NOTE ON THE MULTIPLICATION FORMULAS FOR THE JACOBI ELLIPTIC FUNCTIONS

L. Carlitz

1. Introduction. For t an odd integer it is well known [4, vol. 2, p. 197] that

$$
\begin{equation*}
\text { sn } t x=\frac{s n x \cdot G_{1}^{(t)}(z)}{G_{0}^{(t)}(z)} \quad\left(z=s n^{2} x\right) \tag{1.1}
\end{equation*}
$$

where

$$
G_{0}^{(t)}=1+a_{01} z+a_{02} z^{2}+\cdots+a_{0 t^{\prime}} z^{t^{\prime}}
$$

$$
\begin{equation*}
G_{1}^{(t)}=t+a_{11} z+a_{12} z^{2}+\cdots+a_{1 t^{\prime}} z^{t^{\prime}} \quad\left(t^{\prime}=\left(t^{2}-1\right) / 2\right) \tag{1.2}
\end{equation*}
$$

and the $a_{i j}$ are polynomials in $u=k^{2}$ with rational integral coefficients. If we define

$$
\beta_{m}(t)=\beta_{m}(t, u)
$$

by means of

$$
\begin{equation*}
\frac{s n t x}{t \operatorname{sn} x}=\sum_{m=0}^{\infty} \beta_{2 m}(t) \frac{x^{2 m}}{(2 m)!} \quad\left(\beta_{2 m+1}(t)=0\right), \tag{1.3}
\end{equation*}
$$

it follows from (1.1) and (1.2) that $t \beta_{2 m}(t)$ is a polynomial in u with integral coefficients for all m and all odd t. We shall show that

$$
\begin{equation*}
\beta_{2 m}(t)=H_{m}(t)-\sum_{\substack{p-1|2 m \\ p| t}} \frac{1}{p} A_{p}^{2 m /(p-1)}(u), \tag{1.4}
\end{equation*}
$$

where $H_{m}(t)=H_{m}(t, u)$ denotes a polynomial in u with integral coefficients,
Received August 8, 1953.
Pacific J. Math. 5 (1955), 169-176
the summation in the right member is over all (odd) primes p such that $(p-1) \mid 2 m$ and $p \mid t$; finally $A_{p}(u)$ is defined [4, vol. 1, p. 399] by means of

$$
\begin{equation*}
s n x=s n(x, u)=\sum_{m=0}^{\infty} A_{2 m+1}(u) \frac{x^{2 m+1}}{(2 m+1)!} \tag{1.5}
\end{equation*}
$$

so that $A_{2 m+1}(u)$ is a polynomial in u with integral coefficients. We show also that

$$
\begin{equation*}
t \sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} \beta_{m+s(p-1)}(t) A_{p}^{r-s}(u) \equiv 0\left(\bmod \left(p^{m}, p^{r}\right)\right) \tag{1.6}
\end{equation*}
$$

where p is an arbitrary odd prime and $r \geq 1$; by (1.6) we understand that the left member is a polynomial in u every coefficient of which is divisible by the indicated power of p.

The proof of these formulas depends upon the results of [2]; for a theorem analogous to (1.4), see [1].
2. Proof of (1.4). Put

$$
\begin{equation*}
\frac{x}{s n x}=\sum_{m=0}^{\infty} \beta_{2 m} \frac{x^{2 m}}{(2 m)!} \tag{2.1}
\end{equation*}
$$

Then $\beta_{2 m}$ is a polynomial in u with rational coefficients; indeed [2, Theorem 2],

$$
p \beta_{2 m} \equiv\left\{\begin{array}{ccc}
-A_{p}^{2 m /(p-1)}(u) & ((p-1) \mid 2 m) \tag{2.2}\\
0 & (\bmod p) & ((p-1) \nmid 2 m)
\end{array}\right.
$$

In the next place, if we write

$$
\frac{s n t x}{t \operatorname{sn} x}=\frac{s n t x}{t x} \frac{x}{\operatorname{sn} x}
$$

and make use of (1.3), (1.5), and (2.1), it follows that

$$
\begin{equation*}
\beta_{2 m}(t)=\sum_{s=0}^{m}\binom{2 m}{2 s} \beta_{2 m-2 s} A_{2 s+1}(u) \frac{t^{2 s}}{2 s+1} \tag{2.3}
\end{equation*}
$$

