
COLLECTIONS AND SEQUENCES OF CONTINUA IN THE PLANE

C. E. BURGESS

1. An inversion of the plane with respect to a closed circular disc. The

inversion described here will be used in proving Theorem 5.

DEFINITION. Let S denote the plane, let K be a closed circular disc, and

let T be a one-to-one transformation of S onto itself satisfying the following

conditions:

(1) T is continuous over K9 and T(K) = K;

(2) T is continuous over S-K9 and T(S-K) =S-K; and

(3) if H is an unbounded subset of S^K which does not have a limit point

in K, then T(H) is bounded and has a limit point in K.

The transformation T will be called an inversion of S with respect to K.

NOTATION. If T is an inversion of the plane with respect to a closed

circular disc K^ and M is a continuum in S - K$ then M' will denote the closure

of T(M). If G is a collection of continua in S - K9 then G' will denote the

collection of all continua Λ ' such that X is a continuum of G, This notation

will be used in the statement of Theorem 1 and in the proof of Theorem 5.

THEOREM 1. If K is a closed circular disc and G is a finite collection of

mutually exclusive unbounded continua not intersecting K9 then there is an

inversion T of the plane with respect to K such that the continua of G' are

bounded and mutually exclusive. 1

Indication of proof. If the plane S is inverted about the boundary of K with

respect to the center o of K9 then the continua of G are carried onto mutually

exclusive bounded connected sets each of which has o as a limit point and is

closed relative to S — o. Hence it will be sufficient to show that if Mί$ Λ/2, •»

Mn (n > 1) are bounded continua such that

M am indebted to the referee for some very helpful suggestions which enabled me to
obtain a simplified proof of this theorem.
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M( Mj = o f o r e a c h i a n d j ( i , j < n ) ( i έ j ) ,

and Mj - o is connected, then there is a homeomorphism Z of S - o onto S - K

such that the closures of

Z ( M ι - o ) , Z ( W a - o ) , . . > Z ( i l f l l - o )

are mutually exclusive bounded continua. By using a theorem proved by Lubben

[4, Theorem 18], it can be shown that there exist n - 1 simple closed curves

that

(1) h // = o for each i and j (i9 j < n) (i £ j) and

(2) each of the n complementary domains of Jx + J2 + ••• + Λι-ι contains

one of the sets Mi - o9 M2 -o9 9Mn - o. Furthermore, it can be shown that

there exist n - 1 simple closed curves Hi9 H2t 9Hnm 1 satisfying the conditions

required above for ]l9 Ji$ , ^π- 1 s u c ^ fc^at h Hy = o ϊor each £ anά y l ί ,

/ < in), and the connected domain having /; + Hi as its boundary does not inter-

sect Mi + M2 + + Mn. There is a homeomorphism 7\ of S onto itself leaving

o fixed such that for each i (i < n)9 T^Ji) and Tx(Hi) are polygons. There

is no loss of generality in assuming that K has radius 1 and that Tι(K) = K.

Consider a polar coordinate system with origin 0, and let T2 be a transformation

that carries (ρfθ) into (p + 1, θ), where p > 0. Then T2 Tt is the desired

homeomorphism Z.

2. Some properties of continua with respect to point sets which intersect

them.

Notation and definitions. If G is a collection of point sets, then G* denotes

the sum of the sets of G.

If G is a collection of point sets and M is a continuum intersecting every

set of G such that no proper subcontinuum of M intersects every set of G, then

M is said to be irreducible among the sets of G.

If G is a collection of mutually exclusive closed point sets and M is a con-

tinuum intersecting every set of G such that for some two sets Kt and K2 of G

tKe set M - M (K^ + K^) is connected^ then if is said to have property X with

respect to G.

If p is a point of the continuum Mf the sum of all proper subcontinua of M

containing p is called a composant of M.

A proper subset // of the continuum M is said to be a set of condensation of

Λί if every point of H is a limit point of M ~ #.
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THEOREM 2. If M is a compact indecomposable metric continuum and G is

a countable collection of closed subsets of M such that no set of G intersects

every composant of M, then uncountably many composants of M lie in M - G*.

LEMMA 2.1. //

(1) M is a compact indecomposable metric continuum,

(2) H is a closed subset of M such that some composant K of M does not

intersect //,

(3) D is a domain intersecting K but not H$ and

(4) W is the collection of all components of M - M D that intersect Hf

then W* is closed and each of its points is a limit point of M — IF*.

