
GENERALIZED WALSH TRANSFORM

R. G SELFRIDGE

Introduction. The Walsh functions were first defined by Walsh [6] as a

completion of the Rademacher functions in the interval (0,1) . As originally

defined φn(x) took on the values ±1. The generalization of Chrestenson [ l ]

permits φR(x) to have the values e

27Tnι'a fOΓ some integer α, and also leads

to a complete orthonormal system over [0,1], Fine [ 2 ] considers the original

Walsh function, but with arbitrary subscript, attained by consideration of certain

dyadic groups. This paper combines these two generalizations by starting with

the Walsh functions as defined by Chrestenson and then using a subsidiary

result of Fine to define a Walsh function φ (x) for arbitrary subscript.

With φ (x) one can define a Walsh-Fourier transform for functions in Lp(0,
0 0 \ 1 < P < 2. Many of the ordinary Fourier transform theorems carry over,

with certain modifications. For 1 < p < 2 the transform is defined as a limit

in the appropriate mean, with a Plancherel theorem holding for p = 2. Since the

proofs carry over from ordinary transforms, or from the L\ theory only a few

theorems are stated for these cases with only brief proofs. The case of L ι re-

quires considerably more preparation.

Section one is devoted to definitions and obtaining certain varied but very

necessary results, such as the evaluation of definite integrals of φ (x) over

specified intervals, which are used constantly throughout the paper. Walshτ

Fourier series are introduced, and some of the sufficient conditions for con-

vergence of such a series to the generating function are listed but not proved,

since the proofs are available in Chrestenson's paper [ l ] .

Section two covers certain basic results for Lγ transforms and associated

kernals. A Riemann-Lebesgue theorem follows simply from results of section

one, as do sufficient conditions for the convergence to fix) of the inverse

transform of the transform of / ix). The function Pβ(xQγ) is defined as
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Γ φTΓ)ψxit)dtf

Jo y x

and is considered in some detail. With this function it is possible to show that

lim I PβixQy)f ix)dx$

under fairly general conditions.

Section three is devoted almost entirely to C, 1 summability of transforms. If

f{x)£zLι and has a transform F (y) then one has

/(%)= lim fβ (l-[y]/β)F(y)ψT/)dγ

provided / (y) is locally essentially bounded at x and

fh \f{χ+t)-f(x)\dt = o ( h ) .
Jo

It is not possible to remove completely the requirement of local essential

boundedness, so that it cannot be said that the inverse transform is C, 1 sum-

mable almost everywhere to fix). Again one has that if x has a finite expansion

in powers of CC then the conditions need only be right-hand conditions.

Finally section four considers transforms of functions in Lp, 1 < p < 2.

For p = 2 one has a Plancherel theorem, and for all p, 1 < p < 2 one has, if

fix) € Lp, then the transform F ( y ) G Lp/pmι and

Fix) = - ί [°° fiγ)Pxiγ)dy, f ix) = ̂ - f°° F i γ )PX (y )dγ.
dx Jo dx Jo

One also has C$ 1 summability of the inverse transform yielding fix) for almost

every x at which f iγ) is locally essentially bounded.

1. Definitions and lemmas. Throughout this paper α is taken to be a fixed,

but arbitrary integer greater than one. For such an (X each x >^ 0 has an ex-

pansion x = Σ°lyy Λ^Ol"1, 0 < xι < α, that is unique if x^ j4 0 and, in case of

choice, a finite expansion. Under these conditions one has:

D E F I N I T I O N 1. Degree oί x =D(x) =-N$ where ^ = 2 ° ! ^ χi&ml

9 %N ̂ 0 .
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For convenience in what follows it will be supposed that, by addition of

dummy coefficients if necessary, x = Σ ° l ^ Xi&~K M < 0, so that D(x) is not

necessarily — M.

In all that follows the use of a subscript on a variable will mean the cor-

responding coefficient of the CC-expansion. All intervals will be closed on the

left and open on the right unless otherwise stated, and any number that has a

finite CX-expansion will be called an Cί-adic rational.

Now if Cύ = e πι/a one defines in sucession:

D E F I N I T I O N 2. (a) φo(χ) = ω*1

(b) Φn(x) = φo(dnx) n >_0

(c) IfB=Σ?- J vn<α- ί, ώ U) = Π?-0U.(*))""*
it ii it i υ i

( d ) φ (x) - φv i(x) ΦΓ i(y)t [x] = g r e a t e s t i n t e g e r in x .

Since the addition of an integer will not change Xι it is easy to see that

φQ(x) has period one, and hence φn(x) has period 0L~n. Further one has that

φ \x) — CU and ψ \x) = ω § z = >. ._Λ n .%.. ,, so that ψ \x) is ot period

one.

φQ(x) compares with the original Rademacher function, and for the case

(X = 2 the φ ix) reduce to the ordinary Walsh functions. For 0C >_ 2 the com-

pleteness and orthonormality of φn(x) over [0, l ] have been shown by Chresten-

son [ l ] .

Since k{ = 0, i > 0, if k is an integer, it is clear that Φn(k) = 1. Thus Defi-

nition 2d) extending the Φn(x) to arbitrary subscript is consistent with Defi-

nition 2c). Further, by symmetry, one has φ (x) = φχ(γ).

