
ON GENERALIZED SUBHARMONIC FUNCTIONS

L. K. JACKSON

1. Introduction. In a previous paper [ l ] , the notion of subharmonic func-

tions was generalized in a manner corresponding to Beckenbach's [2] general-

ization of convex functions^ This generalization was accomplished by replacing

the dominating family of harmonic functions by a more general family of func-

tions. In [ l ] the discussion was restricted to continuous subfunctions.

In the present paper we shall give some further properties of the dominating

functions and extend the definition of subfunctions to permit upper semi contin-

uous subfunctions. We shall then show that results of J. W. Green [3] on approx-

imately subharmonic functions extend to our subfunctions.

2. {F [-functions and sub-{ F} functions. Let D be a given plane domain

and let { γ \ be a given family of contours bounding subdomains Γ of D such that

Γ = y + Γ C D where Γ indicates the closure of Γ. We assume that { γ \ contains

all circles of radii less than a fixed number which lie, together with their in-

teriors, in D. We shall use the Greek letter K to represent a circle of ί γ \ and

K its interior. We shall use single small Roman letters to represent points in

the plane. Let there be given a family of functions \Fix)} which we shall call

{ F }-functions satisfying the following postulates.

POSTULATE 1. For any γ£ {γ} and any continuous boundary value function

hix) on γ, t h e r e i s a u n i q u e F(x h γ ) e\Fix)\ s u c h t h a t

( a ) Fix h γ) = hix) on y ,

( b ) Fix h γ) i s c o n t i n u o u s in Γ .

P O S T U L A T E 2. If hι(x) and h2ix) are c o n t i n u o u s on y and if hι(x)—

h2(x) < M on y, M > 0, then

F{x;hι;γ)-F(x;h2;γ) <M
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in Γ; further, if the strict inequality holds at a point of y, then the str ict in-

equality holds throughout Γ.

POSTULATE 3. For any K € {γ\ and for any collection \hv(x)\oί functions

hv{%) which are continuous and uniformly bounded on K, the functions F{x;hv;

K) are equicontinuous in K.

DEFINITION 1. The function six) i s defined to be sub-{ F } in D provided

( a ) 5 (x) i s bounded on every closed subset of D,

( b ) s ( # ) is upper semicontinuous in D,

( c ) s(x) £ F(x) on y implies s (x) < F(x) in Γ.

DEFINITION 2. The function S(x) is defined to be super-{ F j in D provided

( a ) S(%) is bounded on every closed subset of D,

( b ) Six) is lower semicontinuous in D,

( c ) S ( x ) > F ( λ ; ) o n y implies S(x) >^ F(χ) in Γ.

Let Ω be a bounded connected open set comprised together with i ts boundary

ω in D and let g(x) be a bounded function defined on ω.

DEFINITION 3. The function φ{x) is an under-function (relat ive to g(x))

if φ(x) is continuous in Ω, sub-ί F \ in Ώ, and φ(x) < g(x) on ω.

DEFINITION 4. The function ψ(x) is an over-function (relative to g(x))

if φ(x) is continuous in Ω, super-ί F \ in Ω, and ψ(x) >_ g(x) on ω.

POSTULATE 4. If Ω is any bounded connected open set comprised together

with its boundary ω in D and g(x) any bounded function defined on ω, then the

associated families of over-functions and under-functions are both non-null.

POSTULATE 5. For any circle K 6 { y j and any real number M, there exist

continuous functions h\ix) and h2(x), defined on K, such that

F{x\hx;κ) > M, F U ; / L 2 ; K ) < M in K.

POSTULATE 6. For any circle K G ! y}, if the functions hn(x) (n = 0 , l , 2 , ),

defined on K, are continuous and uniformly bounded on K, and

lim hn(x) = ho(x)
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for all but at most a finite number of points of κ9 then

lim F (x; hn; K) = F (x; ho; K)

at all points of K.

