CANTOR-TYPE UNIQUENESS OF MULTIPLE TRIGONOMETRIC INTEGRALS

VicTor .. SHAPIRO

1. Introduction. It is the purpose of this paper to obtain results in Cantor-
type uniqueness for multiple trigonometric integrals similar to those obtained
previously for multiple trigonometric series ([5,11,12]). As might be expected,

the results in the integral case are a bit more difficult to obtain.

Vectorial notation is used for the most part throughout this paper. Thus u

designates the point in n-dimensional euclidean space, Ep, with coordinates

: %

(wyye+eyup), the scalar product (u, x) = uy 2y + v+ + uy xp, with |u| = (y,u)”
and u + ox is the point (u; + Uxy, e, u, + U, ).

Previously the author [13], using equisummability between trigonemetric

integrals and trigonometric series, has obtained in the special case of double

trigonometric integrals the following result:

Let ¢(u), in Ly on any bounded domain, be O(|u|"€), € > 0. Suppose the

double trigonometric integral sz e 0 W) o () du is circularly summable (C, 1)
to f(x). Furthermore suppose f(x) is in Lip o, o > 0, on every bounded

domain (o depending on the domain). Then the double trigonometric integral

1 (xyu)
e 0 £ () gy
E

472 2

is spherically summable (C, 1) to c¢(u) for almost every u.

Specializing f (x) to be the zero function (which is what is meant by Cantor-
type uniqueness, [ 15, p.274]) and using a more direct attack on the problem,
we are able in this paper both to weaken the hypotheses of the above theorem

as well as to extend the results to n-dimensional integrals.

2. Definitions and notation. The open n-dimensional sphere with center x
and radius r will be designated by D,(x,r), and the surface of the sphere by

Cplx,r).
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Following Bochner [1], we shall say that the multiple trigonometric integral
Je e(w)e!® W)y is spherically convergent at the point x to the finite value

L (%) if the spherical partial integrals of rank R converge to L (x), that is if
(1) IR(x)=/ e W) o (u)du — L (x) (as R — w.)
D,(0,R)

The integral
R
(2) a};)(x)=2a1{-“f L(x)(R* =r*)*rdr, o >0,
0

is called the (C,c)-mean of rank R of the multiple trigonometric integral

JE c(u)ei(x’”)du, and this integral is said to be spherically summable (C,«)
n

to L (x) if 0\ (x) — L (%) as R — w.

Given F(x) integrable on D,(xo,r), we designate the mean value of F in
this sphere by 4 (F;xo;r). Given F(x) integrable on C, (x¢;r), we designate
the mean value of F on this surface by L(F;xg;t). Thus, designating the
volume of the unit n-dimensional sphere, 2nn/2/nF(n/2), by Q, and the (n —1)-

dimensional volume of its surface, 277"/2/1“(,1/2), by w,, we have

A(F;xo;r)=(Qnr")'l/. F(x)dx

Dn (x() ,r)

(3)

L(F;x3r) = o} / F(xq +rx)dSy.1(x)

C,(o,1)

where dS,_ is the (n — 1) dimensional volume element of C,(0,1).

We set

Vi(F;x0;r) =L (F;x03r) = F(x0) and Vy(F;xp;7) = A(F3x051) = F(xo)

and say that F(x) has a generalized Laplacian of the first or second kind at

the point x, equal to oy or Oy, respectively, if

lim 2n Vi (Fyxo;r)/r? = ¢y

r—o0

or

lim 2(n +2) Vo (Fyxo;r)/r% =y

r—0
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The generalized Laplacian of the first and second kind of F at xq will be
designated by A(F(xo) and A,F (xq), respectively, It is known, [6, p.261],
that if F(x) is in class C®) on D, (xq, ro ), then AF (xg) = A F (%) = AF(xg)
where AF(x) is the ordinary Laplacian of F at x.

The closure of the set ' is designated by W; and its characteristic function
by xy(x). The set Z is said to be a closed set of vanishing capacity if for
every r, Zﬁn(O,r) is a closed set of capacity zero. It is known, [4], that if
Z is a set of vanishing capacity then D, (xq,r) = ZD, (%, r) is a domain.

ei(x,u)

The trigonometric integral fEn c(u)du is said to be of type (U) on

a domain G if

/ ei(x'”)c(u){ul'zdu
E,-D, (0,1)

converges spherically on G to a function F(x) which is continuous on G.