Before defining transforms for functions there are a number of preliminary

steps and additional terminology that can be used to advantage.

LEMMA 1. //

i*-N i=~M

then
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Proof. From Definitions (2a, b, c ) it is easy to see that φr Ά(X) = ωμ where

μ=*Σ,i=Q ymixi + i* a n d similarly for 0 r j ( y ) . Combining the two yields the

result .

D E F I N I T I O N 3. / /

ι=-iV ι=~M

then z -x@y is defined as

oo

z— ^"^ Zj Cί"1, where zι = x± + y. (mod Cί),
i=-Γ

provided that z t ^ (X — 1 for i >_ K9 and Γ = max (M, N).

Similarly z = xQ γ is defined as

z - Σ zi&"1 where Zj = xι - y . (mod α ) .

Clearly for each x9 z = x@y or z - x Qy is defined for almost every y.

The following lemmas then follow quite simply from Lemma 1 and Definition 3.

LEMMA 2. (a) φA(λnx) = φ(any) - o o < r c < o o
y x

(b) φAx) φAz) = φAx © z ) each %, a.e.z.
7 7 7

(c) ψ^ix) ψAz) = ώ (Λ; Q Z) = ̂ v (z Q %), each %, a.e. z.
7 7 7 7

The last identity of Lemma 2 can be written in a slightly different form,

which is useful in case of integration with respect to y.

L E M M A 3 . // 0 < y < β t h e n t h e r e i s a q s u c h t h a t ψ ( x ) φ ( z ) = φ A q ) .

Proof. It is only necessary to define q in case x Q z is undefined. Take

n such that β < 0Ln, and define q.^x.-z. (mod α) for i < n$ and then set

q ± Σ "s-^ q CC\ Clearly this definition will suffice.

D E F I N I T I O N 4. ( a ) D n ( ί ) = Σ ? : J φXt)

(b) Cb(t) = 1, 0 < t < 6, = 0 b < t.
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LEMMA 4. (a) D^it) = OLNCamN(it!), where it ! = t - [ ί ] ; D n ( ί ) = D n ( { ί 1)

(b) Dn(t)=Dp(aNt)DaN(t) + 0 aN(t)Dq(t)

where rc = pCί^ + 7, 0 < 9 < otN.

( c ) | D π ( ί ) | < α / 2 { ί } .

Proof, ( a ) Let ίn be the first non-zero coefficient in the expansion of ί.

If n ^ N then by Lemma 1 φk(t) = 1 and D N(t) = α ^ . If w < /V, consider the

range p α n </c < (p + 1) CCn. In this range one has

N

ψk(t) = ωz, z= Σ k-ih + i 0 Γ Ψk(*) = Aωimntn

9 w i t h ί n ^ 0 .

Thus one has

(p+l)α"-l cu 1
k t t k

Now summing on p yields the desired result. The second part is immediate

since Ψk(t) = ψk({t\).

(b) Since q < OC one has rc = pα © 7 and

n-1 pα^-l τ ι - 1 p-l α^-l

i=0 ^ A;=0 j = 0 ^ ί=0

= Σ Φk^
t)Ό y v ( ί ) + *A α N ( ί ) ^ ( ί ) = Z ) p ( α N ί ) D α N ( ί ) + tA aNit)Dq(t).

/c=0 α pα α pα

(c) Let D({ί}) = Λ̂ . Then

n p a N ^ a N q ^ α /

Now | D ^ ( ί ) | < α^/2 < α/2{ ί | , since Dq{t) = Dq(t) - D N(t).

1.0 C O R O L L A R Y , (a) D.
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(b) £ Ψk(*)ψk(y)=O, unless [θLnχ] = [θiny]9

Sα»-1

or Σ Φk^)'^py')^^ι([anχ] Q[anγ]).

( c ) I f D ( { x \ ) = N t h e n D ( x ) = 0 for n > N.

Corresponding to Lemma 4 there are equivalent results with respect to the

integral of φ (x).

D E F I N I T I O N 5. P&U) = fo

b ψt(χ)dx.

LEMMA 5. (a) Pb(t) = anPb^n{ant)

(b) Pι(χ)=Pi([χ'\) = Ci

(c) P (x) = OLnC (x)

(d)

Proof, ( a ) This follows immediately by change of variable of integration.

(b) P i ί x J - V Ψjy)dy = fo

ι φ[χ](y) i&^UWy^CxU*]) by
orthonormality.

(c) Pjx) = α"Pι(α"*) = α' C^α' x) = unCa.n{x).

Now

6-1 /• i.x. b-1

kso

and

*^0
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2.0 COROLLARY, (a) Ps(γ) = C1(y)Ds(y\ P (y)=cc"C (y)Ds(anγ)
San a"n

(b) PS α n( y) -PRJy) = α"Cα.n(y)(Z) s(αV -DR(an

y))

Γ(R+l)an

(c) / ψ (t)ψ(t)dt = 0 unless
* Ran J

( e ) \Pb(t)\ < α/2ί, and if t > 1, \Pb(t)

1/2.