As already observed, $t \beta_{2 m}(t)$ has integral coefficients; thus the denominator of $\beta_{2 m}(t)$ is a divisor of t. Now let p denote a prime divisor of t, and assume $p^{e} \mid(2 s+1), e \geq 1$. Then

$$
2 s+1 \geq p^{e} \geq 3^{e} \geq e+2, \quad 2 s \geq e+1
$$

Thus not only is $t^{2 s} /(2 s+1)$ integral $(\bmod p)$ but it is divisible by p. Since by (2.2) the denominator of $\beta_{2 m}$ contains p to at most the first power it therefore follows that the product

$$
\begin{equation*}
\beta_{2 m-2 s} t^{2 s} /(2 s+1) \tag{2.4}
\end{equation*}
$$

is integral $(\bmod p)$ when $p \mid(2 s+1)$.
Suppose next that $p \nmid(2 s+1)$, where $s \geq 1$. It is again clear that (2.4) is integral $(\bmod p)$ since p occurs in the denominator of $\beta_{2 m-2 s}$ at most once while it occurs in $t^{2 s}$ at least twice. Thus as a matter of fact (2.4) is divisible by p in this case.

It remains to consider the term $s=0$ in (2.3). Clearly we have proved that

$$
\begin{equation*}
p \beta_{2 m}(t) \equiv p \beta_{2 m} \quad(\bmod p) \tag{2.5}
\end{equation*}
$$

Comparing (2.5) with (2.2) we may state:
Theorem l. If t is an arbitrary odd integer then (1.4) holds.
We remark that the residue of $A_{p}(u)$ is determined $[2, \S 6]$ by

$$
\begin{equation*}
A_{p}(u) \equiv(-1)^{1 / 2(p-1)} F\left(\frac{1}{2}, \frac{1}{2} ; 1 ; u\right) \tag{2.6}
\end{equation*}
$$

$$
\equiv(-1)^{1 / 2(p-1)} \sum_{j=0}^{1 / 2(p-1)}\binom{1 / 2(p-1)}{j}^{2} u^{j} \quad(\bmod p)
$$

Here F denotes the hypergeometric function.
3. Some corollaries. By means of Theorem 1 a number of further results are readily obtained. By $H_{2 m}$ will be understood an unspecified polynomial in u with integral coefficients.

Since $\beta_{2 m}$, as defined by (2.1), is integral ($\left.\bmod 2\right)$ we have first:

The orem 2. If t is divisible by the denominator of $\beta_{2 m}$, then

$$
\begin{equation*}
\beta_{2 m}(t)=H_{2 m}+\beta_{2 m} \tag{3.1}
\end{equation*}
$$

If t is prime to the denominator of $\beta_{2 m}$, then $\beta_{2 m}(t)$ has integral coefficients.
Theorem 3. If t_{1}, t_{2} are relatively prime and odd, then

$$
\begin{equation*}
\beta_{2 m}\left(t_{1} t_{2}\right)=H_{2 m}+\beta_{2 m}\left(t_{1}\right)+\beta_{2 m}\left(t_{2}\right) . \tag{3.2}
\end{equation*}
$$

If t is a power of a prime we get:
Theorem 4. If p is an odd prime and $r \geq 1$ we have

$$
\begin{equation*}
\beta_{2 m}\left(p^{r}\right)=H_{2 m}+\beta_{2 m}(p) \tag{3.3}
\end{equation*}
$$

Using (3.2) and (3.3) we get also:
Theorem 5. The following identity holds:

$$
\begin{equation*}
\beta_{2 m}(t)=H_{2 m}+\sum_{p \mid t} \beta_{2 m}(p), \tag{3.4}
\end{equation*}
$$

where the summation is over all prime divisors of t.
We have also:
Theorem 6. If a is an arbitrary integer, then the product

$$
\begin{equation*}
a\left(a^{m}-1\right) \beta_{2 m}(t) \tag{3.5}
\end{equation*}
$$

has integral coefficients.
4. A related result. It follows from (1.1) and (1.2) that, for t odd,

$$
\begin{equation*}
s n t x=\sum_{r=0}^{\infty} C_{2 r+1} s n^{2 r+1} x \tag{4.1}
\end{equation*}
$$

where the $C_{2 r+1}$ are polynomials in u with integral coefficients. Clearly we have

