
ON FACTOR FUNCTIONS
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0. Introduction. The object of this paper is to illustrate by means of a few

selected examples the application of abstract but simple methods to the study

of factor functions. The methods have a considerably wider range of application

then is explicitly covered here: in particular, it applies to functional transforma-

tion other than that of Fourier.

The factor problem is understood in the following sense, G will denote

throughout a locally compact and abelian group; E and F will be two topological

vector spaces of functions, measures or distributions on G for which the Fourier

transformation is suitably defined. The transform of / is denoted generally by

/. A function φ on G, the group dual to G, is said to be a (Fourier) factor of

class (E9 F) if and only if φ / is the transform of some g G F each time that

f £ E. In all cases we have in mind," E and F are each invariant under the trans-

lations by group elements tx(x €G), and in many such cases it is convenient
to subordinate the factor problem to that of finding a representation theorem for
a general continuous linear mapping u of E into F which commutes with trans-
lations. The class of such mappings is denoted by Lt(EtF)9 the notation
L(Ef F) being reserved for the set of all continuous linear mappings of E into F.

The formal relationship between the two problems is expressed as follows.
If φ is a factor of class (£, F), let u be the linear mapping of E into F which

is defined by agreeing that g = u(f) is to signify that g = φ /. The continuity

of u is usually a consequence of the "closed graph theorem", whilst the fact

that u commutes with translations is a consequence of the way that translation

effects the Fourier transformation (multiplication by characters of G). On the

other hand it is not always easy to show that every u G Lt(E9F) is derivable

in this manner from a factor function of class (Ef F).

In most of the applications dealt with below, E and F are both Fre'chet

spaces. The one general property of these spaces we use is the weak relative

compacity of weakly bounded subsets of the dual of such a space.
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1. Mappings of class Lt(Lι

$LP). As usual, the translate taf of a function

/ corresponding to the group element a is defined by

taf(x) = f ( χ + o )

for x EG, Suppose that the exponent p is suitably restricted if G is non-compact;

then a factor function φ of class (Lι

sL
p) gives rise, in a manner already de-

scribed, to a mapping u £ Lt{Lι

9L
p). This is one instance where the con-

tinuity of u is a direct consequence of the "closed graph theorem". Having

solved the representation problem, an inverse Fourier transformation leads

back to the form of φ. The centre of the programme is thus to establish

THEOREM 1. Let 1 <p <.oo. The mappings u € Lt{Lι

9 Lp) are those and

only those of the form

(Li) u ( f ) = μ * f

where μ depends only upon u and is such that

( i ) μ is a bounded Radon measure on G9 if p = 1, and

( i i ) μeLP if I < p < oo.

Proof. In either case there is no difficulty in varifying that (1.1) defines

u as a member of Lt{Lι

9 Lp) each time that μ is restricted according to ( i )

or (ii). We remark that the convolution on the right of (1.1) is most conveniently

regarded as an abstract integral fG(tmχf)dμ(x) interpreted in either a strong

or a weak sense.

To prove the converse, we begin by remarking that if k * f is interpreted

for k9 f£Lι as an abstract integral, then u G Lt{Lι

fLP) implies the relation

(1.2) u ( k * f ) = u ( k ) *f.

We now let k vary along an "approximate identity in L ι " . By this we mean a

directed family (&;) of positive functions in L ι such that

Lki

for all i and limj(Aj * / " ) = / in mean for each / in L 1 ; the latter condition can

be satisfied if, for example, it is arranged that k{ has its support contained in

a neighborhood t/; of 0 in G, the £/,- forming a decreasing directed system and a

neighborhood base at 0 in G. From (1.2) there results
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(1.3)

by virtue of the continuity of u. The continuity of u ensures also that the μ. =

u(k() fall into a norm-bounded subset of Lp.

If p > 1 then Lp is the dual of LP'(l/p + 1/p ' = 1) and the norm-bounded

subsets of Lp are therefore weakly relatively compact. This, combined with

(1.3), leads to the conclusion that there is a μ which is a weak limiting point

of the directed family (μ.) and for which u(f) = μ* / at least for all contin-

uous f with compact supports, hence by continuity for all f E L l . If G satisfies

the first countability axiom then the directed family (k() may be taken to be

a denumerable sequence and the details of the argument are quite clear. In the

contrary case, although the principle is exactly the same, a few technical de-

tails must be attended to. These details present but little intrinsic interest

and are accordingly omitted.