Only the last part of this corollary needs proof. Take n such that 0L"n <

t < 0 L l ~ n < 1, a n d R s o t h a t \Ra'n - b \ < an/2. T h e n P (t) = 0 a n d
i?α-ra

< α"Λ/2 < α/2ί.

LEMMA 6. IfO <a < an then

/ f(x)dx=\ f(a@x)dx= f(aQx)dx.
Jo Jo Jo

Proof. If £ is a measurable subset of the interval [0, an) set TE = ( α 0

x:x G £ ) . NOW if E is any interval kdp <^x < (A: + l ) α p , then with the exception

of a denumerable set of x$ TE is an interval [t<Xp, ( ί + l ) α p ) and T"ιE is an

interval [rCί^, (r + l)<χP). Thus μ{E) = μ{TmϊE) = μ{TE). Further, since

α < α Λ , if £ is in [0, Cί7*) so are TE and Γ * 1 ^ Now any open set may be ex-

pressed as a denumerable sum of non-overlapping such intervals, and thus by the

standard argument for any open set £ in [0, CLn)9 μ(E) = μ(TE) = μ(T~ι E).

Finally one has, with the exception of a denumerable set {x:f(a@x)<

c) = T~ι (x:f (x) < c) and the first part of the lemma is proved. Clearly the

second part follows identically.

3.0 C O R O L L A R Y
f(R

. /
'Ran

(R+l)a.n
f{χ)dx *l

JS

f\a @x)dχ, 0 < o < oJ1.

Now for any function on L (0, 1) one can develop a Walsh-Fourier series in

terms of φn(x). The properties of such expansions have been studied by Paley

[4], Walsh [6] and Fine [2] for α = 2, and by Chrestenson [1] for α > 2. One
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has then, a Walsh-Fourier series, or W.F.S. given by

oo

f ix) ~ Σf cnΨni
χ)> where cn = I fix) ψnix)dx.

71 = 0 °

In a similar fashion one has the complex conjugate W.F.S.

oo

f ix) ~ Σ cn ψnix) where cn = / f ix) ψnix)dx.
n-0 J 0

It is clear that most of the criteria that imply convergence of the W.F.S. will

imply convergence of the complex conjugate W.F.S. In particular one has the

following, taken from (1) and (2) .

4.0. The W.F.S. for f (y) converges to f ix) if

(1) f iγ) is B.V. in a neighbourhood of x and x is a point of continuity,

(2) if ix) ~ f iγ))/ix~y) is integrable over an interval including x.

Note also, that if x is an α-adic rational then these conditions need only be

right-hand conditions. One extra result is

(3) The απth partial sum of the W.F.S. converges a.e. to fix) as n —>oo.

Notice that by a simple re-definition of fix), these conditions, which are

given for the interval [0,1), hold for any interval [ [ # ] , [ # ] + l ) , and that one

has

LEMMA 7. fix) ~ lim / fixQ z)Dniz)dz$

/ ( * ) - lim / fix@z)Dniz)dz.

Proof. One has

/ ( * ) - lim / r 7 f{γ)Dn{χQY)dγ,

and by 3.0, for z = x Q y,

I * *l fiy)DnixQγ)dy = Γ fixQz)Dni:J \x\ Jo
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For the second part the proof is repeated but with the complex conjugate W.F.S.

5.0 C O R O L L A R Y . C (%)= 52 ΦΛχ) / ΨΛy)dy
Ran *-* n j 0 K

Note that by 2.0a the sum is actually finite.

2. L-transforms.

D E F I N I T I O N 6. (a) T(f) = F ( y ) = / f(χ)ψ(χ)dx9 the Walsh-Fourier

£ Jo y

ti
transiorm.

(b) T"i(f)-F(y) = J fix) φ ix)dxf the inverse Walsh-

Fourier transform.

T H E O R E M 1 . If f ix) £ L, then

l i m \ f i x ) ψ ( x ) d x = 0 .
y~*oo Ό y

Proof. This is an immediate consequence of the fact that by 2.0b it is

true for characteristic functions with Cί-adic rational end points.

6 . 0 C O R O L L A R Y . Let F(γ) = T(f) for f(y)eL9 s (%, β) the ( [ / 3 ] - l ) s t

partial sum of the complex conjugate W . F . S . for f ( y ) over [[x\ [x] + 1 ) , and

Six, )8)

Then l im^^ <*> Six, β) - s ix, β) = 0, uniformly in x.

Proof. Notice that if x £ t then t Q x > 1. Using 2.0 one has

Si x,β) = f°° fit)dt ίβφJy)φΛy)dy = ί°O fit)PβitQχ)dt
Jo Jo Jo

= ί°° fit)dt\CιitQx)D[β]it Qχ) + Ψ[β]it Qx)P[β]ilt Qχ])\
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[β] f™ f(t)ψy(t)dt.

Now by Theorem 1 the last term goes to zero independently of x.

6.1 COROLLARY. Using the notation of 6.0, S{x, β) —> f (x) as β—> oo if

f (γ) satisfies any condition for convergence of the complex conjugate W.F.S.

to f ix).