$$
\begin{equation*}
\beta_{2 m}(t)=\frac{1}{t} \sum_{r=0}^{m} A_{2 m}^{(2 r)} C_{2 r+1} \tag{4.2}
\end{equation*}
$$

where the $A_{2 m}^{(2 r)}$ are defined by

$$
\begin{equation*}
s n^{2 r} x=\sum_{m=0}^{\infty} A_{2 m}^{(2 r)} \frac{x^{2 m}}{(2 m)!} \tag{4.3}
\end{equation*}
$$

and like the C 's are polynomials with integral coefficients.
We shall now prove the following property of the C 's.
Theorem 7. For t odd we have

$$
\begin{equation*}
(2 m+1) C_{2 m+1}=0(\bmod t) \quad(m=0,1,2, \ldots) \tag{4.4}
\end{equation*}
$$

where (4.4) indicates that every coefficient in $(2 m+1) C_{2 m+1}$ is divisible by t.

Proof. Differentiating (4.1) with respect to x, we get

$$
\begin{equation*}
t \frac{c n t x d n t x}{c n x d n x}=\sum_{m=0}^{\infty}(2 m+1) C_{2 m+1} \operatorname{sn}^{2 m} x \tag{4.5}
\end{equation*}
$$

Now we have, in addition to (1.1),

$$
\begin{equation*}
\frac{c n t x}{c n t}=\frac{G_{2}^{(t)}(z)}{G_{0}^{(t)}(z)}, \frac{d n t x}{d n x}=\frac{G_{3}^{(t)}(z)}{G_{0}^{(t)}(z)} \quad\left(z=s n^{2} x\right) \tag{4.6}
\end{equation*}
$$

where G_{2} and G_{3} are polynomials in z of the same form as G_{0}. By means of (1.1) and (4.6) it is evident that (4.5) implies

$$
\begin{equation*}
t \sum_{m=0}^{\infty} H_{m}^{(t)} z^{m}=\sum_{m=0}^{\infty}(2 m+1) C_{2 m+1} z^{m} \tag{4.7}
\end{equation*}
$$

where the H_{m} are polynomials in u with integral coefficients. Clearly (4.4) is an immediate consequence of (4.7).

Kronecker [5, p. 439] has proved a similar result in connection with the transformation of prime order of sn x. For a result like Theorem 7 for the Weierstrass \wp-function, see [3].

Returning to (4.2) we recall [2, §2] that

$$
\begin{equation*}
A_{2 m}^{(2 r)} \equiv 0 \quad(\bmod (2 r)!) \quad(m=0,1,2, \ldots) \tag{4.8}
\end{equation*}
$$

We rewrite (4.2) in the form

$$
\begin{equation*}
\beta_{2 m}(t)=\sum_{r=0}^{m} \frac{(2 r)!}{2 r+1} \frac{A_{2 m}^{(2 r)}}{(2 r)!} \frac{(2 r+1) C_{2 r+1}}{t} \tag{4.9}
\end{equation*}
$$

By (4.4) and (4.8) the last two fractions in the right member of (4.9) have integral coefficients; also $(2 r)!/(2 r+1)$ is integral unless $2 r+1$ is prime. Consequently (4.9) becomes

$$
\begin{equation*}
\beta_{2 m}(t)=H_{2 m}-\sum_{\substack{p-1|2 m \\ p| t}} \frac{1}{p} A_{2 m}^{(p-1)} \frac{p C_{p}}{t} . \tag{4.10}
\end{equation*}
$$

Comparing (4.10) with (1.4) we get:
Theorem 8. If the prime p divides t, then

$$
\begin{equation*}
\frac{p C_{p}}{t} \equiv 1 \quad(\bmod p) \tag{4.11}
\end{equation*}
$$

Hence if $p^{e} \mid t, p^{e+1} \nmid t$ it follows that

$$
\begin{equation*}
C_{p} \equiv \frac{t}{p} \quad\left(\bmod p^{e}\right) \tag{4.12}
\end{equation*}
$$

5. Proof of (1.6). Again using (5.1) we have

$$
\begin{equation*}
\frac{s n t x}{s n x}=\sum_{i=0}^{\infty} C_{2 i+1} s n^{2 i} x \tag{5.1}
\end{equation*}
$$

Now it is proved in [2, Theorem 4] that the coefficients $A_{2 m}^{(2 i)}$ defined by (4.3) satisfy