If p = 1 then the above argument breaks down since the norm-bounded sub-

sets of L ι are not all weakly relatively compact. So we imbed L ι in the space

Mι of bounded Radon measures on G, the latter being looked upon as the dual

of the space CQ of continuous functions on G which vanish at infinity equipped

with the uniform norm. From this point onwards the argument proceeds much

as before.

REMARKS, ( i ) If G is compact then the translation of Theorem 1 into terms

of factor functions is straightforward. In the contrary case complications arise

when p > 2 due to which of several possible senses assignable to the Fourier

transformation is adopted. Such cases lead one to regard the representation

problem as occupying the more fundamental position in general.

( i i ) The case p = 1 of Theorem 1, expressed in terms of factor functions,

is in the literature at any rate for the cases in which G is the circle group or

the real line: see Zygmund [5, p. 101] and Hille [2, p. 362].

Factors of class (Mι

fM
ι). We are led to consider two topologies on M ,

namely the normed topology regarding Uι as the dual of C o , and the correspond-

ing weak topology σ(Ml

9C0). When we wish to call attention to the distinction

we shall use the notations M* and M^ to denote the corresponding topological

vector spaces.

The solution of the representation problem for Lt{M^$M^) is simpler than

that for L f ( M ι

t M
ι ) . If s stands for n or w9 the crux in either proof is to show

that any u E Lt{Uι

fM
ι) satisfies
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(1.4) u(0L* β ) = u ( 0 L ) * β

for all 0C, β E M . Once this established, the representation follows immediately

on choosing α to be the Dirac measure at the origin of G. Equation (1.4) is

satisfied automatically by any u derived from a factor function of class (Mι

9M
ι)

and this problem is therefore closed; see also Zygmund [5, p. 101] for the

circle group.

If u E Lt(M^9M^ ) then (1.4) can be established without difficulty by means

of the representation

(1.5)
α * ί(tmXa)dβ(

JG

of Ct * β by means of a vector-valued integral relative to the weak topology. If

w is replaced by n then (1.5) is no longer valid for all α and β because for

general (X £ Mι the vector-valued function x—> tmχ0L is not even measurable

for σ (M 9̂ M^'), far less strongly measurable. The representation problem for

mappings of class Lt{M*9M*) is left open for further discussion.

Factors of class (&,®). Making another change of direction, one can take

G = Rn and consider the non-classical factor problem associated with Schwartz's

space & [4, Tome II, Chapitre VII]. Here again the factor problem can be con-

veniently' subordinated to the representation problem for Lt(&9&)* We will

state, and sketch the proof of, the appropriate theorem because, although it is

like that of Theorem 1 in principle, the details are somewhat more complicated.

THEOREM 2. The mappings u € Lt(&,&) are those and only those of the

form

(1.6) u(f)=μ*f (fe&),

where μ depends only upon u and is a rapidly decreasing distribution.

Proof. As before, it is easy to see that (1.6), with μ € θ ^ , defines u as a

member of Lt(&9&). For u9 thus defined, is obviously linear and commutes with

translations; that it is continuous is perhaps most easily seen by an application

of the Fourier transformation, effecting a topological automorphism of i>, com-

bined with the observation that μ£θj^ whenever μ E O ^ These facts are all

to found in Schwartz's treatise.

Conversely, assume that u E Lt {&9 &). If k9 f € & one can write
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k * f = j (tmχk) f(x)dx9

the function x —> tmχk f (x) mapping G into the Frechet space & being con-

tinuous and rapidly decreasing. Since u is continuous and commutes with trans-

lations, it follows that

u(k *f)=u{k)*f.

We now let k vary along an "approximate identity" formed of a denumerable

sequence (k()f each k( being "smoothed" if necessary so as to belong to J&

Then

u ( f ) - l im ( μ . * f)

in the sense of @9 where μt ~u{k^) E &. Now regard the μ. as distributions,

elements of & : the last equation shows that the sequence (μ.) is weakly

bounded in & , so that, & being a separable Fre'chet space, one may assume

that μ. —> μ weakly in & . Actually, since & is a Mont el space, we may even

assume that μi —»μ strongly in & , but this refinement is not necessary to

our argument. The weak convergence μi —» μ is already enough to arrange that

μ. * /—» μ * / pointwise for each fG&. Hence we conclude that (1.6) holds.

The proof is however not yet complete for we wish to show that μ is not

merely an element of & , but is in addition rapidly decreasing, that is, μ G O i .