L E M M A 7. IfF(y) = T(C ( * ) ) , then for β > an,
Ra'n

Proof. One has

that F{γ) GL, and in fact F(y) = 0 for γ > dn. Hence

RΊ

= α-n £ _ / Λ φχ(y)φk(a-ny)dy
/c = 0

where Lemma 5 has been used extensively.

T H E O R E M 2. If fix) e L9 F{y) = Tif), and Fiy) eL$ then

/(*)= ί°° Fiy)ψJy)dy = T'iiF).
Jo x

Proof. Take T > Ct
π
, for b = /?α"

Λ
. Then one has

f(y)dy- Γ C iy)fiγ)dγ = f°° f(y)dy ΓhiDφΛt)dt
Jo « α " Jo Jo y
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f [ ιf>Λy)F(t)dtdy = [b [°° ψAy)F(t)dtdy.
o Jo Jo Jo ι

Now by continuity the equality holds for all 6, and the result follows im-

mediately.

Note that if F(y) jέ L one still has

/ f{y)dy= / ψt(y)F(t)dtdy.
Jo Jo Jo

fa
D E F I N I T I O N 7. / ( a t b 9 χ ) = / PΛt Qχ)dt.

Jo °

L E M M A 8. ( a ) / ( α , bfχ) = ( 1 - C ^ + i ( a ) ) ( l - C i ( 6 ) )

(b) lim /(a ffc f*)»l
a —»oo

(c) | /(a,6,*) | < a72

Proof, ( a ) J ( a , b , x ) = I + | r η / + /r t 1

Jo Jo J[a] Jo Jo J[b]

By 2.0 PR (t © x) = Cι (t © x) DR (t Q x). Thus, using 3.0, one gets

Ψ (tQx)dydt = / α C t ( ί 0 ^ ) D [ 6 j ( ί Qx)dt

One also has

fa f[b] Γa
I I φ \t 0 x)dγdt - I C t ( ί 0 x ) D r , i ( ί 0 Λ;)c?ί

7[α] JO " JLαJ L O J
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Cx{a Q x ) [Γ D τ b - \ ( t Q x ) d t a n d / l ψ ( t Q x ) d γ d t
JYa\ L J Jo J [ b \ y

Finally

(b) By 2.0e the second and fourth terms of the equality just proved go to

zero as a—»oo For b >_ 1 the result is immediate. For b < 1 the first term

of the equality vanishes and for the last term one has

lim / ψ(x)Dr My)dy~ φ ( )

evaluated at z = 0, by Lemma 7a and the first condition of 4.0.

( c ) From part ( a ) if a'n <. b < Ciι"n < 1, one only need consider

This is evaluated in two pieces. For the first one has

*"1 l/Γΰ)D[a](y)dy = £ Cα.n(y) ϊζG)D[a](γ)dy

which is bounded by 1. For the second piece, using Lemma 4c.

I P ψTx)Dτ Λy)dy < Γ a/2OL'ndy < (α 2 -α)/2.
I J α * n y Ja'n

Thus for b < 1 one has \J(a9 btx) \ < Cί2/2 - α/2 + 1. In a similar fashion

one can show the remaining inequality for b >, 1.
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7.0 COROLLARY. If b :> 1 then

7.1 C O R O L L A R Y . If a, b > % + 1, β >^ 1, then

\J(a9β$x)~J(b9β9x)\ < 1-ί-l— + — ± — \
iβ \[a Qx\ Vb Qxll

Proof. One has

J(a9β9x)-J(b9β9x)

and 2.0e yields the result.

7.2 C O R O L L A R Y .

If β > 1 then | / U , / 3 , % ) ~ / U , j β , % ) | < j8 + l

If β <l then \J(a,β,x)-J{b9βfx) \ < β + α .

Proof. Let α*f 6* be the integers nearest α and ό. Then

J(a9β9x)~J(b9β9x)=J(a9 β9x) - J (a*9 β9x) + J (b*9 β9x) ~ J (b9 β9x)

Now the first two pairs are each bounded by β/2. The last pair is bounded by

1 for jβ >. 1 (7.0) and by α for β < 1, this being shown by a proof similar to

that for Lemma 8c, with a'n < β < α 1 " " .

LEMMA 9. If g{χ) is integrable over any finite range and both real and

imaginary parts tend monotonically to zero as x —> oo from some point XQ on9

then one has the existence of the following as limits,

( 1 ) ί°° g(t)φ (t)dt
jo y

(2) / g(t)Pβ{tQy)dt
Jo

(3) Γ g(t)[t]Pβ(tQγ)dt β > 1,
JO



4 6 4 R. G. SELFRIDGE

and if B > x0 the bounds

(i) \fB°°g(t)ψγ(t)dt

(2) \ f°° g(t)Pβ(tQy)dt\ <

(3) \f°° g(t)[t]Pβ(tQy)dt\ < ̂ Ili8^ , β>*y
*JB • LpJ

Proof. After splitting the integrals into real and imaginary parts and using

the second mean value theorem, then the existence of the first integral and its

bound follow from 2.0e and of the second integral and its bound from 7.2.

For the third case note that since β >_ 1, one has, by 7.0, for A; > y + 1,

/
A + i

Thus for α, b > COy it is easy to show that

\fa

b[t]Pβ(tOy)dt\<a2

2{β]

The existence and bound of the third integral follow immediately.