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} A_{p}^{(r-s) b /(p-1)} A_{2 m+s b}^{(2 i)} \equiv 0 \quad\left(\bmod \left(p^{2 m}, p^{e r}\right)\right) \tag{5.2}
\end{equation*}
$$

where $p^{e-1}(p-1) \mid b$. Hence using (1.3) and (5.1) we get:

The orem 9. If $p^{e-1}(p-1) \mid b$, then

$$
\begin{equation*}
t \sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} A_{p}^{(r-s) b /(p-1)} \beta_{2 m+s b}(t) \equiv 0\left(\bmod \left(p^{2 m}, p^{e r}\right)\right) \tag{5.3}
\end{equation*}
$$

For $b=p-1,(5.3)$ evidently reduces to (1.6).
It is of some interest to compare Theorem 9 with the results of $[2, \S 7]$.
If we take $r=1$, (5.3) becomes

$$
t\left\{\beta_{2 m+b}(t)-A_{p}^{b /(p-1)} \beta_{2 m}(t)\right\} \equiv 0 \quad\left(\bmod \left(p^{2 m}, p^{e}\right)\right)
$$

If we put

$$
\beta_{2 m}(t)=\sum_{i} \beta_{2 m, i} u^{i}
$$

and recall that, by (2.6),

$$
A_{p}(0) \equiv(-1)^{1 / 2(p-1)}(\bmod p)
$$

we get exactly as in the proof of [2, Theorem 6].
Theorem 10. Let $p^{e-1}(p-1) \mid b$ and $p^{j-1} \leq i<p^{j}$. Then

$$
\begin{equation*}
\beta_{2 m+b, i} \equiv(-1)^{1 / 2 b} \beta_{2 m, i} \quad\left(\bmod \left(p^{2 m}, p^{e-j}\right)\right) \tag{5.4}
\end{equation*}
$$

6. An elementary analogue of $\beta_{2 m}(t)$. It may be of interest to say a word about the numbers $\phi_{m}(t)$ defined by

$$
\begin{equation*}
\frac{e^{t x}-1}{t\left(e^{x}-1\right)}=\sum_{m=0}^{\infty} \phi_{m}(t) \frac{x^{m}}{m!}, \tag{6.1}
\end{equation*}
$$

where t is now an arbitrary integer. Clearly (6.1) implies that

$$
t \phi_{m}(t)=S_{m}(t)=\sum_{s=0}^{t-1} s^{m}
$$

By a theorem of Staudt (see for example [6, p. 143]),

$$
\begin{equation*}
\phi_{m}(t)=G+\sum_{p \mid t} \phi_{m}(p) \tag{6.2}
\end{equation*}
$$

where G is an integer. Moreover,

$$
p \phi_{m}(p)=\left\{\begin{array}{rll}
-1 & (p-1 \mid m) \tag{6.3}\\
0 & (\bmod p) & (p-1 \nmid m)
\end{array}\right.
$$

It follows [6, p. 153] that

$$
\begin{equation*}
\phi_{2 m}(t)=G-\sum_{\substack{p-1|2 m \\ p| t}} \frac{1}{p} . \tag{6.4}
\end{equation*}
$$

Thus Staudt's theorems (6.2) and (6.4) may be viewed as elementary analogues of (3.4) and (1.4).

Formulas like (6.2) and (6.4) hold also for the numbers $\psi_{2 m}(t)$ occurring in

$$
\frac{\sin t x}{t \sin x}=\sum_{m=0}^{\infty} \psi_{2 m}(t) \frac{x^{2 m}}{(2 m)!}
$$

References

1. L. Carlitz, An analogue of the Bernoulli polynomials, Duke Math. J. 8 (1941), 405-412.
2. \qquad , Congruences connected with the power series expansions of the Jacobi elliptic functions, Duke Math. J. 20 (1953), 1-12.
3. J.W.S. Cassels, A note on the division values of $\wp(u)$, Proc. Cambridge Philos. Soc. 45 (1949), 167-172.
4. R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Leipzig and Berlin, vol. 1, 1916, and vol. 2, 1922.
5. L. Kronecker, Zur Theorie der elliptischen Funktionen, Werke, 4 (1929), 345-495.
6. J.V. Uspensky and M. A. Heaslet, Elementary number the ory, New York, 1939.

Duke University