POSTULATE 7. For any circle K e { γ!, if the functions hn(x) (n = 1,2, •••),

defined on κ9 are continuous and uniformly bounded on K and equicontinuous at

a point x0 E K , then the functions F {x; hn; K) (n = 1, 2, •), defined in K9 are

equicontinuous at x0.

Our definition of sub-ί F } functions differs from the definition of subhar-

monic functions in that we have restricted our subfunctions to be bounded on

closed subsets of Zλ This seems to be necessary since we do not have a Harnack

theorem of the type that is available in the theory of harmonic functions.

3. Some theorems concerning the { F i-functions.

T H E O R E M 1. If κE{γ\f N is any real number, and x0 G i ( , then there

exists a continuous function h{x) defined on K such that F(xo; h; K) = N.

Proof. By P o s t u l a t e 5 there e x i s t c o n t i n u o u s f u n c t i o n s h\{x) and / ^ ( x )

def ined on K s u c h t h a t

Fix fn n) > N, F(x;h2;κ) < N on K.

We define on K

Then for 0 < λ < 1 we have

F(xo;h2; K) X F(xo;h\; K) < F(xo;hι; K) .

Now set

λ i = g . l . b . [ λ | F U o ; λ λ ; κ ) > ΛΊ

and

λ 2 =l.u .b . [λ\F(xo;hχ;κ) < Λ'].
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Using Postu la te 2 we see that λ t = λ 2 and

This result shows that Postulate 6 of [ l ] is actually a consequence of

Postulates 1, 2, and 5 and may be omitted.

THEOREM 2. If fix) is continuous in D and x0 GD, then given any e > 0,

there exists K E { y \ with center at x0 and radius arbitrarily small such that

\F(x;f;κ) -f(x)\ < e in K.

Proof. If Ky i s any circle of { γ \ with center at x0, then by Theorem 1 there

exists a continuous function hix) defined on Kj such that

F(xo;h;κι ) = fixo)

By continuity there exists a smaller concentric circle K such that

\Fix;h;κi)~fix)\ < 6/2 i n K .

Let

hγix) = max [Fix; h; κί ), / ( % ) ] on K,

h2ix) =πάn[Fiχ;h; κ t ), / ( % ) ] o n κ .

Then in K

F i x ; h 2 ; κ ) S . F i x h ; ^ ) < F i x ; A t ; K ) ,

F ( * ; Λ 2 ; κ ) < F ( % ; / ; κ ) < F ( x Λi κ ) ,

F ί x A ^ K Ϊ - F ί Λ Λa K) < e/2 .

Therefore in K we have

I F i x ; f κ ) - f ( x ) I < | F ( % ; / ; κ ) - F ( % ; Λ ; κ 1 ) | + | F i x ; h; κx) - f (x) \ < 6 .

THEOREM 3. If f ix) is bounded and upper semi continuous on y, then there

exists a function Fix; f; γ) such that

( 1 ) Fix f γ) is upper semicontinuous in V and continuous in Γ,

( 2) F ix f γ) is an { F \-function in Γ,
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(3) F(x f γ) = {{%) on γ.

Proof. Let F{x;f;γ) be the infimum in Γ of all over-functions in Γ with

respect to the boundary function f (x) on y. Clearly F(χ f γ) is upper semi-

coniinuous in Γ. Theorems 11 and 12 of [ l ] show that F(x f γ) is continuous

and an { F }-function in Γ. Let fRix) in = l, 2, •••) be a monotone decreasing

sequence of continuous functions converging to fix) on y. Then Fix; fn;γ) i s

an over-function for each n and therefore F ix; f γ) =/"(%) on y

Heretofore we have used the notation Fix h; y) only for functions continuous

in Γ but henceforth we shall use the same notation when hix) is bounded and

upper semi continuous on y and Fix h; γ) is defined as in Theorem 3. No con-

fusion should arise s ince, for hix) continuous on y, the Fix h γ) as defined

by Theorem 3 is the unique Fix; h; γ) of Pos tu la te 1. Hence, if s ix) is sub-! F \

in D and γ £ \γ\, there exis ts an { F }-function Fix; s; γ) such that

s ix) - Fix; s; γ) on y

and

six) < F ( x ; s ; y ) in Γ.