T H E O R E M 3. If fix) is integrable over any finite range, and satisfies any

condition producing convergence of the complex conjugate W . F . S . to f (y) then

lim I f ix)PβixQγ)dx9

ί

provided

( i ) f M

1 + xE L

or

fix) fix)
(2) is B.V. in o, oo for some a > 0 and lim = 0

[x] *->oo [x]

or
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1 fx
(3) — / f(y)dy is B V. in a, oo for some a > 0 and has limit 0 as x—»oo.

x Ji

Proof, One has

f(t)Pβ(tQγ)dt= [β φΛχ)dx [b f(t)ψAt)dt
Jo s Jo

and if b > y + 1 this has limit f (y) as /3 —> oo by 6.1. It remains only to show

that any of the three conditions implies

[ββf(t)Pβ(tQy)dt—*O
Jo

as b and β —> oo. For Condition 1 one has by 2.0

\j f (t)Pβ(tQy)dt <J \f(t)\OL/(tQy)dt and

For Condition 2 f [x)/[x] is the difference of functions tending to zero

monotonically and the last bound of Lemma 9 suffices. Finally for Condition 3

let

1 Γx
g(x) = - / / ( y ) d y x >_ σ > 0,

x Ji

and one has xg' (x) + g(x) = /"(%). Now xg'(x) satisfies Condition 1 and

g(x) Condition 2.

Working with the available inequalities it is possible to prove several theo-

rems of the following type, but with weaker conditions on f (x) and g(x). The

proof of the following is immediate with a change of order of integration.

T H E O R E M S If f U ) , g(χ) E L , T ( f ) = F ( y ) , T(g)**G(y), then

ί f{x)G(x)dx = ί°° F{x)g(x)dx.
o Jo

3. The purpose of this section is to build up to the following theorem.

T H E O R E M 5 . If f i x ) e L a n d T ( f ) = F ( y ) , t h e n
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/(*)« lim Γ (l-[Uyβ)F(u)ψAu~)du

provided

(1) / ( y ) is locally essentially bounded at x (essentially bounded in a

neighborhood of x)

( 2 ) / \ f ( x + t ) - f ( x ) \ d t = o ( h ) λ — > . O .[
o

Further if x is an QL-adic rational Conditions 1 and 2 need only be right

hand conditions.

Theorem 5 is the best possible in the sense that Condition (2) holds almost

everywhere and (1) cannot be completely removed. This follows from the fol-

lowing.

T H E O R E M 6 . There is a function f i x ) E L satisfying ( 2 ) but not ( I ) of

Theorem 5 for which the result of Theorem 5 does not hold.

L E M M A 1 0 . If f ( y ) G L , then for each x

l i m / ( 1 - [ u ] / β ) F ( u ) ψ ( u ) d u - f ( x )
9-βo Jθ X

}*}*l
= lim (}*}*l(f(y)-f(x))dy {^ il-luVβ)TΓΰ) ψU)du

Proof. For each β >_ 1 one has

fβ (1 - [u]/β)FU) Tΰjdu = [lx] + fr

[f+ l + / " f(γ)dy
Jo x \Jθ J[x] J[x] + l

x
'o

Since γ < [x], by 2.0
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f (l-ίu]/β)Tΰ)φ(u)du,
o '

: [ X f(y)dy\ T ( 1 - k / β ) ίk+l φ (u)φ (u)du
I /r = 0

ψ~ΰ)ψ(u)dux y

= 0+fX f(y)Pβ(yOx)(l-[β]/β)dy

In a similar fashion K = 0( 1//3) and

'ω ' y/o ( 1 - [

f (γ )dy = O(

Σ

k=o

X *l

Thus the proof of Theorem 5 reduces to showing

8.0 lim [lf(t)dtfβ (l-[u]/β)ψt(u)du = 0,
3-»oo ^ 0 JO l

where fit) is redefined appropriately and / ( 0 ) is assumed to be zero. In the

sections to follow it should be remembered that usually 0 < t < 1.

n-i

D E F I N I T I O N 8. kψk(t)

(l-[u]/β)ψλu)du

n=l
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LEMMA 11. ( a ) φ{β,t) =

(b)

Γiβ] lβl'1 rA+i
Proof. φ(β,t)= I ψf(u)du- V; k/β I φΛu)du

0 k^ ^k

= P[β](t)-L[β](t)/β

λ;=0

A=o

r [β]-ι A-i

where the last equality holds only if β is an integer.

For the purposes of what follows the useful part of this lemma is only the

very simple first part. However it is of interest to point out that FΛt) is the

Fejer kernal for the W.F.S. and that C, 1 summability of the transform will thus

imply C9 1 summability of the W.F.S. (see [ l ] ) . However the converse is not

immediately true, since C, 1 summability of the W.F.S. will only imply C, 1

summability of the transform for integral /3. To proceed from summability for

integral β to that for all β seems to require precisely the conditions of Theorem

5. At the same time, restricting C, 1 summability of the transforms to integral

β will not ease the problem, because the present method of proof works equally

well in both cases, and no change has been found as yet that alleviates the

problem even for integral β.

