THE NUMBER OF SOLUTIONS OF CERTAIN TYPES OF EQUATIONS IN A FINITE FIELD

L. Carlitz

1. Using a very simple principle, Morgan Ward [3] indicated how one can obtain all solutions of the equation

$$
\begin{equation*}
y^{m}=f\left(x_{1}, \cdots, x_{r}\right) \quad\left(y, x_{i} \in F\right) \tag{1}
\end{equation*}
$$

where F is an arbitrary field, $f\left(x_{1}, \cdots, x_{r}\right)$ is a homogeneous polynomial of degree n with coefficients in F, and $(m, n)=1$. The same principle had been applied earlier to a special equation by Hua and Vandiver [2]. If this principle is applied in the case of a finite field F we readily obtain the total number of solutions of equations of the type (1). Somewhat more generally, let

$$
f_{i}\left(x_{i}\right)=f_{i}\left(x_{i 1}, \cdots, x_{i s_{i}}\right) \quad(i=1, \cdots, r)
$$

denote r polynomials with coefficients in $G F(q)$, and assume

$$
\begin{equation*}
f_{i}\left(\lambda x_{1}, \cdots, \lambda x_{s_{i}}\right)=\lambda^{m_{i}} f_{i}\left(x_{1}, \cdots, x_{s_{i}}\right) \quad(\lambda \in G F(q)) ; \tag{2}
\end{equation*}
$$

assume also

$$
\begin{equation*}
\left(m, m_{i}, q-1\right)=1 \quad(i=1, \cdots, r) \tag{3}
\end{equation*}
$$

We consider the equation

$$
\begin{equation*}
y^{m}=f_{1}\left(x_{11}, \cdots, x_{1 s_{1}}\right)+\cdots+f_{r}\left(x_{r 1}, \cdots, x_{r s_{r}}\right) \tag{4}
\end{equation*}
$$

in $s_{1}+\cdots+s_{r}+1$ unknowns.
Suppose first we have a solution of (4) with $y \neq 0$. Select integers h, k, l such that

$$
h m+k m_{1} m_{2} \cdots m_{r}+l(q-1)=1, \quad(h, q-1)=1 ;
$$

this can be done in view of (3). Next put

$$
\begin{equation*}
y=\lambda^{h}, x_{i j}=\lambda^{k M / m_{i}} z_{i j} \quad\left(M=m_{1} m_{2} \cdots m_{r}\right) \tag{6}
\end{equation*}
$$

Substituting in (4) and using (2), we get

$$
\lambda^{h m}=\lambda^{k M}\left\{f_{1}\left(z_{1}\right)+\cdots+f_{r}\left(z_{r}\right)\right\}
$$

Since $\lambda^{q-1}=1$, it is clear from (5) that

$$
\begin{equation*}
\lambda=f_{1}\left(z_{1}\right)+\cdots+f_{r}\left(z_{r}\right) . \tag{7}
\end{equation*}
$$

Thus any solution $\left(y, x_{i j}\right)$ of (4) with $y \neq 0$ can be obtained from (6) and (7) by assigning arbitrary values to $z_{i j}$ such that the right member of (7) does not vanish. Let N denote the total number of solutions of (4) and let N_{0} denote the number of solutions with $y=0$. Thus there are $N-N_{0}$ sets $z_{i j}$ for which $\lambda \neq 0$. Since in all there are $q^{s_{1}+\cdots+s_{r}}$ sets $z_{i j}$ it follows that

$$
\begin{equation*}
N=q^{s_{1}+\cdots+s_{r}} . \tag{8}
\end{equation*}
$$

This proves:
Theorem. Let the polynomials f_{i} satisfy (2) and (3). Then the total number of solutions of (4) is furnished by (8).
2. In Theorem II of [2] Hua and Vandiver proved that the number of solutions of

$$
\begin{equation*}
c_{1} x_{1}^{a_{1}}+c_{2} x_{2}^{a_{2}}+\cdots+c_{s} x_{s}^{a_{s}}=0 \tag{9}
\end{equation*}
$$

subject to the conditions

$$
c_{1} c_{2} \cdots c_{s} x_{1} x_{2} \cdots x_{s} \neq 0, \quad\left(a_{i}, q-1\right)=k_{i}, \quad\left(k_{i}, k_{j}\right)=1 \text { for } i \neq j
$$

is equal to

$$
\frac{q-1}{q}\left\{(q-1)^{s-1}+(-1)^{s}\right\} .
$$

It is easy to show that (10) implies that the total number of solutions of (9) is equal to q^{s-1}, which agrees with (8). Conversely if N_{s} denotes the number of nonzero solutions of (9), and we assume that

$$
\begin{equation*}
\left(k_{i}, k_{j}\right)=1 \quad(i, j=1, \cdots, s ; i \neq j), \tag{11}
\end{equation*}
$$

then using (8) we get

$$
q^{s-1}=N_{s}+\binom{s}{1} N_{s-1}+\binom{s}{2} N_{s-2}+\cdots+\binom{s}{s-1} N_{1}+1
$$