However if we put T £ μ then (1 6) shows that T is a distribution E & such

that the multiplicative product T F E & each time that FE.&. Introduce the

linear mapping w of & into itself defined by w(F) - T F. Once it is shown

that w is continuous, an easy argument leads to the conclusion that 7", which

is plainly forced to be an indefinitely differentiate function, has the property

that it and each of its derivatives is majorised by some polynomial (depending

perhaps on the derivative in question). That is, T must belong to 0^ and so

μ must belong 0^.

Thus we are reduced to showing that w is continuous from *s) into itself.

To do this, introduce a sequence (hn) of functions extracted from the space J9

of indefinitely differentiable functions with compact supports such that

hn(χ) —>1, DPhn(x)—>0 (p = l , 2 , . . . ; D

in each case boundedly and uniformly on compact sets. Put wn(F) -hn TF for
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F G&. The hypothesis that TF G & implies that wn(F)—>w(F) in the sense

of i> for each F. Since & is a Fre'chet space, the Banach-Steinhaus theorem

affirms the continuity of w once that of each wn is granted. But the continuity

of wn is obvious since hn E D and T is an indefinitely differentiate function.

This completes the proof.

COROLLARY. A function φ is a factor of class (&,&)$ if and only if it

belongs to 0^.

REMARK. Theorem 2 is simultaneously a special case and a refinement of

a theorem of Schwartz [4, Tome II, pp. 19 and 53].

2. The adjoint process. This process is well to the fore in standard liter-

ature, as is witnessed by [5, p. 103] and Kaczmarz-Steinhaus [3, p. 223]. We

illustrate by applying it to the results obtained in § 1 above.

THEOREM 3. Let 1 < q < oo. The mappings u € Lt(L^%L°°) are precisely

those having the form

(2.1) u(f)-μ*f ( / G L ? ) ,

where μEL^ depends only upon u.

Proof. A trivial application of Holder's inequality shows that (2.1) defines

u as an element of Lt{L(^$L
oc) whenever μ E L ^ (and this even when q =oo).

Conversely, suppose that u E Ljd/^, L°°) with q finite. Let υ be the adjoint

of u. v is a continuous linear mapping of (L°°)' into (L^)'« L? with p = # / .

Now restrict v to the subspace Lι of (L°°)', the result being clearly a mapping

of class Lt(Lι,Lp). Since here p = q' > 1, Theorem 1 shows that there is a

fixed v eLP = L ? ' such that v(F) = v * F for F G L 1 . Using the definition of

v as the adjoint of u, the theorem follows with μ = vy the reflection of v in the

origin of G.

The excluded case q = oo of Theorem 2. The above proof breaks down when

q = oo because Lι is not reflexive. However, if Z/^ denotes L°° equipped with

the weak topology σ(L°°, L 1 ) , it is relatively easy to show that the mappings

u £ LtiL00,!;00) are precisely those of the form (2.1) with μ ranging over Mι.

When one comes to apply this result to the problem of factor functions of

class (L°°, L°°) over a compact G, one has to show that the mapping u corres-

ponding to a factor φ is weakly continuous. This cannot now be effected by
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simple appeal to the "closed graph theorem". Instead one can apply the follow-

ing general but simple lemma which has some independent interest.

LEMMA. Let E and F be locally convex spaces, E being complete. Let u

be a linear mapping of E ' into F' such that

( i ) u transforms equicontinuous subsets of E ' into relatively weakly compact

subsets of F \ and

( i i) for any equi continuous subset Q of E \ the graph of the restriction of u to

Q is weakly closed in E ' x F'.

Then u is weakly continuous from E ' into F'.

Proof. By a theorem announced recently by Grothendieck [1] , it is enough

to show that the restriction of u to any equicontinuous subset Q of E ' is weakly

continuous. Since u{Q) is, by ( i ) , weakly relatively compact in F", and since

a filter on a compact space is convergent provided it has at most one adherence

point, one is reduced to proving the following. If Φ is a filter on an equicon-

tinuous subset Q of £ ' which converges weakly to 0, then 0 is the only possible

weak adherence point of α(Φ). But this is ensured by ( i i ) .

To apply the lemma to the case in hand, we take E = F - Ll and u to be the

mapping of L°° into itself defined by the factor function φ. The "closed graph

theorem" itself shows that u is continuous for the normed topology on L°°, and

hence that ( i ) is satisfied. It remains to verify ( i i ) . For this it suffices to

show that if a norm-bounded directed family (/\) converges to 0 weakly in L°°

and g.**u{f.) converges weakly to g in L0 0, then g is necessarily 0. But if

h £ Lι has an absolutely convergent Fourier transform h one has

(h, gi) = Σ h(-χ)gt(χ) = Σ A(-ί)0(ί)/<(ί);
A A
X X

here

Σ,\h(-x)φ,(x)\ <+co
A
X

A A

and lim. fXx) = 0 boundedly. So, by the principle of dominated convergence,

{K g) = lim £ (htg) = 0. This being true for all h G L ι of the specified type, it

follows that g = 0.