LEMMA 12. L (t) =DΛ(ant)L U ) + α 2 * C (t)LA(ant).
Aan an a'n Λ
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Aan A-I an-1

Proof. £A^(i)« £
/c=o /? = o

= 2 2 Roinψ n ( t
R=o

LEMMA 13. Let

D{β) =/V, ί = ί 1 α " / 4 +t2θi'β +γ, 0 < tι < a, 0 <t2 < α , 0 < y < c c 6 .

( 1 ) | ^ j , | j

(2) /f4 < N then \ ψ(β,t)\ < aA

(3) If A < B <N then \φ(β,t)\ < <XA+B'N.

Proof. ( 1 ) is clear from the definition of φ(β,t). For ( 2 ) take Q an integer

such that I β - QaA I < aA/Z Then

φ ( β , t ) ~ fβ (l-[u]/β)ψt(u)du-l/βL A ( t ) + P A t ) .

Now the integral is clearly bounded by

(β-QaA)2/β < a2A/4β, P^ Λt) = 0,

and L At) =D0(aAt)L Δ{ t) which is bounded by Qa2Λ/2.
QaΛ v

 OLA

For Case (3) define Q and R,

\β-QaA\ < aΛ/2, \QaA-RoLB\ < αβ/2.
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Then

ί fQaA fβ \
Φ(β,t)=\ + / ( l - U ] / j 8 ) ^ U ) A * + P D B(t)-l/βL R ( t ) .

N o w

L R i t ) = D R i a B t ) L ( t ) , a n d L Λ t ) = L A R A i t ) = D R A ( a Λ t ) L A t ) .

B u t

D
a

R

Thus the last two terms of the equality are zero, and again the second of the

integrals is bounded by CC /4/3 Finally the first integral is given by

2A/2\QRaB'Λ< l/βa2A/2\Q-Ra

LEMMA 14. 7 / 0 < git) < 1, git) = o i l ) as t — » 0 , and git) is monotone

increasing with t$ then

lim / git) φiβ9t)dt = 0

Proof. Let N - D ( β ) and define the following intervals.

IA N + ι the α - 1 intervals RθCA < t < Ra'A + OL'N

!A,B t h e α " " l intervals RθL'Λ + <X'B < t < RθL'A + C ί U β .

Now the integral fQ git) φiβ91)dt is to be evaluated over these intervals

and then summed, using the results of the previous lemma frequently.

Since git) = o i 1), we have
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/ g(t)φ(β, t)dt < I
I Jo Jo

Now for M < A one has

g(t)ψ(β,t)dt

AtB
< g ( a ι - M ) J \φ(β,t)

lA,B
\dt

< g ( a ι ' M ) a A + B ' N f dt<
lAtB

<g(aι'M)aA'N+\

Thus

A,N+l B=A+l
/

and summing over A from A/ to /V yields

N

A-M

where /ί is independent of M and N for sufficiently large Λf and N.

For the remaining intervals where A < M, an identical argument yields

\Ja'M<t
g(t)φ(β,t)dt < g ( l ) / V α M-yv+3

Adding these results yields
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g{t)φ(β,t)dt oil) + Rg{aι-M),

and the proof is completed by choosing first M and then N sufficiently large.

9.0 COROLLARY, lim / φ(βft)dt = O 0 < p < 1.
β - oo Jp

9 . 1 C O R O L L A R Y . l i m Γ f ( t ) φ ( β , t ) d t = 0 , f(t)eL(p,l).
β-+OQ JP

This corollary is an immediate result of 9.0 and a well known theorem (cf.

[3] p. 231).

DEFINITION 9. A set E is of metric density k at x if

|£n(α,£>) |
lim —— = k9 where a <^x <_ b.

a-b-*o \(a9 b) I

To allow for Cί-adic rationale this density can be restricted to only right-

hand intervals. Thus if x is an Cί-adic rational it is to be understood that only

intervals (x9 b) are used.

L E M M A 15. If f (t) e L and

\f(χ+t)-f{x)\dt=θ(h),

then there e x i s t g i t ) s u c h that 0 < _ g ( ί ) < . l , g i t ) monotone d e c r e a s i n g t o

z e r o as t — > 0 and E = ( x + t: \f (x + t) — f i x ) \ > _ g ( t ) ) has metric d e n s i t y

z e r o at x .

Proof. S e t E n * * ( x + t : \f {x + t) - f i x ) \ >_2"n). C l e a r l y E n m u s t h a v e

metric density zero at x Now let

μ (En, h) = μ(En n (χ-h9 x+h)) or

nn (xtx + h)

if A; is an Cί-adic rat ional . Since En has density zero at x9 for each n there

is an hn such that μ{En9h) < \h \2"n

9 \h\ < hn. Clearly it is possible to take

hn a power of Cί and hn + χ < hn.

N o w d e f i n e g ( h ) = 2 " n if h n + x < \ h \ < h n 9 g { h ) = 1 if | A | > h t . S i n c e

hn—>0 as n—»oo, g(h) satisfies the requirements of the lemma, and it
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remains to show that E has metric density zero at x.