THEOREM 4. If hiix) and h2ix) are bounded and upper semi continuous on

γ and hiix) - h2ix) <_M on γ, M >_ 0, then

Fix hi γ) - Fix;h2;y) <M on Γ .

Proof. Let x0 £ Γ and suppose that

F(xo',hι;γ)-F(xo;h2',γ)=M + δ, 8 > 0 .

By Postu la te 4 and Theorem 3 there exis ts an over-function ψix) with respect

to h2ioc) such that

0 <φ{χo)-F{x0;h2;γ) < 8.

T h e n Fix; φ; γ) i s a l s o a n o v e r - f u n c t i o n w i t h r e s p e c t t o h2i%) a n d

0 < F(xo;φ;γ)~F(xo;h2;γ) < 8.

Furthermore Fix; φ + M9 γ) is an over-function with respect to hγix); hence, by

the preceding inequality and Postulate 2 we have
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F(χo hι γ) -F(xo;h2;γ) < F(x0; ψ + M; γ) - F(x0; h2; γ)

<F(xo;ifj + M;γ)-F(xo',ιfj;γ)+F(xo;ψ;γ)-F(xo;h2;γ) < M + δ.

This is a contradiction and the theorem is proved,

THEOREM 5. If the functions \hv{x)\ are upper semicontinuous and uni-

formly bounded on κ9 then the functions F(χ;hv;κ) are equicontinuous in K;

further the function

uix) = sup F(x;hv; K)
V

is continuous and sub-{ F j in K9 and

v(x) = inf F(x hv κ)
v

is continuous and super-{ F } in K.

The proof follows immediately from Postulate 3 and Theorem 4, and Lemma

1 and Theorem 11 of [ l ] .

4. Some properties of sub-S F \ functions.

THEOREM 6. A necessary and sufficient condition for the function s (x),

which is upper semicontinuous in D and bounded on every closed subset of D9

to be sub-i F \ in D is that corresponding to each Xo € D there exists a sequence

of circles κn with centers at Xo and radii rn(xo) —> 0 such that

s(x0) < F{xo;s; κn)

for each n.

THEOREM 7. If sχ(x), * ,sn(x) are sub-\F i in D9 then

six) =max [sι(x)9 ,sn(x)]

is sub-{ F \ in D.

THEOREM 8. If s(x) is sub-\F } in D and γ £ { γ], then

[ six) for xeD-T
six;γ)=\

[F(x s γ) for x GΓ
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is sub-\ F \ in D.

The proofs of these theorems parallel those given for continuous sub-ί F }

functions in [ 1 ] and will be omitted.

T H E O R E M 9. If six) is sub-\F] in D, then six)-M, M > 0, is sub-\F\

inD.

Proof. Since six) is upper semi continuous in D and bounded on every

closed subset of D, six)-M has the same properties. Now let %0 E D and

κ G | y | have its center at x0. Then by Theorem 4

six0) <_ F(x0; s; K) < H + F ( % 0 ; S - M; K) ,

hence,

s ix0) -M <Fixo-,s -M;κ)

and by T h e o r e m 6 s ix) — M is sub-{ F \ in D.

5. Λ Harnack theorem for the { F i-functions.

THEOREM 10. If the decreasing sequence of sub-{ F } functions \snix)\ is

uniformly bounded on each closed subset of D, then

lim snix) = s ix)

is sub-{ F ! in D.

Proof. Clearly S ( Λ ) is upper semi continuous and bounded on every closed

subset of D; hence, to show that six) is sub-ί F } in D it will be sufficient to

show that it sat is f ies the Ijittlewood criterion of Theorem 6.