To sum up, we have shown that a function φ on the dual of a compact G is
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a factor of class (L°°, L°°) if and only if it is the transform of some μGM1.

For the circle group the result is known; see [5, p. 101],

Mappings of class Lt(C0,C0). Let u G Lt(COsCo) and let v be its ad-

joint, v is a linear mapping of Mι into itself which is plainly continuous for

the normed topology; equally plainly it commutes with translations. The defining

equation

(f,v(a)) « ( u ( f ) , α )

shows that υ is even continuous for the weak topology σ {Mι

9 CQ )• By what

has been said about such mappings in § 1, it follows that v, and therefore also

u, is represented as convolution with an element of Mι. The converse is trivial.

When G is compact, one has incidentally the solution of perhaps the oldest

of all factor problems to be studied, namely that of class (C,C) over the circle

group.

Mappings of class Lt(&',&'). The adjoint process applies at once to

Theorem 2 and gives the representation theorem for mappings u of class

Lt($>\ &')• Here it is immaterial whether we equip & with its weak or strong

topology as the dual of &•

3. The ''convexity theorem" of M. Riesz. The simple methods laid out

above do not of course yield the solution of the factor problem for (LP$L^)

for general exponent-pairs (p, q). But we remark that a solution of the repre-

sentation problem for two exponent-pairs implies that for a whole range of

exponent-pairs by virtue of the "convexity theorem" of Marcel Riesz. Denote

by K the vector space of all continuous functions on G having compact supports,

and by Kp the normed vector space obtained by equipping K with the norm in-

duced upon it by L?, We shall be concerned only with finite values of p, in

which case Kp is dense in L?. If E is any complete translation-invariant topo-

logical vector space, one can identify Lt(K.P,E) and Lt(LP,E) since each

mapping of the first class has a unique continuous extension into one of the

second. This reduction is made so that all the mappings we consider in this

section have a common domain of definition, namely the vector space K.

Suppose now that 1 < p ι t p 2 < oo and 1 <_ qi$ q2 <oo, whilst the mapping

u belongs at once to Lt(KPι,Lqι) and to Lt(KP\Lq2). The "convexity

theorem" affirms that u is continuous from Kp into Lq for any pair (p, q) for

which there is a number θ between 0 and 1 such that
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l _ l - e _θ_ l 1 - 0 Θ

p Pi p2 v 9χ q2 '

u9 or rather a uniquely-determined extension thereof, will belong to Lt{Lp

9L
q)

for any such exponent-pair (p,q). Needless to say, the corresponding factor

function is completely determined by the restriction of u to K.

In this way the "convexity theorem", combined with the adjoint process,

yields simple geometrical properties of the set of points (l/p,l/q) of the

plane R corresponding to those exponent-pairs (psq) for which a given function

on G is a factor of class (LP9L^) (or of the corresponding exponent-pairs

linked with a given mapping u).

4. Other classes of mappings for the circle group. In this final section, G

will denote the circle group and G therefore the additive group of integers. We

can think of G as the real line modulo 2 π and thus talk in terms of ordinary

Fourier series. Besides the spaces Lp we shall consider the spaces C of

continuous functions on G (that is, periodic functions on the line) having at

least m continuous derivatives, or having derivatives of all orders if m is oo.

If m is finite, C is made into a Banach space by equipping it with the norm

= sup \Drf(x)\ (D=d/dx).

C^°°' is a Fre'chet space for the topology defined by the norms Nm with m =

0 , 1 , 2 , . . . .

Consider first the classes Lt{C ,C^n'). The case in which m and n are

both finite is obviously reducible to the case m ~ n = 0, and this has been

dismissed in § 2 above. If m < oo and n - GO then, the same sort of reduction

allows one to assume that m = 0, n =oo; a similar remark applies to the case

m =oo, n < oo. Both of these cases are easily solved. There remains only the

case in which m — n = oo. This case may be dealt with as in the proof of Theo-

rem 2, the details being much simpler than there. Alternatively one can utilize

the isomorphism of C ^ with the space of all rapidly decreasing two-way in-

finite sequences s = ( s w ) , the isomorphism being established by the Fourier

transformation and the sequence space being equipped with the norms

s _ > £ (l + \n\)m\sn\ (m = 0 , 1 , 2 , . . . )
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so as to appear as a Fre'chet space.

