
A CHARACTERIZATION OF COMPLETE LATTICES

ANNE C. DAVIS

1. Introduction. A complete lattice 21 = (A, < } has the property that every

increasing function on A to A has a fixpoint.1 Tarski raised the question whether

the converse of this result also holds. In this note we shall show that the

answer to this question is affirmative, thus establishing a criterion for complete-

ness of a lattice in terms of fixpoints.2

We shall use the notation of [6], In addition, the formula a ^ b will be

used to express the fact that a < b does not hold. By ( a^ ξ < Ot ) , where

α is any (finite or transfinite) ordinal we shall denote the sequence whose

consecutive terms are α 0, «i, , a<μ , (with ξ < α) ; the set of all terms

of this sequence will be denoted by ί aμ ζ < d }. The sequence ( a * ξ < Ct )

is, of course, called increasing, or strictly increasing, if a^ < α^/, or a^ < a^ /,

for any ζ < ζ' < OC analogously we define decreasing and strictly decreasing

sequences.

2. A lemma. We start with the following:

LEMMA 1. // the lattice 21= (A9 < ) is incomplete, then there exist two

sequences ( bμ ζ < β ) and ( c<η η < γ) such that

( i ) b^ < c-η for every ξ < β and every η < y,

( i i ) ( bε ζ < β ) is strictly increasing and (c-η η < γ) is strictly decreas-

ing,

( i i i ) there is no element a EA which is both an upper bound of\b^; ζ < β \

and a lower bound of \ c-η η < y !•

See L6J (where further historical references can also be found).

2 This result was found in 1950 and outlined in [2J .

3 A related, though weaker, property of incomplete lattices is mentioned implicitly
in [ l , p. 53, Exercise 4 ] .
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Proof. We first notice that there exists at least one subset of A without a

least upper bound (for otherwise the lattice would be complete).4 Hence we can

find a subset B of A with the following properties:

(1) UB does not exist

(2) if Jt is any subset of A with smaller power than B, then ΌX exists.

Let ,8' be the initial ordinal of the same power as B (that is, the smallest

ordinal such that the set of all preceding ordinals has the same power as B).

The ordinal β' may be equal to 0; if not, β' is certainly infinite and, since

it is initial, it has no predecessor; that is, ζ < β' implies ζ + 1 < β' for every

ordinal ζ. Thus all the elements of B can be arranged in a sequence \ bί;

ξ < β' ) . For every ξ < /3', the set { bC; ζ < ζ + 1 ! is of smaller power than

β' and therefore, by (2), its least upper bound

exists. The sequence ( u* ζ < β' ) is clearly increasing but not necessarily

strictly increasing. However, by omitting repeating terms in this sequence, we

obtain a strictly increasing sequence ( bg ζ < β ) , where β is an ordinal

< β\ such that

{ b ξ ; ξ < β \ = { u ξ ; ξ < j 8 Ί .

(Actually, one can easily prove that β = /3'») Obviously,

(3) for every b £ B there is a ζ < β such that b <_ be

(4) for every ζ < β' there is a subset X of B such that b^ = UZ.

By (3) and (4), if the least upper bound Uί b^; ξ < β \ existed, it would co-

incide with \JB; hence, by (1),

( 5) U { bξ ξ < β \ does not exist.

Let C be the set of all upper bounds of ί b^ ξ < β}. Clearly DC does not

exist, for if it did, it would coincide with U{ bμ\ ξ < β\; this result would con-

tradict (5) . Now C, like B, is either empty or infinite. Since C is partly ordered

by the relation < , there is a strictly decreasing sequence ( c η η < γ) such

4See [1, p. 49].
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that \cv; η < γ\ is a subset of C with which C is coinitial ( that i s , there is

no element of C which is a lower bound of ί c η; η < γ\ without belonging to

\cv; η < γ\). 5 If the greatest lower bound Π f c ^ ; η < γ} existed, it would be

an upper bound of { b^ ξ < β\; but s ince U{ bμ\ ξ < β\ does not exist, there

would be an element c G C such that Π{ cv; η < γ\ <£_ c. Hence we would have

c n ί l j c η ; ? | < y ! G C a n d c r\ f ] \ c v ; η < y \ < f \ \ c v ; η < γ \ ,

in contradiction to the assumption that C is coinitial with \cv', η < γ\. Con-

sequently,

(6) Π{ cv; η < γ\ does not exist.