Let XQ G D and let κ G | y ) have its center at x$. By Theorem 4 we have

F(x;sn+ι;κ) < Fix;sn; K) ,

and

Fix;s;κ) <^ Fix; sn; K) , in K

for each n. Since sni x) is sub-{ F \ in D for each n and the sequence \snix) \ is

decreasing, it follows that
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s \XQ ) _^ SJI^^O ' ^i * *• ̂ o5 ^π5 ^ ^

Therefore,

sixQ) < lim Fixo;sn; K) ,

and we conclude the proof by showing that

lim Fixo;sn; K) = Fixo;s; K) .

Since

lim Fixo;sn; K) >_ Fixo;s; K)

assume

l i m F i x o ; s n ; K) = F i x o ; s ; K) + δ , δ > 0 .

T h e r e e x i s t s a n o v e r - f u n c t i o n ψ i x ) w i t h r e s p e c t t o t h e b o u n d a r y f u n c t i o n s i x )

o n K s u c h t h a t

Fixo;s; K) < 0(% O ) < Fixo;s; K) + δ/2.

Since φix) is super-} F \ in K we have

FUo s Ό < F(Λ; 0; 0 ; κ ) < F(%0;5;κ) + δ/2.

An application of Postulate 2 then gives

Fiχo;s;κ) < Fixo;ιfj+ δ/4; K) < F(%0; s; K) + 3δ/4.

Since ψi%) + δ/4 is continuous on K and

s(%) < φ(χ) + δ/4

on K, it follows that for N sufficiently large we have

snix) < <A(%)+δ/4

on K for n >_ N Then for n >_ N

Fixo;sn;κ) <Fixo;ιfj + δ/4;κ) < F(Λ; 0 ;5 ;K) + 3δ/4.
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This is a contradiction, hence

lim F{xo;sn; K) = F{xo;s; K) ,

and

s (x0) <, ^ ( x o ; s ; * ) •

Consequently by Theorem 6 s (x) is sub-ί F } in D.

As an immediate consequence of Theorem 5 and Theorem 10 we have the

following Harnack type theorem for the ί F j-functions:

THEOREM 11. The limit of a uniformly bounded monotone decreasing se-

quence of { F \-functions is an { F \-function.

F u r t h e r m o r e it i s c l e a r t h a t if fix) i s b o u n d e d a n d u p p e r semi c o n t i n u o u s on

K , if Fix;f;κ) i s the { F i-function d e f i n e d in T h e o r e m 3, and if \fnix)\

(τι = l , 2, •••) i s any m o n o t o n e d e c r e a s i n g s e q u e n c e of c o n t i n u o u s f u n c t i o n s

c o n v e r g i n g to fix) on K , t h e n

l i m Fix;fn;κ)=Fix;f;κ) ΊnK.

6. Approximately sub-{ F } functions. D. II. Hyers and S. M. Ulam [ 4 ] have

i n t r o d u c e d t h e n o t i o n of a p p r o x i m a t e l y c o n v e x f u n c t i o n s . A f u n c t i o n fix) i s

s a i d t o b e a p p r o x i m a t e l y c o n v e x p r o v i d e d

for 0 < λ <_ 1 and for a fixed e > 0. For 6 = 0 the definition is that of a convex

function.

The notion of a subharmonic function may be thought of as an extension to

two dimensions of the notion of a convex function in one dimension. Using this

idea, Green [ 3 ] has defined an approximately subharmonic function as follows:

a function fix) defined in a domain D is 6-subharmonic provided ( a ) it is

upper semi continuous, and ( b ) if hix) is a harmonic function in a domain D'

interior to 0, which is continuous on the boundary of D' and dominates fix)

there on, then in D '

fix) < 6 + hix).

In an analogous way we define an approximately sub-ί F \ function as follows:
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DEFINITION 5 A function gix) is said to be e-sub-{FΪ in D provided

(a) gix) is bounded on every closed subset of D,

(b) g(x) is upper semicontinuous in D9

(c) g(x) <. F(x) on the boundary of a subdomain D ' of D implies

gix) < e + Fix)inD'.

With this definition the theorem of Green for approximately subharmonic

functions extends to approximately sub-{ F } functions.