Proof of Lemma 2.1. Suppose that W* is not closed. Since W* contains H,

then some point p of M - (D + H + W*) is a limit point of W*< There exists a

sequence of continua L 1 , L 2 , L 3 , ••• converging to a continuum L containing p

such that for each n9 Ln is an element of IF. Since each Ln intersects the closed

set H, then L intersects H. This means that L is a subset of some element of

W. Hence IF* is closed. Since each element of W intersects H and is a proper

subcontinuum of the indecomposable continuum M9 then IF* does not intersect

K. Since K is dense in M, then every point of IF* is a limit point of M - IF*.

Proof of Theorem 2. Let X be an element of G. By applying Lemma 2.1 to

each element of a sequence of domains in M - X closing down on a point of a

composant of M not intersecting X, it can be seen that the sum of all com-

posants of M intersecting X is the sum of a countable number of closed sets of

condensation of M. Since G is countable, the sum of all composants of M inter-

secting G* is the sum of a countable number of closed sets of condensation

of M. Hence by Baire's theorem [6, Theorem 15, p. 11], some composant of M

does not intersect G*. Since each composant of M is the sum of a countable

number of continua of condensation of M9 it follows, upon again applying Baire's

theorem, that uncountably may composants of M lie in M - G*.

THEOREM 3. // G is a finite collection consisting of at least two mutually

exclusive closed point sets and M is a compact metric continuum irreducible

among the sets of G, then there exist two sets Kι and K2 of G such that M -

M (K.χ + K2) is connected; that is, M has property X with respect to G.

LEMMA 3.1. Suppose

(1) G is a finite collection of mutually exclusive closed point sets$
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(2) M is a compact metric continuum irreducible among the sets of G,

(3) Kί9 K29 and K3 are three sets of G9 and

(4) M{ and M2 are subcontinua of M such that

(1) for each i (i <̂  2), Mi intersects every set of the collection G — K^

and does not intersect K(9

(2) the set Mi —Mi (K2 + K3) is connected^ and

(3) Mγ intersects M2. Then M has property X with respect to G.

Proof of Lemma 3.1. There is a subcontinuum M£ of M2 irreducible from

K\ to Afi Since the connected sets M\ - Mx K2 and M£ - M£ * Kx have a point

in common, their sum is connected. Since Mi +M£ is a subcontinuum of M inter-

secting every set of G, then Mι + M2' = M. But

{Mi-Mi .K2)+(Mί-M'2.Kι) = (Mι +M 2

/ )- (Λί ι +M/) ΛKX + K2)

Hence M has property X with respect to G.

LEMMA 3.2. Theorem 3 λoWs ίme if M is decomposable.

Proof of Lemma 3.2. Suppose that for any nondegenerate proper subcoUection

Gi of G there is a subcontinuum of M having property X with respect to Gι.

It will be shown that if this condition is satisfied, then M has property X with

respect to G. Then Lemma 3.2 will follow by induction from the following well

known facts:

(1) Theorem 3 holds true if G consists of two closed sets and

(2) if IF is a finite collection of mutually exclusive closed sets and K is a

compact metric continuum intersecting every set of W, then some subcontinuum

of K is irreducible among the sets of W.

In addition to the above supposition, suppose that M does not have property

X with respect to G Then there exist three subcontinua Mif M2, and Ms of M

and three sets KΪ9 K2f and K3 of G such that

(1) for each i (i <: 3), M^ has property X with respect to the collection

G - K( and does not intersect Kι and

(2) the set Mi -Mi (K2 + K3) is connected. By Lemma 3.1, neither of

the sets M2 and M3 intersects ilίlβ Hence M2 + M3 is a proper subset of M
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intersecting every set of G. Then M2 and M3 have no point in common. For

each i (i <_ 3 ), let p̂ . be a point of Λίt . Since M is decomposable, some proper

subcontinuum M' of M contains some two of the points pι$ p 2 , and p 3 [2, The-

orem 4]» As the three cases are quite similar, consider the case in which

p + p_ is a subset of M\ Since M' +Mι+M2 is a continuum intersecting

every set of G, then M' + Mt + M2 = M Hence Af3 is a subset of Λ/' It follows,

in the same manner, that each of the sets Mi and M2 is a subset of M\ Then

M' intersects every set of G. This is contradiction since M is irreducible among

the sets of G.