The sequences ( b* ζ < β) and ( c η ; η < γ) obviously satisfy conditions

( i ) and (i i) of our lemma. To show that ( i i i) is also satisfied, assume that an

element a G A is both an upper bound of { bμ ζ < β \ and a lower bound of

{ Cη η < y}. We have then, by definition, a G C. Hence, C being coinitial with

{ cv; η < γ j , we must have

a e \cv; η < γ\,

and therefore

a = ίl{ cv; η < γ\,

in contradiction to (6) . This completes the proof.

3. The main result. With the help of Lemma 1 we now obtain the main result

of this note:

THEOREM 2. For a lattice 21 = \A, < ) to be complete it is necessary and

sufficient that every increasing function on A to A have a fixpoint.

Proof. Since the condition of the theorem is known to be necessary for the

completeness of a lattice, we have only to show that it is sufficient. In other

words, we have to show that, under the assumption that the lattice 21 = ( A9 <)

is incomplete, there exists an increasing function f on A to A without fixpoints.

In fact, let ( bμ ξ < β) and (cv; η < γ) be any two sequences satisfying

conclusions ( i ) - ( i i i ) of Lemma 1. To define / for any element xEA9 we

distinguish two cases dependent upon whether x is a lower bound of { c η ; η < γ}

or not.

*Cf.[3, p. 141].
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In the first case, by conclusion ( i i i ) , x is not an upper bound of { bμ ξ < β \;

that i s , the set of ordinals

(1) Φ ( * ) = E f [ f < β and bξ

is non-empty. We put

(2) φ(χ) = mmΦ(x) and f{χ)

(Δ being any non-empty set of ordinals, min Δ is of course the smal lest ordinal

belonging to Δ.) In the second case, the set

( 3 ) ψ ( ^ ) = = E r ? [ r 7 < γ and x ± cv]

is nonempty. We let

( 4 ) 0 ( * ) = m i n Ψ ( * ) and f (x) = cφ{χ).

We have thus defined a function / on A to A. From ( l ) - ( 4 ) it follows clearly

that either fix) j^ x or % £ fix) for every x £ A; thus / has no fixpoints.

Let x and y be any elements of A with x < y. If x is a lower bound of

\c-η', η < β \ but y is not, then, by ( l ) - ( 4 ) and conclusion ( i ) of Lemma 1,

fix) < _ / ( y ) . If both x and y are lower bounds of \c-η, η < γ\, we see from

( 1 ) that Φ ( y ) is a subset of Φ ( x ) ; hence, by ( 2) and conclusion ( i i ) of Lemma

1, it follows at once that fix) < / ( y ) Final ly, if x is not a lower bound of

\c-η; η < y}, then y is not either, and by an argument analogous to that just

outlined (using (3) and (4) instead of (1) and ( 2 ) ) we again obtain fix) < /(y) .

Thus the function f is increasing, and the proof of the theorem is complete.

4. Extensions. More difficult problems seem to arise if we try to improve

Theorem 2 by considering, instead of arbitrary increasing functions, more

special c las ses of functions. In particular, we have in mind join-distributive

(or meet-distributive) functions, that i s , functions / on A to A which satisfy

the formula

/ ( « u y ) = / U ) u / ( y ) ( o τ f ( x n y ) = f ( x ) n f ( y ) )

for all x, y £ A. The problem is open whether Theorem 2 remains valid if the

term "increasing" is replaced by "join-distributive" or by "meet-distributive".

We are going to give (in Theorem 4 below) a partial positive result concerning

this problem.
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The lattice 21 = ( A9 <J is called α- join- complete (or a-meet-complete) if

\JX (or ΠX) exis ts for every nonempty subset X of A with power at most equal

to K α .

LEMMA 3. Let 21 = \A$ <C / be an incomplete lattice with the set A of power

Kα //" 21 is δ-join-complete for every δ < CX, then there exist two sequences

(b^; ξ < β) and (c-η; η < γ ) which satisfy conclusions ( i ) - ( i i i ) of Lemma 1

as well as the following condition:

( i v ) if an element % G A is a lower bound oflc^; η < γ\, then there exists

an ordinal ζ such that ζ < β and x <_ bμ .