Throughout this paper £, stands for n-dimensional euclidean space where
n>2 and p=(n-2)/2

The function J;(r) is the Bessel function of the first kind of order i.

3. Statement of main results. We shall prove the following two theorems

concerning Cantor-type uniqueness for multiple trigonometric integrals.

THEOREM 1. Given the multiple trigonometric integral [ et ) () dy
n
where c¢(u) is a complex-valued function which is integrable on every bounded

domain. Let Z be a closed set of vanishing capacity. Suppose that
(i) The integral is spherically summable (C,1) to zero almost everywhere.

(ii) The (C,1) spherical mean of rank R, Ué”(x), is such that ER..
lo}(al)(x)l <owink, ~Z.

(ii1) c(u)(u >+ 1) s in Ly on £,.

00

Then c(u) vanishes almost everywhere.

THEOREM 2. Given the multiple trigonometric integral [, e (%) 0 () du
n
where ¢(u) is a complex-valued function which is integrable on every bounded

domain. Let Z be a closed set of vanishing capacity. Suppose that
(i) and (ii) The same as (i) and (ii) of Theorem 1.
(iii) The integral is of type (U) on E,.
(iv) c(u)(Jul?+ 1) isin Ly on E,.

Then ¢ (u) vanishes almost everywhere.



610 VICTOR L. SHAPIRO

For the special case of the plane, we prove the following theorem.

THEOREM 3. Given the double trigonometric integral [ e (%1 o (4) du
n
where ¢ (u) is a complex-valued function which is integrable on every bounded
domain. Let Z be a closed set of vanishing capacity and W be a closed de-
numerable set such that WZ = 0. Suppose that
(i) The integral is spherically summable (C,1) to zero in £, ~Z.
(ii) The integral is of type (U) on E, ~W.
(iii) e(w)=o(lu]) as |u|—> ®

(iv) c(w)(u|?*+1)" isin L, on E,.

Then ¢ (u) vanishes almost everywhere.

4. Fundamental lemmas. Before proving the main theorems of this paper, it
is first necessary to establish a connection between the (C, 1) spherical sum-

i(x,u)

mability of the integral [, e c¢(u)du and the generalized Laplacians of

the ‘‘anti-Laplacian’’ of this integral. In short, we shall now establish some

Riemann-type, [15, p. 270 ], results for the multiple trigonometric integrals.

We need prove the following lemma only for the plane, since the conclusion

is hypothesized for Theorems 1 and 2.

LEmMMA 1. Let c(u) be a complex-valued function which is integrable on
every bounded domain in the plane, vanishes in D;(0,r9), ro > 0, and is o(|u|).
Suppose that oél)(xo ) =0(R) where Ul(ql)(x) is the (C,1) spherical mean of
rank R of sz et o (4) du. Then sz e‘(x’“)c(u)|u|'2du is spherically

convergent.

Without loss of generality, we assume xo to be the origin. Then with Ig(x)

given by (1) and 0;21)(x) by (2), we have

R
-2 .3 2
/l')z(o,R)C(U)lul du =2 /L.)Z(O'R)C(u)a'u/o. Xp, (0,r)(2)7*dr + R1g(0)
2 ("4 / (u) (u)du + R"21z(0)
=l T DZ(O,R)C u)Xp, (o,r)ru)au+ R
R
=2f 3 1,(0)dr + R"215 (0)
0

R
=4/ g (0)r 2 dr + o (0)R™? + R (0).
0
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Since by assumption 01(;) (0) =0(R), to prove the lemma it only remains to
show that [z (0) = 0 (R?). But

Ir(0) = LR +1)20{Y, (0) = RZo{D(0)T(2R + 1)

—-(2R+1)'1/ (W R+D2=]u|?1du =0 (R?),
Dy (0,R+1)-Dy(0,R)

and the proof is complete.

