I-V—gfno{_ofx x+Nk=l g, %) +0(1),

n=1

where N = bg, +1,q; <N < gy and 0 <r <gq;.

REMARKS. 1. We note that the theorem includes the case in which

lim f(x)=+c and lim f(x)=-c0.
x— 0+ x— 1-

The conclusion of the theorem can also be stated in the form

1
lim - 2 f(na)=/lf(x)dx,
0

Noo Nap<nw
q, I n

where the sum is extended over the positive integers n < N which are not
multiples of g;, where g; is the largest denominator of a convergent to o that
is less than or equal to N. Observe that the values of n which are not summed

over are independent of the particular function f (x).

2. This theorem contains a result proved by MacMillan [1], who showed
that if D(y) is the absolute value of the difference between y and the nearest
integer, so that 0 < D(y) < 1/2, and o is an irrational number for which



then

lim
N — o0
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. -l/g;
lim bi+1q‘=l,
i—;oa

= ™

N 4
ZlogD(nC()=—log2e=/ log |x | dx.
n=1 -7
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Proof. First, consider the case that |f(x)| is bounded. If |f(x)| < M,

we have

s

1 2 M
— 2 flhga)| <b—<
’NF[ N

< | =

which tends to zero as N — . It follows from this and Weyl’s result that the

conclusion (1) is valid in the special case that |f (x)| is bounded.

It will be sufficient to prove the theorem in the case that for x near 0, | f(x)]|

is monotonely decreasing as x increases; and for x near 1 is monotonely in-

creasing in (0, 1). Certainly f (x) can be written as the sum of a function with

these additional properties and a bounded integrable function. Now, (1) is

valid for a bounded integrable function; and further, if the equation (1) holds

for two functions, it must hold for their sum. Therefore, we may limit our con-

siderations as indicated.

Decompose f(x) into three periodic functions f (x), g (x), and Ac(x) of

period 1, where € is a small positive parameter to be chosen later, with

We define 4 as

f(x)=f(x) for e<x<1-F¢,
f(x)=0 for x <€ or x > 1-¢,
g (x)=f(x) for x <e,

g.(x)=0 for x > €,
h(x)=f(x) for x> 1-¢,

he(x)=0 for x <1l-¢€.

the set composed of the positive integers n < N for

1 1
—< R(na) <1-—,
q q

which
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Then, for N sufficiently large, we have

(2) = 2 f(not)-—— Zf(not)+ 2 g(nd+ 2k (nO()]

N n€EA n=1 n€A n€A

By Weyl’s result,

1 N
(3) Jim 5 3 £l = ff(x)dxf £ (x)dx.

Since p and g are relatively prime, when n runs through the integers 1,2,
3,-++,q, R(np/q) runs through the numbers m/qg (m=0,1,2,...,4 — 1), taking
on each value exactly once. Therefore, when n runs through the integers 1,2,

«,N=0bg +r, each of the values m/q is assumed by R(np/q) exactly b
times if r = 0; and if r # 0 each value m/q is assumed either b or (b + 1) times.

But since
R(na)=R(n£-+nA),
q
where
. N 1
(4) 0 < (=1)nA < —m— < < -,

9;9; 4+, - q9;9;+, q

it also is true that the intervals (m/g, (m + 1)/q) each contain b values of
R(na) if r =0, and either b or (b + 1) values if r # O.

We choose ¢ sufficiently small so that |g (x)| and |~ _(x)| are monotone
functions in (0,1). Then if we compare g (nx) with g (m/q) when R(na)
lies in the interval (m/g, (m +1)/g) we have |g (nat)| < |g (m/q)|. Hence

1 1-2/
_<_2/ 1 lg.(x)|dx
0

N z ge(nC()

n€A

1 92 | m
= S (b+1) (—)
“bq 2; e q

€
2 [17 ),
0
since ¢ is large. Similarly, when R (n&) lies in (m/q, (m+1)/q) we have

()
q

| he(na)| <

2
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and hence
1 1 942 m+ 1 1
=S helndd)| <= 3 (b4 1) he( ) <2 [0 lheto)lax
N €4 bg »=1 g 2/q

=sz‘€ f ()] dx.