Let / be any interval including x (right-hand only if x is an Cί-adic rational)

and set F = / n £ , An = F n (x+h: a'n < h < GCUn), μ(An) = an.

For each n there is an m such that hm + χ < Qiimn <Lhm, so that by the con-

struction of g(h), an < α I - 7 l 2 " m =σ(n)cCn, where σ(n) is monotone decreasing

to zero as n —» oo.

Hence

Σ, an < n)a-n <σU)
n~A

Thus for a A ι < \h\ ±<χ A,μ(F,h)=o(a A)

is of metric density zero at x%

, and F, and hence E,

Proof of Theorem 5. The problem has been reduced to considering

f(y)φ(β,γ)dγ.
JO

Let / be the neighbourhood of 0 in which f ( y ) i s essent ia l ly bounded, the bound

assumed to be 1. By Lemma 15 one has git) such that £ = ( ί : | / ( t ) | >_ g(t))

is of metric density zero at zero. Let f (y) = / j ( y ) + /"2(y) + f^Y^ where

ί / ( y ) yel-E ί / ( y ) y € / n £

I f2 ( y ) = I
(O γeC(l-E) [O γeC(lrxE)

f(y) yeCI

0 y £ / .

The proof reduces to showing

lim / f.(y)φ{β,y)dy=O.

For i = 1 this follows at once from Lemma 14, and for i = 3 from 9.1. For the case

i = 2 define En = (a'n,aUn), An = / n £ n En and μ ( 4 n ) = α^. If D ( β ) = Λ̂  one

has

f(y)φ{β,y)dy φ{β,y)dy \f2(γ)φ(β,y)\dy
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<aN+ι li'N \ f 2 ( y ) \ d y + Σ ί \Φ(β,γ)\dy.
71 = 1 n

N o w s i n c e fff \f { γ ) \dy - o ( h ) o n e h a s

ιΓ'N'α ^ 1

as N—> oo. Since /n £ has metric density zero at zero Σ = β on < k(B)θi" ,

where k(B) is taken monotone decreasing to zero. Hence k(n)(λ"n is strictly

decreasing and for each /V there is an unique Γ such that k(T)ci' £ OC <

A;(Γ~l)α u : Γ . Now for any R, T <R <N9 one has αβ <k(R)a'R <k(T)a'R,

and hence

For R < T a. procedure similar to that of Lemma 14 will yield

=ι ^^ /? = ι

<_ α ( α - l ) ' 2 { α τ + ι " N + (/V - T + D α ^ ί α - l ) + 0(N)α'N

T-1 * r-1
)|</y < Σ

Thus

Now by c h o i c e of T o n e h a s k(T) < 0LT'N < k(T~l) or

k(T)(N-T) < k(T) log (l/k(T))/log α .

Hence one has in succession

lim k(T){N-T) = 09 lim dT'N^0,
Γ-» oo T-» oo

lim (N-T+l)CLTmN, lim (/V - Γ + l ) α A ( T - 1) = 0 .
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Finally as β —> oo, so does N, and hence T —> oo, so that

fΛy)φ(β,y)dy=o(l) as β—too.
o

10.0 COROLLARY. If f (y) is integrable over any finite interval, then for

almost every x at which f (y) is locally essentially bounded we have

Γ R

/(%) = lim lim / f(y)φ{β,yQx)dy
/3-oo R-oo J0

= l i m /r Ί f(y)φ(β,yQχ)dγ.
β _> oo J IX1

Proof. For [y ] y= [% ], one has

(l-k/β)ψ(u)ιP(u)du=O.

Thus the inner limit exists, and now changing the order of integration completes

the proof since the requirements of Theorem 5 are satisfied.

Proof of Theorem 6 . D e f i n e f {x) = 0 t m if <X"m < x < Ci'm + C Γ 2 m / m ,

/ ( % ) = 0 e l s e w h e r e , a n d / ( 0 ) = 0 . C l e a r l y / (x) G L a n d [^ f(x)dx=o(h).

Now c o n s i d e r t h e s e q u e n c e β = OC^, for N e v e n . N o w if t = tι(λ'A + t2 CX" + y,

a s b e f o r e , t h e n for A < B < N

and for A < N < B9
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a n d t h u s for A <N< B9 φ{θiN

9t) = aΛ'2 BA .

Now take A > (/V-4)/2, so that for N > No a"2Λ/A < a'N. By the con-

struction of fix) each interval where f(x)£Q is entirely within an interval

where φ(βft) = aA'2Bx. Again consider intervals 0L~n < t < 0Ll'n. As in the

proof of Theorem 5

Γα-JV

Jo

and

f(t)φ(β,t)dt

2Z 23 ι/n

n=(N-4)/2 n*{N-4)/2

For the remaining sets one has

GV-

I
(iY.6)/2

UN s Λy-5α" max I B A I.
71= 1 " A γ i ~l

Now a quite simple computation shows max^ | BA \ < α | Bi |. Hence one has

JQ1 f (t) φ( β9 t)dt split into three pieces, the first of which is o (1), the second

tends to BχQC2 log 1/2, and the third is bounded by \Bγ | α " 4 . Hence the con-

clusion of Theorem 5 cannot hold.