Levmma 2. Let ¢(u) be a complex-valued function which is integrable on
every bounded domain in E, and which vanishes in D,(0,ry ), ro > 0. Suppose

that
|o

(i) liTnR_.oo I(el)(xo) | = d where a}gl)(xo) is the (C, 1) spherical mean of
rank R of [, et 9) o (W) du and d is finite-valued.
n

(m—/E W) o () [ |2 du

n

is spherically uniformly convergent in Up(x0,t0), to > 0, to F(x).

Then —l_imt_,o | 20V, (Fy xo;t)/tzl < Kd where K is a constant independent of

xo and d.

(bserving that for fixed u
L(ei(x’U); xost) =21 (p + l)ei(u’xo)(luh)'ujﬂ( lule)
(see [1, p.1771]), we have by assumption (ii) for ¢ sufficiently small that

L(F;x95¢)

==2"T(p+1) Rlih’mao /Dn(O'R)ei(xo’”)c(u) lu 2T Clu o) (u | ) du

and consequently that

(4) (27) Vi (Fyx0;t)/t? = lim / ei(xo’U)c(u)n(lult)du
. R — o Dn(OrR)

where

n(r) =4Cp+ D1 =20 (p+ DI () r#)/r for r > 0, 9(0) =1,
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cte),

and 7(r) is in

Making the following observations:

(a) By the second mean-value theorem applied to the real and imaginary

parts of Ig(xo ) given by (1) and hypothesis (ii) we have Iz (xo) =0 (R?),

(b) For fixed ¢, n(Rt) =0(R?) and 5" (Rt) = O(R"5/%) where 1°(r) =
dn(r)/dr, we obtain from (4) that

(5) 9V, (Fy 205 2)/6%2 =270 [ 126 (x0) 63 6t (rt) dr
0 r

where o (r) =dr'tn’(r)/dr.

From the fact that o(z) is an entire function of the form Z:o:o bzt we

have that there exists a constant K; such that
(6) le(r)] < Kyr for r <1

From the fact that ]u(r) =0(r"?) as r — o, and

drrt () /dr == e (1),

we obtain that there exists a constant K, such that

(7) Lo ()| < Kol B4772) 4 151 forr > 1

From (5), (6), and (7), the conclusion of the lemma follows readily. For
given an € > 0, choose Ry so large that |Ug)(xo)l <d+efor R > Ry. Then

for t < R;', it is easily seen that
(8) |20V, (F; 50, ¢)/t2 | < K(d+€)+0(t*)

where K is a constant independent of xy, d, and €. Taking the limit superior
of the left side of (8) as t — 0 and then the limit of the right side as ¢ — 0,

we have the proof of the lemma.

LEMMA 3. Let the hypotheses be the same as in Lemma 2 except that
limg _, oo 05;)(960) =d. Then AF (%) =d.

For if d =0, the lemma follows immediately from Lemma 2. If d # 0, choose
c1(u) integrable on E,, vanishing for u in [E, - D,(0,2)]+ D,(0,1), and such
that [y e (u)ei@0o®) o4 Set Fy(x) == [, cy(u)|ul2e’®*) dy. Then
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0=A1E(xo)~A1F1(Xo)=A1F(x0)— AFl(x0)= AlF(xo)—-d.

LEMMA 4. Let c¢(u) be a complexwalued function which is integrable on
every bounded domain in E, and which vanishes in D,(0,rq), ro> 0. Suppose that

(i) U;Ql)(x), the (C,1) spherical mean of rank R of fEn ei(x’”)c(u)du,
is such that limg _, o |og)(xo)| =d.

(ii) c(u)|u|?is in Ly on En,.

(iii) —/ ei(xo’U)lul'zc(u)du
E

n
is spherically convergent to F(xo). Set

F(x):—l.i.m../;( R)ei(x’u)c(u)lu|'2du.
R — 00 n\0,

Then

lim 12(n+ D)V (Fyx0;5t)/t| < Kd

t—0
where K is a constant independent of x¢ and d.