Proof of Theorem 3. If M is decomposable, then Theorem 3 follows from

Lemma 3.2. Suppose that M is indecomposable. Then no composant of M inter-

sects every set of G. Let Li be a set of G such that some composant of M does

not intersect L ι # There is a set L2 of G such that some composant of M inter-

sects Lx but not L 2 . Let G' be the collection consisting of all elements of G

that do not intersect every composant of M. By Theorem 2, some composant of

M lies in M -M G' . Since this composant is connected and dense in M, then

M -M G' is connected. As it was shown above that G ' consists of at least

two closed sets, then M has property Â  with respect to G'. Hence <W also has

property X with respect to G.

THEOREM 4. //, in the plane9 Kι and K2 are mutually exclusive bounded

continua$ K3 is a closed circular disc not intersecting Kx + K2t and Mu M2i and

M3 are mutually exclusive bounded continua each intersecting each of the sets

KΪ9 K2f and Ks such that M( - Mi (Kx + K2 ) is connected for each i (i < 3),

then one of the continua Mι$ M2% and Λf3 intersects the interior of K3.

Proof of Theorem 4. F. B. Jones [3, Theorem 28] has proved that if / is

the boundary of a simple domain D in the plane, H is connected set lying in

D + J, and K is a continuum lying in (D + / ) - / / , then no two points of H /

separate two points of K / from each other on /. Repeated use of this result

will be made in the following argument.

Suppose that no one of the continua Mϊf M2s and Λf3 intersects the interior

of K3. Let / 3 denote the boundary of K3. There exists an arc of / 3 which inter-

sects two but not three of the continua Mi9 M2i and M$. Consider the case

in which such an arc intersects both M2 and Af3. By [6, Theorem 17, p. 189],

there exist two points at and a2 of / 3 and an arc axa2 lying, except for aι and

α 2 , in the exterior of / 3 such that aι + a2 separates / 3 Mγ from J3 (M2 + M3)

on / 3 and aι a2 does not intersect Mγ + M2 + M3. Hence α λ a2 intersects Kι + K2
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Therefore c&i a2 contains two arcs a\ b\ and a2 b2 irreducible from / 3 to K\ + K2

Since the set

Kγ + aι bi + a2b2 — ( 61 + b2 )

does not intersect the connected set

K 2 + MX + M 2 - { M i - K i + M 2 . K x ) ,

then one of the points b\ and b2 does not lie in Kγ. Similarly K2 does not con-

tain both of these points. Hence one of the points b\ and b2 belongs to Kι and

the other belongs to K2. It follows from [6, Theorem 17, p. 189] that there exist

two points c\ and c2 of / 3 and an arc c\ c2 lying, except for c\ and c2, in the

exterior of / 3 such that C\ and c2 belong to M\ and M2 respectively and C\c2

does not intersect KL + K2 + aγ bx + a2b2. Let H be an arc in c\ c2 irreducible

from M\ to M2. Since a± + a2 separates / 3 Mγ from / 3 M2 on / 3 , then the

connected set

H + Mι +M2 -(il/i +M 2 ) (Xι +X2)

intersects the continuum

&ι + ̂ 2 + ̂ 3 + aι b\ + a2 b2 .

Hence H intersects A/3. Then there is an arc H' in H intersecting both Mi and

M3 but not M2. The connected set

H'+Mx +M3 -(Mi +M3) *(Ki +K2)

does not intersect the continuum

^ 1 + ^ 2 + ^ 2 + «ι t>ι + a2b2 .

This is contrary to [3, Theorem 28].

THEOREM 5. lf9 in the plane, W is a collection consisting of n mutually

exclusive bounded continua and G is a collection consisting of n - n + 1

mutually exclusive continua each intersecting every continuum of W$ then some

continuum of G contains a bounded continuum which intersects every continuum

ofW.

Proof of Theorem 5. Use the notation described in § 1. Let K be a closed
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circular disc not intersecting G* + IF*. By Theorem 1, there is an inversion T

of the plane with respect to K such that the continua of G ' are bounded and

mutually exclusive and no one of them intersects the interior of X. The continua

of W are mutually exclusive and bounded and no one of them intersects K.