THEOREM 12. If gix) is £-sub-{F} in D9 there exists a function uix),

sub-{ F \ in D9 such that uix) <. gix) <^ e + uix) in D.

The proof of the theorem depends on the existence of a maximal sub-{ F \

minorant for a continuous function. We shall give the proof of Theorem 12 after

we have considered this question.

7. Maximal sub-{ F } minor ants. The theorem given in this section has the

same statement as the corresponding theorem for subharmonic functions and the

proof is similar to the one given in [ 3 ] .

THEOREM 13. If f ix) is continuous in a domain R C D and has a sub-\ F \

minorant in R9 then it has a maximal sub-\ F} minorant uix). The function

uix) is continuous in R and is an { F }- function where it is less than fix).

Proof. Let S be the family of all functions sub-! F } in R and dominated by

f ix). By hypothesis S is non-null. For x E R we define

uix) = s u p s i x ) .

s£S

We w i s h to s h o w f i r s t t h a t uix) i s l o w e r s e m i c o n t i n u o u s in R. L e t XQ E R a n d

η > 0, t h e n t h e r e e x i s t s s ix) GS s u c h t h a t

u i XQ ) - η <. s ( x 0 ) <^uix0) <_fix0).

T h e n s i x o ) - η < f ix0) - η/2 a n d , by t h e c o n t i n u i t y of fix) and t h e u p p e r

s e m i c o n t i n u i t y of six), t h e r e e x i s t s a c i r c l e Kι w i t h c e n t e r a t x0 s u c h t h a t

s i x ) - η < f i x 0 ) ~ η/2 < f i x ) inK^

By Theorem 2 we may choose a circle K with center at x0, with radius less than

that of κl9 and such that
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F(x;f(xo)-η/2;κ) <f(x) inK.

Then by Theorem 4 we have also

F ( x ; s - η ; κ ) < f ( χ ) i n K.

Now define

s ( x ) — η for x in R — K

s * ( % ; κ ) = < _
F(x; s — η; K) in K.

It follows from Theorem 8 and 9 that s*{x;K) G S. Therefore,
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hence,

l i m i n f u ( x ) >_ l i m i n ί s * ( x ; K ) = F { x o ; s - η ; K ) >_ s ( x 0 ) - η ;
x-> XQ X-^XQ

lim inf u (x) >_ u(x0) - 2η.

Since η is arbitrary this implies that

lim inf u(x) >_u{x0)
X-+XQ

and u(x) i s lower semi c o n t i n u o u s in R.

Now we d e s i g n a t e by A the s e t of a l l x G ̂  such t h a t u(x) ± f (x) and l e t

B =/? n comp /ί. δ i s an open s e t and for the moment we a s s u m e that it i s not

void. L e t x G B, then s i n c e B i s open, there e x i s t s a c i r c l e K with c e n t e r a t x

such t h a t K C δ . Suppose t h a t there e x i s t s an s (x) G S such t h a t

F(x s κ) > / ( * )

at some points of X. Then by Postulate 5 and Theorem 4 there would exist an

η >^ 0 such that

Fix s ~η;κ) < f ix)

i n K w i t h t h e e q u a l i t y h o l d i n g a t s o m e p o i n t s of K. If for t h i s s(x), K, a n d η w e

a g a i n d e f i n e

s * (%; K) = <

s (% ) - 77 for x in Λ -

Fix s - η; K) in K.
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then s* ix; K) E S and s * is; K) = f (x) a t some p o i n t s of K. T h u s we would

h a v e uix) - f ix) a t some p o i n t s of K and t h i s would c o n t r a d i c t K C B. H e n c e

F(x s κ) < f ( x ) i n K

for e v e r y s i x ) £ S. H e n c e for e v e r y s i x ) G S l e t

I s U ) inR-K

__
Fix s; K) in K.

Then s ix; K) E S and S ( Λ ) <_ S (X; K) in R9 therefore,

ii (% ) = sup s (% ) = sup 5 (x; K ) .
s G S s G S

We conclude by Theorem 5 that uix) is continuous and sub-{ F \ in K and hence

in B.