The problem of showing that Theorem 5 holds almost everywhere, or of con-

structing a counter-example has not yet been solved.

4. Lp transforms. To a great extent the results of Lp transforms for 1 < p < 2

can be proved similar to the proofs used, for example, by Titchmarsh [5] , For

this reason the proofs will not be given, or given only briefly.

LEMMA 16. For any finite set of OCj, i = 0 , 1 , , n9 and any N > 0,

. N n 2
a — - -Λh

0 -— /=o
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LEMMA 17. For any finite set of a^ i **0, 1, , n9 and any N > 0, and

1 < p < 2

Jo
dx < α l α * l P

ςr/p

where q =p/(p-l).

T H E O R E M 7 . //" f ( % ) 6 L p 1 < p < 2 , ί λ e r c i A e r e i s α f u n c t i o n F ( y ) e L q

such that

F ( y ) - l . i ; m . < q ) / f ( x ) φ ( x ) d x a n d \\ F \\ < | | / | | .

Proof. Let

F(x$a) = fa f(y)φ(y)dγ

and 7i = [ A ] . It is not difficult to show that over any finite interval Fix, a)

may be approximated uniformly by

Σ
k=o

ik+i)a-H
/ v) where ak = / f(y)dy,

and hence, using Lemma 16 or 17

J° \F(x,a)\Ux < ( / α

From this Theorem 7 is almost immediate.

T H E O R E M 8 . If fix) e L 2 ,

-. l.i.m. (2) / f(x)ψAx)dx9
β-400 J0 y

then

f i x ) = \ . i . m . ( 2 ) [B F i y ) ψ i y ) d y and \\F\
Jo x

Proof. F r o m L e m m a 1 6 o n e h a s g ( % ) = Γ 2 ( F ) a n d | | g | L <_
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Now take p an Cί-adic rational, and take the limits in the following along se-

quences of integers, which is possible since the limits exist,

/ gix)dx= dx l.i.m. / φΛy)dγ l . i . m . / fit)φ(t)dt
J° Jo β—oo Jo c-^oo Jo γ

= l im / dx l im / f it) dt \ φ iy) φ.iy)dγ
B-+°o Jo c-oc Jo Jo x ι

fp /*W+1 ΓB

= lim / dx \ fit)dt I φ iy) φλy)dy
B -* oo Jθ Jθ Jθ

= l i m [P dx Γ φ M ) d y f P + l f i t ) φ i t ) d t = ίP f i t ) d t 9

B -*oo Jo Jo Jo y Jo

where the last step is justified by Theorem 2 after defining a new fit). Now

continuity of the integrals yields the desired result .

T H E O R E M 9. If fix) E L p , K p < 2 and Tp(f) = F ( y ) , then

Fiχ) = — f°° fiy)P iy)dy and fix) = — f°° Fiγ)Pxiy)dy.
dx Jo x dx Jo

Proof. The existence of the integrals follows since Pxiy) G Ln for n > 1.

Then the first result follows from

[X F i y ) d y = l i m [* dγ f * f i t ) ώ ( ί ) ώ = f ° ° f i t ) P x i t ) d t .
jo B -•oo Jo Jo y Jo

For the second result set

Fiγ)Pxiy)dy.

It is simple to show that Gix) is continuous. Then for an α-adic rational x =

kan

f°° Fiy)PxTΪ)dγ= I*" Fiy)dy [* φJΓ)dt
Jo Jo Jo y

= / dt l im / φ it)dy I fiu)φAu)du=l fiu)du$

Jo B — oo Jo y Jo y Jo
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and again continuity of both sides finishes the proof.

L E M M A 18. If f {%), g{x) e Lpt 1 < P < 2, and F{γ) = Tp{f), G(γ) =

Tp(g) then

ί°° F(x)g(x)dx = [°° f(x)G(x)dx.
o Jo

LEMMA 19. If p = 2 in Lemma 18, then

ί°° F(x)Glx~)dx= ί°° f(x)Jΰ)dx.
Jo Jo

T H E O R E M 10. // / ( * ) e Lp, 1 < p < 2, F(y) = Tp(f), and fix) satisfies

any condition producing convergence of the complex conjugate W.F.S. to f ( y ) ,

then

/ ( y ) = lim / F(x)φ~ΰ)dx.
B Ό y

Proof. Letg(x,y) = ψχ(y)iίx < ft =0 if jβ <x. Then G(t,y) = Tp(g(x,y))

•• Pβ (t Q γ), and by Lemma 18

F(x)g(x,y)dx= ί°° f(t)G(t,γ)dt
o Jo

[βF(x)ψ (x)dx= f°° f(t)Pβ(t©γ)dt.
Jo y Jo

Now since / ( y ) / ( l + y ) G L, Theorem 3 completes the proof.

T H E O R E M 11. If f(x)eLp 1 < p < 2, F ( y ) = Γ p ( f ) , ίAeW /or α

every Λ; oί which f (y) is locally essentially bounded

f(x)= lim [B (l-[u]/B)F(u)ψ (u)du.
B -.oo Jo x

Proof. Theorem 5 combines with a method similar to that of Theorem 10 to

yield the desired proof.
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