Since Theorem 5 obviously holds true if n = 1, suppose that W' consists of at

least two continua. Each continuum of C contains a continuum irreducible

among the sets of W'. Hence by Theorem 3, each continuum of G' contains a

continuum which has property X with respect to W\ Since the number of con-

tinua of G ' is one more than twice the number of distinct pairs of elements of

elements of W', then there exist three mutually exclusive continua M{9 M2\

and MS and two continua K? and KS oί W' such that

(1) for each i (i < 3), M! is a subset of a continuum of G' and intersects

every continuum of W' and

(2) M?- M? {K'+ K') is connected. Since no one of the continua ί/Λ
I l 1 2. *

Λ/2', Λ/3' intersects the interior of K, it follows from Theorem 4 that some M?

(j < 3) does not intersect K. Then Tml{M?) is a bounded subcontinuum of some

continuum of G and intersects every continuum of W

3. Convergent sequences of continua. The author has previously shown that

Theorem 6 holds true if Mχ$ M2, M3, are compactly connected [ l , Theorem

5]. As a consequence of Theorem 6, the requirement in the hypotheses of

Theorems 7 and 8 of [ l ] that the continua of (X be compactly connected can

be omitted.

THEOREM 6. If Mi$ M2$ M^t is a sequence of mutually exclusive non-

degenerate continua in the plane converging to a continuum M$ then there is a

sequence Tx$ T2t T$9 of bounded continua converging to M such that for

each n% Tn is a subset of Mn and is irreducible between some two points.

With the aid of Theorem 5, this theorem can be proved by an argument quite

similar to the argument given to prove Theorem 5 of [ l ]

4. A property of a certain type of unbounded continuum. R. L. Moore [5] has

shown that the plane does not contain uncountably many mutually exclusive

triodic continua. N. E. Rutt [8] has shown that if M is a continuum containing

two unbounded continua neither of which contains the other, and M does not

separate the plane, then the plane does not contain uncountably many mutually

exclusive continua such as M. There exist continua which satisfy both the

hypothesis of Rutt's theorem and the hypothesis of Theorem 7. However, in
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Theorem 7 it is not required that M should not separate the plane. It should

also be noted that there exist continua which satisfy the hypothesis of Rutt's

theorem but do not satisfy the hypothesis of Theorem 7. (See [7, Example l] .)

THEOREM 7. Let M be a continuum having the property that for some posi-

tive integer n there exist n domains intersecting M such that no bounded sub-

continuum of M intersects each of these domains. The plane does not contain

uncountablγ many mutually exclusive continua such as M.

Proof of Theorem 7. Suppose that there exists a collection G consisting of

uncountably many mutually exclusive such continua in the plane. There exist

an uncountable subcollection Gγ of G and a positive integer r such that if Y is

a continuum of Gι then there exist r domains each intersecting Y such that

no bounded subcontinuum of Y intersects each of these domains. Then there

exist a sequence Mγ9 M29 Λf3> of distinct continua of Gι and a positive

number d such that

(1) for each i, there exist r points P; p Pi2> ' ' ' » P t Γ °̂  ^i a n ( ^ Γ mutually

exclusive circular domains D l l f D(2f , D(r having the points Piι9pi2t ' * * *

p r respectively as centers and having a diameter greater than d,

(2) for each / (/ <r), the sequence p t ., P 2>P3/»'** converges to a point

Pj, and

(3) for each i9 no bounded subcontinuum of M( intersects each of the do-

mains Dii, Dj2» '> Dir There exist mutually exclusive circular discs Ki9

&2> ' >^r s u c h t n a t f°Γ e a c n / (/ £ Γ)> ^/ h a s P/ a s l t s center and has a

diameter less than d/2. There is a positive integer m such that for each /

(y < r) and each n (n > m), Kj is a subset of Z)ny. Since infinitely many of

the continua Mi9 M2, Ms9 intersect each of the circular discs Kl9 K2i , Kr$

then by Theorem 5, there is a positive integer n greater than m such that some

bounded subcontinuum Hn of Mn intersects each of the circular discs Kχ9 K2i ,

KΓ. Hence Hn also intersects each of the domains Dni9 Dn2f , Dnr. This

involves a contradiction.
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