Now we define

fix) f o r * e l

uix) for x G B .

Then clearly u* ix) is upper semicontinuous in R and u(rc) <̂  u* ix) <^ fix) in R.

Next we show that ιx*(%) is sub-{ F \ in R. We have already observed that

uix) is sub-{ F } in B, hence u* ix) is sub-{ F } in β. Let %0 G /4 and let K G { y i

have its center at %o a n < l K C R9 then

S ( Λ ) < F U S K) < F ( % ; M * ; K ) in Z

for every s ix) E S. For Λ; G /I n K

s u p s i x ) = f i x ) <^ F i x u*; K ) ;

sES

i t f o l l o w s b y t h e c o n t i n u i t y of f i x ) a n d Fix u*; K) i n K t h a t

B y T h e o r e m 6 , u * ( % ) i s s u b - { F \ i n /? , t h e r e f o r e u * ( % ) G S a n d I X * ( Λ ; ) < u i x ) .

T h i s t a k e n w i t h t h e p r e v i o u s i n e q u a l i t y s h o w s t h a t u* i x ) = u i x ) a n d , b e i n g

b o t h u p p e r s e m i c o n t i n u o u s a n d l o w e r s e m i c o n t i n u o u s , u i x ) i s c o n t i n u o u s i n R .
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By using Theorem 2 one can easily see that uix) is an {F J-function in B.

In Theorem 16 of [ 1 ] it is shown that, if Ω is a bounded open set contained

with its boundary ω in D and if for each x E ω there is a circle K such that

Ω.n K -x9 then Ω is a Dirichlet region for the { F i-functions. For such a region

Ω we may construct barrier sub-{ F } functions as was done in Theorem 16 of

[ 1 ] and thus obtain equality of uix) and fix) on the boundary ω of Ω. This

would imply the continuity of uix) in Ω.

8. Proof of Theorem 12. Let Ω C D be a bounded Dirichlet region for the

{ F }-functions of the type mentioned in the previous paragraph. By Definition

5 the e-sub-{F} function gix) is bounded on Ώ and hence by Postulate 4 and

Theorem 9 has a sub-* F } minorant in Ω Since gix) is upper semicontinuous

in Ω, there is a decreasing sequence of continuous functions \fn(x)\ converg-

ing to gix) in Ω. By Theorem 13 fnix) has a maximal sub-{ F \ minorant unix)

in Ω. The sequence \unix) } is uniformly bounded and decreasing in Ω and there-

fore by Theorem 10 converges to uix) which is sub-| F } in Ω. Clearly uix) i s

the maximal sub-ί F \ minorant of gix) in Ώ.

For each x G Ω, either unix) = / „ ( * ) or unix) < f ^ U M f unix) < fnix)9

let Ω' be the component containing x of the open subset of Ω in which unix) <

f iχ)m Then unix) is an { F j-function in Ω' and agrees with fnix) on the bound-

ary of Ω'. Hence gix) <unix) on the boundary of Ω ' a n d therefore gix) < £ +

unix) in Ω'. Thus we have

gix) <unix) + e

in Ω and letting n become infinite

uix) <gix) <uix) + e

in Ώ.

This proves Theorem 12 for the above class of Dirichlet domains in D. Now

consider a nested sequence of such bounded Dirichlet domains { Ωκ} exhausting

D. Let {uκix)\ be the associated sequence of maximal sub-{ F } minorants of

gix) This sequence is obviously decreasing and, since for K >_ N

gix) - 6 <UKix) <, gix)

on Ω#, is uniformly bounded on each closed subset of D. Another application

of Theorem 10 shows that the sequence \uκix)\ converges to a function which

is sub-ί F ! in D, is clearly the maximal sub-ί F ! minorant of gix) in D, and
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satisfies the inequality of Theorem 12 in D. Theorem 12 is proved.

In a subsequent publication it will be shown that the solutions of certain
elliptic partial differential equations satisfy the postulates of the { F }-functions.
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