We now proceed to discuss the classes Lt(LPfC^m^). The cases corres-

ponding to pairs {p9m) excluded from the general theorem will be discussed

briefly thereafter.

Using the language of (periodic) distributions [4, Tome II, Chapitre VII],

it is clear that the mapping u defined by

(4.1) u ( f ) = μ * f

belongs to Lt(LP,C(mh (1 < p < oo, 0 < m < oo) each time that μ is a

distribution such that Dmμ is a function G LP' if m < oo, or such that Drμ G Lp'

for every finite r if m = oo. As a partial converse we prove.

THEOREM 4. // p and m are finite, any mapping u G Lt{LP$C^m') has the

form (4.1), wherein μ$ depending solely upon u9 is a periodic distribution such

thatDmμ<=:LP'.

Proof. Retracing the ideas in the proofs of Theorems 1 and 2, take an
4'approximate identity" (&j) formed of periodic functions with derivatives of

all orders, put μ. =u(ki) G CΛ , and deduce that

(4.2) u ( / ) = l i m ( μ . * f ) in C(m)

i

for each / G LP. Of course, (hi) may be assumed to be a denumerable sequence.

Let r be any integer between 0 and m inclusive. Equation (4.2) shows then that

the functions Drμ. with i varying fall into a weakly bounded subset of LP'

Since p is finite, it follows that for each r there exists a function μKr) £ LP'

which is a weak limiting point in LP' of the sequence (Drμ^). Actually, since

LP is separable, one may assume that by extraction of a subsequence it has

been arranged that Drμ.—» μ^Γ' weakly in LP' as i—>oo, and this for each

relevant r. Putting μ = μ^°\ it is easily seen that μ ' must coincide with

Drμ in the sense of distributions. In particular, therefore, DmμELP\ Finally,

the relation μ.—» μ weakly in LP * combines with equation (4.2) to yield (4.1).

The excluded cases, ( a ) The case m = oo. This is covered by trifling

modifications in the above proof. The condition that Drμ G L p / for every (finite)

r implies that μ G C^ (cf. [3, Tome I, p. 55]), but appeal to this theorem could

be avoided because now (4.2) shows that the functions μ. fall into a bounded

subset of C^ and, by Ascoli's theorem, these bounded subsets are all relative-

ly compact in C^°°\ On the other hand, this type of proof could be entirely
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replaced by more direct arguments appropriate to this special case. To begin

with, a very simple argument shows that, if G is compact and E contains all

characters of G, then any u G Lt(E9F) corresponds to a factor function of class

(E,F) which is itself uniquely determined by the equations

u(x) = φ(x) r'x

for all x EG. In the second place, if G is the circle group and F is C^°°\ it is

equally simple to show that φ is a factor function if and only if it is "rapidly

decreasing" in the sense that

lim \x\k\φ(x)\=0

for each k = 0,1, 2, , and that this in turn is equivalent to the condition that

φ = μ for some μ € C °̂° .

(b) The case p =oo. In view of remarks ( a ) , one may assume that m is

finite. A preliminary reduction allows one to assume that m = 0, So we have

the representation problem for mappings u E L^( L°°, C). The arguments of

Theorem 4 break down for the familiar reason that Lι is not reflexive. How-

ever, it is obvious that the condition μ E L 1 is sufficient in order that (4.1)

shall define u as a member of Lt(L°°$C) The difficulty in proving the con-

verse lies solely in showing that

(4.3) u ( k * f ) = u ( k ) * f

is valid for any two functions k, f £ L°°. This is obviously true whenever u is

derived from a factor function of class (L°°,C); it is also true more generally

whenever u commutes with translations and is continuous for the weak to-

pologies σ (L°°, L ι) and σ ( C, Mι).

Assuming that (4.3) is true, we can prove the representation

(4.4) u(f)-μ*f

for some μ £ L ι depending solely on uf provided the compact G satisfies the

first axiom of countability. In fact, let (&j) be an "approximate identity" formed

of a denumerable sequence of functions in L°°. Then k( * f—>/ weakly in L°°,

and hence,

u(ki*f)—>u(f)
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for σ ( C, Mι). On the other hand

where μ. =u(k() G C. It follows that the sequence ( μ . ) is a weak Cauchy se-

quence in L ι , hence has a weak limit μ G L ι . But then

M (/ ) = lim u (A;; * / ) = lim (μ. * / ) = μ * / ,
i i

identification being made in the pointwise sense. This completes the proof and

incidentally solves the factor problem for (L°°, C).
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