Proof, From Lemma 1 we easily conclude that there exists a strictly de-

creasing sequence ( c^; η < y ) of elements of A such that Π{ c^; η < γ\ does

not exist. Let B' be the set of all lower bounds of { c-η η < γ\. Then clearly

U S ' does not exist. Hence, by hypothesis, B' must be either empty or of power

Kα; since 21 is δ-join-complete for every δ < CC, it follows that S ' satisfies

conditions (1) and (2) in the proof of Lemma 1 (with B replaced by B'). There-

fore, by literally repeating the corresponding part of the proof of that lemma, we

obtain a strictly increasing sequence ( b* ξ < β) of elements of B' for which

conditions ( 3 ) - ( 5 ) (with B = B') hold. Obviously the sequences (b^; ξ < β)

and (c-η η < γ) satisfy conclusions ( i ) and ( i i) of Lemma 1. To show that

conclusion (i i i) is satisfied, assume, to the contrary, that a is both a lower

bound of \cv', η < Ύ \ and an upper bound of { be ξ < β }. Therefore, by the

definition of B\ we have aEB'; using (3) of the proof of Lemma 1 we see

that a < fe>: for some ξ < β, and hence, a being an upper bound of { bξ ζ < β\,

we conclude that

a = U { b ξ ; ξ < β\,

which contradicts ( 5 ) . Final ly, in view of the definition of B*', conclusion ( i v )

of our present lemma simply coincides with condition ( 3 ) in the proof of Lemma

1 (again with B - B').

With the help of Lemma 3 we now obtain:

THEOREM 4. Let 21 = (A9 < ) be a lattice with the set A of power Kα 'For

A to be complete it is necessary and sufficient that

( i ) 21 be δ-join-complete for every δ < (X and

( i i) every join-distributive function on A to A have a fixpoint.
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Proof. If 21 is complete, then obviously ( i ) holds. To show that the com-

pleteness of 21 implies ( i i ) we need only note that every join-distributive func-

tion is increasing, and then apply Theorem 2. Thus ( i ) and ( i i ) are necessary

conditions for the completeness of 21.

In order to show that these conditions ( joint ly) are also sufficient, we

assume that 21 is an incomplete latt ice which is δ-join-complete for every

δ < OC, and we show that there exists a join-distributive function / on A to A

without fixpoints.

Let (b^; ξ < β) and (cv; η < γ) be any two sequences satisfying con-

clusions ( i ) - ( i i i ) of Lemma 1 and the additional conclusion ( i v ) of Lemma 3.

In order to define / for every % G i we distinguish two cases dependent upon

whether % is a lower bound of { c-η η < γ \ or not.

In the first case , by ( i v ) of Lemma 3, the set

( 1 ) θ ( χ ) = E ξ [ ξ < β a n d * <bξ]

is non-empty. We notice that, by conclusions ( i i ) and ( i i i ) , the sequence

{bc\ ζ < β) cannot have a last term; that is ξ < β always implies ζ + I < β.

Hence we may put

( 2 ) # ( * ) = min θ(x) and / ( * ) = fyk)+ι •

In the second case, the set

( 3 ) Ψ ( * ) = Ev[η < γ and x ± Cj] ]

i s nonempty. We le t

( 4 ) 0 ( * ) = m i n Ψ U ) and f (x) = cφ (χ).

We have t h u s defined a function / on A to A. If x G Af and % i s a lower bound

of ί c-η η < γ!, it follows from ( 1 ) , ( 2 ) , and c o n c l u s i o n ( i i ) of Lemma 1, t h a t

while if x i s not a lower bound of { c ^ ; η < γ\, we s e e from ( 3 ) and ( 4 ) that

x _̂ f (x); thus / h a s no f ixpoints .

Now let x and y be any e l e m e n t s of A Assume first that both x and y are

lower bounds of i c ^ ; η < γ\. L e t , in addi t ion, u(x) < $ ( y ) . T h e n , obvious ly ,
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and, by ( 2 ) and conclusion ( i i ) of Lemma 1, we obtain

C l e a r l y , x u y i s a l o w e r b o u n d of { c η ; 77 < y ί a n d w e s e e from ( 1 ) t h a t θ(x u y )

i s a s u b s e t of θ{y); t h e r e f o r e i t f o l l o w s from ( 2 ) t h a t

( 6 ) #{y) < dixuy).