Setting

TR(x)=—/ ei(xQU)c(u)lul-Zdu’
D, (0,R)
observing that A (F;xg;¢) = limg_, o A (TR ;%03 ¢t) and that for fixed u,
i(x,u) n t n-1 i(x,u)
ACe™ % xost) = w, /@, ¢ /r L&' %m0 ) dr
0

= 2R (e + 2) (Ja | ) T pry (Ju | 2) e x00n))
we obtain
(9) A(F;x05¢)

=~ lim 2~+lr<#+2)/( e e @l Gu e s (a0 du
Dy, (o,

R — o

and consequently
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2(n + 2)V, (Fyx03¢)/t? = lim / ei(xo’u)y({ult)c(u)du
R— oo Dn(O,R)

where

y(r) =4(u+ 2) (1= 2% (us 2) 7 7 L (D12 for > 0, y(0) =1,

and y(r) is in cl=),

Since y(r) has the same form as 7n(r) in Lemma 2 with p replaced by p + 1,

we can proceed as in that lemma and obtain

2n +2)Vy (Fyx03t)/t% = 2'1-/00 ¢3r? oﬁl)(xo)ﬁ(rt)dr

0

where B(r) =dr' y’(r)/dr. Then we can proceed in a similar manner to obtain
that for € > 0

lim |2(n +2)V (Fix0;¢)/t?| < K(d + €)

f— o0

where K is a constant independent of x¢, d, and €. Since ¢ is arbitrary the con-

clusion of the lemma follows.

LEMMA 5. Let the hypotheses be the same as in Lemma 4 except that
limp_, 00 0% (%0 ) =d. Then AyF (x0) = d.

In the same manner that we obtained Lemma 3 from Lemma 2, we obtain

Lemma 5 from Lemma 4.

LEMMA 6. Let F(x) be real-valued and continuous on En(xo,ro ), ro > O.
Suppose that

(i) A,F(x) =0 almost everywhere in Dp(x9,10)

(ii) lim |2(n +2)Vy(Fyx;r)/r?| < oo for all x in Dp(xg, 10 )s

r— oo

Then F(x) is harmonic in Dy (xq, 1o ).

Following the pattern of proof in [9], we give a proof forn > 3.

To prove the lemma, it is sufficient to show that ¥(x) is subharmonic in
Dy(xq, 10 ).

Set



CANTOR-TYPE UNIQUENESS OF MULTIPLE TRIGONOMETRIC INTEGRALS 615

f(x)=2(n+2)[ lim Yy (F;x;r)/r? + lim V5 (Fyx50) /72 1/2

r—o0 r—0

for x in U, (xg,r9). Then f (x) =0 almost everywhere in U, (xq;ro ).

By the theorem of Vitali-Caratheodory [16, p.75], there exists a sequence
of nondecreasing upper semicontinuous functions {g_(x)} such that g (x) <
f(x) for all x in Dp(xq,r0), gm(x) —> { (x) almost everywhere in D,(xq,ro ),

g,,(x) is integrable on Dy (xo, 70 ), and such that

lim / g (x)dx:/ f{x)dx forr <ry.
) o b7

m — 00 Dn xQ,T n \ X0, T

Set

A-lgm(x) =—{apln- 2)]-1'/D.n(x0’r0 gm(U)iu . lz'ndu.

Then A~ lgm(oc) is superharmonic, since gm(u) < 0 for almost all u in D, (xg, ro).

Furthermore, we observe that for fixed u
A()x —u|* ™ x05r) = |xo —u |*™if |xo —ul| > r
=27 r? 4w —u |2 (2=n)nt T i xg —u | <.
Consequently, for x; in Dy(x,r) with r sufficiently small,

|2-n

(D) g =lonn= 2T [ ) s,

2z,

—nr 2 [ 4 |21 —u]?(2=n)n"'1idu.