Hence (if we take $N_{0}=1$)

$$
\begin{aligned}
(q-1)^{s} & =\sum_{r=1}^{s}(-1)^{s-r}\binom{s}{r} q \sum_{t=0}^{r}\binom{r}{t} N_{t}+(-1)^{s} \\
& =q \sum_{r=0}^{s}(-1)^{s-r}\binom{s}{r} \sum_{t=0}^{r}\binom{r}{t} N_{t}-(-1)^{s}(q-1) \\
& =q \sum_{t=0}^{s}\binom{s}{t} N_{t} \sum_{r=t}^{s}(-1)^{s-r}\binom{s-t}{s-r}-(-1)^{s}(q-1) \\
& =q N_{s}-(-1)^{s}(q-1),
\end{aligned}
$$

and (10) follows at once. Thus if we assume (11) then (8) and (10) are equivalent.

If in place of (11) we assume only that

$$
\begin{equation*}
\left(k_{1}, k_{2} k_{3} \cdots k_{s}\right)=1, \tag{12}
\end{equation*}
$$

the situation is somewhat different. As above let N_{s} denote the number of nonzero solutions of (9), and let M_{s-1} denote the total number of solutions x_{2}, \cdots, x_{s} of

$$
\begin{equation*}
c_{2} x_{2}^{a_{2}}+c_{3} x_{3}^{a_{3}}+\cdots+c_{s} x_{s}^{a_{s}}=0 \tag{13}
\end{equation*}
$$

Using (8) we now get

$$
\begin{equation*}
q^{s-1}=M_{s-1}+N_{s}+\binom{s-1}{1} N_{s-1}+\cdots+\binom{s-1}{s-1} N_{1} \tag{14}
\end{equation*}
$$

which implies (with $M_{0}=1$)

$$
\begin{equation*}
(q-1)^{s-1}=\sum_{r=0}^{s-1}(-1)^{s-1-r}\binom{s-1}{r} M_{r}+N_{s} \tag{15}
\end{equation*}
$$

Thus making only the assumption (12) we see how the number of solutions of (13) can be expressed in terms of N_{s} and vice versa.
3. Returning to equation (4), we see that a similar result can be obtained if we allow f_{i} to contain additional unknowns:

$$
f_{i}\left(x_{i} ; u_{i}\right)=f_{i}\left(x_{i 1}, \cdots, x_{i s_{i}} ; u_{i 1}, \cdots, u_{i t_{i}}\right)
$$

and assume that (2) holds only for the x 's. Then the number of solutions $(y$, $x_{i j}, u_{h k}$) of (4) becomes

$$
q^{s_{1}+\cdots+s_{r}+t_{1}+\cdots+t_{r}} .
$$

Similarly we may replace the left member of (4) by

$$
y_{1}^{a_{1}} y_{2}^{a_{2}} \cdots y_{s}^{a_{s}} \quad\left(a_{1}, a_{2}, \cdots, a_{s}\right)=m
$$

Then assuming (3) we again find that the number of solutions of the modified equation is equal to

$$
q^{s_{1}+\cdots+s_{r}+s-1}
$$

This kind of generalization lends itself well to equation (9). For example it is easy to show (see [1, Theorem 10]) that the total number of solutions of the equation

$$
\sum_{i=1}^{t} c_{i} \prod_{j=1}^{k_{i}} x_{i j}^{a_{i j}}=0
$$

subject to $\left(a_{i 1}, \cdots, a_{i k_{i}}, q-1\right)=d_{i},\left(d_{i}, d_{j}\right)=1$ for $i \neq j$, is equal to

$$
q^{k_{1}+\cdots+k_{t^{-1}}}
$$

Reference

1. L. Carlitz, The number of solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 515-519.
2. L. K. Hua and H.S. Vandiver, On the nature of the solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 481-487.
3. Morgan Ward, A class of soluble diophantine equations, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 113-114.

DUKE UNIVERSITY