On t h e o t h e r h a n d , b y ( 1 ) , ( 2 ) , a n d c o n c l u s i o n ( i i ) of L e m m a 1, w e h a v e

hence x u y < bai \ and, by ( 1 ) , u(y) G θ(x u y ) . Then, using ( 2 ) , we obtain

ά(x υy) < tf(y);

h e n c e , w i t h t h e h e l p of ( 2 ) , ( 5 ) , a n d ( 6 ) , w e c o n c l u d e t h a t

( 7 ) / ( % u y ) = / ( % )

Assume next that x is a lower bound of { cv', Ϊ? < y\ while y is not. Then,

by ( 2 ) , ( 4 ) , and conclusion ( i ) of Lemma 1, we have

< 8 ) / ( * ) u / ( y ) = b#ix)+t u cψ{y)=cφ{y).

Since y is not a lower bound of { cv r/ < y}, Λ; U y is not either, and by ( 3 ) we

see that Ψ (y ) is a subset of Ψ ( x u y ); therefore, by ( 4 ),

( 9 ) φ(x u y ) < ι/ ' (y) .

From ( 3 ) and ( 4 ) it is obvious that

and hence either

But since x is assumed to be a lower bound of { c<η r/ < y}, it follows that

therefore, by ( 3 ) , i/»U u y) e Ψ ( y ) ; and, by ( 4 ) ,
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(10) φ(y) < φ(χ u y).

Apply ing ( 4 ) , ( 8 ) , ( 9 ) , and ( 1 0 ) , we c o n c l u d e t h a t ( 7 ) h o l d s .

F i n a l l y , a s s u m e t h a t n e i t h e r x nor y i s a lower bound S c η ; η < γ\, a n d

l e t φ (x) < φ{y). F r o m ( 4 ) and c o n c l u s i o n ( i i ) of L e m m a 1, w e o b t a i n

( 1 1 ) 1'ix) U ί~{y]= Cφ(x)U c ψ ( y ) = cφ{x)'

S i n c e , by ( 3 ) , Ψ ( % ) i s a s u b s e t of Ψ ( % u y ) , i t f o l l o w s from ( 4 ) t h a t

( 1 2 ) φ ( x u y ) < φ ( x ) .

Using (3) and (4) again, we see that

and hence either

x i c ψ(*uy) O Γ y i c ψ U u y )

Therefore,

φ{x) <_φ{x v γ) or φ(γ) <_φ(x \j γ)

But if φ(y) £ φ(x u y ) , then, since φ(x) <_φiy), it is also the case that

(13) φ(χ) < φ(χ u y ) .

Using (4), (11), (12), and (13), we again obtain (7) . Thus the function / is

join-distributive, and the proof of the theorem is complete.

As an immediate consequence of Theorem 4 we obtain:

COROLLARY 5. Let 21 = {A, < ) be a lattice in which the set A is de-

numerable. For 21 to be complete it is necessary and sufficient that every join-

distributive function on A to A have a fixpoint.

By analyzing the preceding proofs we easily see that Theorem 4 and Corol-

lary 5 remain valid if we replace in them "join" by "meet" everywhere; we also

notice that in every lattice 21 = (A9 <_ ) without 0 the conclusions of Lemma 3

(with /3 = 0) hold, and hence there is a join-distributive function on A to A

without fixpoints.

If, instead of considering arbitrary lattices, we restrict ourselves to



A CHARACTERIZATION OF COMPLETE LATTICES 319

Boolean algebras, we immediately conclude from Corollary 5 that in every

Boolean algebra 21 = (A 9 < ) in which the set A is (infinitely) denumerable

there is a join-distributive function / on A to A without fixpoίnts. This result

can be extended to a wider class of Boolean algebras, in fact to all infinite

Boolean algebras with an ordered basis; 6 the proof will not be given here. 7

However, the question remains open whether the result can be extended to

arbitrary incomplete or even to arbitrary countably incomplete Boolean algebras

(that is, to those which, in our terminology, are not O-join-complete).

6 For the notion of a Boolean algebra with ordered basis, see l 5 j . It is well known
that every denumerable Boolean algebra has an ordered basis, and that every infinite
Boolean algebra with an ordered basis is countably incomplete, but that the converses
of these statements do not hold.

7 The essential property of infinite Boolean algebras with an ordered basis which is
involved in this proof is that every such algebra contains a sequence of disjoint non-
zero elements ( bn', μ. < Cύ / such that, for every element x of the algebra, either the
set Eμ[6μΠ%= Oj or the set Eμ[όμ,n % ^ θ] is finite. The idea of the proof was sug-
gested to the author by an argument in [4, p. 92l], where a particular case of the result
in question was obtained.
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