It now follows from (2) and (3) that

53/€lf(x)|dx+3[€ |f(x)]|dx+o0(1)
0 E

|l 2 f("a)_flf(x)dx
0

N n€a

as N— . Letting € tend to 0, we find

1
(5) m > f(na)=_/;lf(x)dx+o(1)

nEA
as N — w.

Now, we must consider the terms of (1) for which the R(nc) are in (1 -
1/q, 1) or (0, 1/q). There are different cases depending on whether i is even
or odd. We suppose first that i is even. In this case we shall find that the sum
of the terms for which R(n«) is in (1-1/g, 1) is 0(1). The sum of terms for
which R(n«) is in (0, 1/¢), on the other hand, is not necessarily o(1). This
accounts for the additional terms beside the integral in the right side of (1).

We first want to find all n < N for which the R(na) are in (1-1/g), 1).

Since i is even, we have

P91~ 9iPi == 1

1
0<nA; <—,
%

and therefore R(q;_ , p/q) =1-1/g. Then, since no =np/q + nA, R(na) will
be in (1 ~1/g, 1) if and only if R(np/q) =1 - 1/q. Repeating the reasoning
preceding formula (4), we observe that necessarily n = g, (mod g).

We define b’=b-1if r <g, , and b"=b if r > g, |. Further, r can be

> q;., only in case b < b, , for
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N=bg,+r <q4y=b9;+9q;,

by assumption. Hence in any case we have 6" < b, - 1.

Thus R(na) is in (1 - 1/g, 1) if and only if
n=kq+qi_l (k=071v29”"b')

and
1
R ((kq +g,.)0)=1~— +kgA+gq, A.
q
Now let

1
S=— > f (nat).

N R(na)> 1-1/4

Because of the monotonicity of | f (x) | near 1, we have

1 b 1 1 fu
lqA S =N ; (1--‘;+kqA+qi.1A)"qASI_V'/): I[(x)ldx,

where
1 1
A=l-—+q, Ap=1-=+(b"+1)qA+q, A.
q q
Also p < 1because b” < b,,, ~ 1, and hence

9;+1

99;+1

1
(6°+1)gA +q; A <(b,y,qg+q, )A=q;4, A< =;.
By assumption the function |f(x)| is monotonely increasing in the interval

(1-1/q,1) for g sufficiently large. Its average over the interval (A, p) must
be less than its average over an interval closer to 1. From this it follows that

-2 [ (b°+1)gA 1
LA dx .
f |G lde < & A | (%)) da (1/q>-q,--1/7~ f (%) da

But
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1 1 9,4 9i+17 91 b+, 9 1
- = > >

9 99;4 499;+4 q(by +1)g — 2q

since b,, > 1. Hence
it1 —

2q(b'+1)qA 1 2q(b+1)
S|« L~ 17 15 < e x
151 < < /; 1) < 2 / | (%)|ds,

S| g4/;|f(x)ldx.

Since A > 1~ 1/g, which tends to las N— @, S — 0 as N — w.

The only terms of (1) which we have not considered yet are those for which
the R(na) lie in (0, 1/¢). But R{(nu) will be in (0, 1/¢) if and only if
R (np/q) = 0 which occurs only when n = kg (k=1,2,3,...,b). Thus we find

1 1 b
- z flna) = — Z fkga).
N R(na) < 1/¢ N k=1
Using (5) we have finally
(6) lN()/l()dlb(k)(l)
sz nC(—ofx x+lvlf§f qi) +o

for N — w.

We have assumed that { is even, but the case in which ; is odd is similar
and can be treated in a corresponding manner. In this case, however, it is the
sum of the terms for which R(na) is in (0, 1/¢q) which is 0(1), and the terms
for which R(na) is in (1-1/g, 1) which account for the additional terms
beside the integral in the right side of (1). The result obtained is the same as
(6). The proof of Theorem 1 is then complete.

