CONSTRUCTIONS FOR POLES AND POLARS IN *n*-DIMENSIONS

A. P. DEMPSTER AND S. SCHUSTER

1. Introduction. As far back as 1847, von Staudt [2, p. 131-136] introduced the notion of handling a symmetric polarity (that is, a nonnull polarity) by means of a self-polar simplex and an additional pair of corresponding elements. In projective space of two dimensions (S_2) such a polarity is completely determined by a self-polar triangle $A_1A_2A_3$, a point P, and its polar line p. We write this polarity as $(A_1A_2A_3)(P_p)$. In S_3 , the polarity is determined by a selfpolar tetrahedron $A_1A_2A_3A_4$, a point P, and its polar plane π . We write it $(A_1A_2A_3A_4)(P\pi)$. In general, we have a polarity in S_n determined by the selfpolar simplex $A_1A_2\cdots A_{n+1}$, a point P, and its corresponding polar prime or hyperplane π . We write it $(A_1A_2\cdots A_{n+1})(P\pi)$.

Left unanswered by von Staudt and his followers is the following question: Given an arbitrary point X, how can we construct the polar prime χ of X? And, conversely, given the prime χ , how do we actually find its pole, the point X?

2. Construction. The construction of the polar line x of an arbitrary point X for the polarity $(A_1A_2A_3)(P_p)$ in S_2 was given by Coxeter [1, 64]. We give a direct generalization of this to n dimensions: to find the polar prime χ of an arbitrary point X relative to $(A_1A_2 \cdots A_{n+1})(P_n)$.

Consider first the point X not in any face of $A_1A_2 \cdots A_{n+1}$. Let α_i denote face $A_1A_2 \cdots A_{i-1}A_{i+1} \cdots A_{n+1}$, and let

$$A_i = PX \cdot \alpha_i, P_i = XA_i \cdot \pi, \text{ and } X^i = PA_i \cdot P_iA_i'.$$

In the plane PXA_i we have pairs P, P_i and A_i , A_i conjugate under the induced plane polarity. By Hesse's theorem in the plane [1, pp. 60-61], X and X^i are conjugate for the induced polarity, and hence for the given polarity. In this manner we determine n + 1 points X^1, X^2, \dots, X^{n+1} lying in χ . The points X^1, X^2, \dots, X^n determine χ since otherwise they must lie in an (n-2)-flat which implies that the flat determined by P, X^1, \dots, X^n is of at most (n-1)dimensions, which is impossible since the space contains P, A_1, A_2, \dots, A_n . It

Received August 1, 1953.

Pacific J. Math., 5 (1955), 197-199

follows that χ is determined by any (n-1) of the points X^i . This completes the construction in S_n for general X. This is illustrated for n = 3, and is easily seen to yield Coxeter's construction for n = 2.

A second approach is to reduce the question of finding χ in S_n to two analogous constructions in (n-1) dimensions, namely in any two faces α_i . Under the polarity induced in α_i the point $X_i = XA_i \cdot \alpha_i$ maps into an (n-2)-flat x_i consisting of points conjugate to X. For the general X considered, no two x_i coincide; hence, any two of them determine an (n-1)-flat of points conjugate to X. This can only be χ . Using this idea we can reduce the construction in S_n to 2^r analogous constructions in n-r dimensions, and at any stage of this induction on r, we may use the first method to solve the question completely.

In particular, if n = 2 we can construct directly by the first method or use the construction for corresponding points in two involutions on the sides of $A_1A_2A_3$. If n = 3 we can use the first method, or carry out constructions in two faces of $A_1A_2A_3A_4$, or carry out constructions in four edges of $A_1A_2A_3A_4$.

Going back to *n* dimensions, suppose X is not of general position; that is, X lies in a face α_i . If X lies in *r* such faces we may name these $\alpha_1, \dots, \alpha_r$. Then χ contains A_1, \dots, A_r . Considering the (n-r)-flat determined by simplex $A_{r+1} \cdots A_{n+1}$, we see that the polarity induced in this space has $A_{r+1} \cdots A_{n+1}$ as a self-polar simplex and X belongs to the space but is not on a face of $A_{r+1} \cdots A_{n+1}$. Thus, we can use the first method to determine the polar prime χ' of X in this space. Then A_1, \dots, A_r , and χ' generate an (n-1)-flat of points conjugate to X. This (n-1)-flat is χ .

The problem of finding X when given χ is solved by dualizing the foregoing procedures.

References

1. H.S.M. Coxeter, The real projective plane, New York, 1949.

2. C.G.C. von Staudt, Geometrie der Lage, Nuremberg, 1847.

UNIVERSITY OF TORONTO POLYTECHNIC INSTITUTE OF BROOKLYN