3. Further results. We start with two remarks.

L It is not difficult to determine for what choice of N for q; <N <gq,,,

the sum term in the right side of formula (1) is largest. We have

(7)

Zf(kq A)

1 b
- flhkg.a)| =
Ng i bq+rkl

1
_f(ini)"
q;
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We see that the sum term is largest in absolute value when N = ;s the de-

nominator of a continued fraction convergent, for then

q.
1

>3 f(na)=fo‘/(x)d“_f(ininom.
9

i
n=1

1
9;
On the other hand, it follows from this that if N = 9; -1,

1 47! q;
q.:_——l n;_l f(nO()= Z——]_ ./;1f(x)dx+o(l)=./;lf(x)dx+o(1).

Thus, we see Weyl’s result holds without omitting terms from the sum if N — 0
over the sequence of numbers ¢, -1, ¢, =1, g, — 1, <+ . MacMillan [1] proved

this result in the case

1
f(x)=log|x| for - = <x < —.

[\V]
(SN

2. If there exists a constant ¢ > O such that
1
Al > —
cq;

for all ¢;, then

gc‘/o.l/cq | f(x)|dx,

<

()

which tends to 0 as ¢ — . Such a constant ¢ exists if the quotients by of

1
l-f(qA)
q

the continued fraction for & are bounded.

THEOREM 2. For all irrational & > O with the property that the quotients

of the continued fraction for 0. are bounded,

2|~

N
1
E_lf(nau/o [ (x)da.

lim
N -0

In particular this formula holds for all o which are quadratic irrationals.

For almost all o Weyl’s result holds without omitting terms from the sum.
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THEOREM 3. Suppose f (x) satisfies the hypothesis of Theorem 1. Then,
for almost all o,

1 N
N_'w % ; f(nO()=./0'lf(x)dx.

Proof. From Theorem 1 and (7) one can see that it will be sufficient to
prove that

lf(nO()-——-)O
n

as n — w, for almost all «.

Let E; be the set of & for which 0 < o0 <1 and |f(&)| > k/v, where

v is a positive integer. Interpreting fol | f (x)|dx as a Lebesgue integral we
have 0
1 1
=S mE < [MIr o ds,
0

V k=1

where m (£} ) is the measure of Ej. The measure of Ej, is equal to 1/k times
the measure of the set of ¢ for which

1 1
0<a<kand —|f(a)] > —
k v

because of the periodicity of f(x). It follows that m (k) =m(F}), where
F is the set of o for which

1 1
0<a<land —|f(ka)|>—.
k v
Hence X %=, m(F)) converges.
Let G, be the set of all & for which 0 < ¢t < 1 and for which there are

infinitely many n such that

1
Z1f(aa)| > =,
n 1 %4

Thus G, is the set consisting of all &« which belong to an infinite number of

the sets F;, F,, F3,.... Any open set which covers the union of the sets
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Fiy Fi 41, Fi42,+++ will also cover G, no matter how large % is. But this union
will have arbitrarily small measure if k is chosen sufficiently large, because
22, m(F;) converges. It follows that m (G, ) = 0.

Now let G be the set of all & for which 0 < « < 1 and f(not)/n does not
tend to 0 as n —» . The set G is the union of the sets G, G,, G3,-+-. Since

each of the sets G, has measure zero, G has measure 0, which was to be proved.

If f (x) becomes infinite at points other than the end points, a result which
corresponds to (5) can be proved. Again the sum tends to the integral provided
certain terms are omitted. The terms omitted depend on the positions of the
singularities of f(x) but otherwise do not depend on the particular function
f(x). We omit the proof of the following theorem because it is similar to the
proof of (5).

THEOREM 4. Suppose f (x) is a periodic function with period 1, improperly
Riemann integrable on the interval (0,1), and bounded except in the neighbor-
hood of a finite number of exceptional points in the interior of (0,1). Suppose,
furthermore, that in the half-neighborhood to the right of an exceptional point
X, f(x) is bounded or monotone; and also in the half-neighborhood to the left
of X, f (x) is bounded or monotone. Let N = bg; +r, q; <N < q,4,, and define
the set A composed of positive integers < N in the following way. If R (nx)
is in the interval (m/q, (m +1)/q) put n in A if and only if there is no ex-
ceptional point X such that (m -1)/q < X < (m +2)/q. Then

N oo

1 1
lim NnezAf(nC()=£ f(x)dx.
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