Suppose g (x1) is finite. Then by the upper semi-continuity of g, (u) at
x1, for € > 0 and r sufficiently small, we have from (11) that

Vg(A"gm;xl;r) <lg, (x) + elNlop(n=2)1 M oy(n-2)172/2(n +2).
Consequently, we conclude that

(12) ﬁZ(n+2)v2(A'1gm;x1;r)/r2 f_gm(xl).

r—o0

Similarly, in case gm(xl ) = -, conclusion (12) remains valid.
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From the fact that A'Igm(x) is superharmonic, we have that F - A’lgm is

upper semi-continuous in Dy, (xq, ro). From (12) we conclude that

Tim 2(n+2)V2(F—-A'Igm;x;r)/r2 >0 for x in D, (xq,ro) .

r—o0

Therefore by [8, p.14], {F ~ A'lgm} is a nondecreasing sequence of sub-
harmonic functions in D, (xo, ro ). But limy, _, o A'lgm(x) =0 almost everywhere.
Therefore F(x) is almost everywhere equal to a subharmonic function, G (x), by
[8, p.22]. But A(F;x;7) =A(G;x;7) — G(x) for all x in D,(xg, ro ). However
from the continuity of F we have 4 (F;x;r) — F(x), and the proof of the lemma
is complete for n > 3. For n = 2 a similar proof can be given with the Newtonian

potential replaced by the logarithmic potential.

For the case of the generalized Laplacian of the first kind, we have a similar

lemma with a similar proof, see [9].

LEMMA 7. Let F(x) be real-valued and continuous on En(xo, ro)y, ro > O.
Suppose that

(i) AF(x) =0 almost everywhere in Dy(x¢, 1o ).

(ii) lim |20V (Fy257)/r? | < @ for all x in Dy(x0;10 ).

r—o0

Then F(x) is harmonic in D,(xg, ro ).

We now prove some lemmas concerning the spherical summability (C,n) of

Fourier transforms.

LEMMA 8. Let G(x) be a function in Ly on E, which vanishes in D,(0,r,),

ro > 0. Suppose that F(x) = [, WG (W) du is in C® on E,. Then for u in
n
D,(0,r4/2) -0

(13) /E [eriW F (%) = (= e %) |4 |2 AF (%)) 1dx

is spherically summable (C,n) to zero.

For, by Green’s second identity, we have

(14) IR(u)=/D (0R)[e'i(x’”)F(x)—-(—e'i(x’”)|u|'2AF(x))]dx

=lul'2[R""/C . 1)F(Rx)i(x,u)e'iR(x’“)dSn.1(x)
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+ R ! / oy OF (Rx)/OR e'iR(x’u)dSn.l(x)] =|ul"2(Ag +Bg)
C,lo,1

where dS,_;(x) is the (n -~ 1) dimensional volume element on the unit sphere
C,(0,1),
We shall now show that both Ag and Bg are (C,n) summable to zero. For,

by Fubini’s theorem, we have

(15) (/liRz)"/w r¢n(-;-{-) A, dr
0

lx [\ _,
=(MR2)“'/ G( )[/ '(-— i uy) (x4 d |d
' En-D,(0,r9) Y E, n R Rl b

where M = (27)"/2/27 ' (n ~1)! and
1 for 0 <r <1 (1=r)™'  for0<r<l1

gf)l(r):[ ¢ (1) = [

0 forr > 1 0 forr > 1

Since for fixed u #0, (x,u) is a homogeneous polynomial which is also a
harmonic function in x, we have by [2, p.806] and [14, p.373] that the right
side of (15) is equal to

) (y ~uyu) ]n+u+x(Rl)’—u|)d}’

(16) —R'l./ y
Ep-Dy(0,rg) ly~u|"+1 (R|y—u|)"'#"2

Clearly (16) tends to zero as R — w; so Ag is (C,n) summable to zero

for u in D,(0,ro /2) - 0.

We also observe after integrating by parts that

2y-1 [ R r
(17)  (MR*) /(; rgz‘)n(R)B,dr

R d .
=(ZLIR2)"/; dr./(; 0. P = [rn qﬁn(é—)e'”("’”)]dsn_l(x).
r

n ’

From the above discussion concerning Ag and from [1, Theorem 1], to show
that Bg is (C,n) summable to zero for u in D,(0,ro/2) =0, it is sufficient to
show that
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e %) gy 50 as R — ®.

2
0w e[ rorg,, () <
n R

But by [2, p.806] and [ 14, p. 373 ] the expression in (18) is equal to

(19) R"/
En-Dp(0,r0) |y — g |-

G(y) Jnap(Rly—=ul)
K,
(R ly_ul)n-u-l

In+p-1(Rly-ul)
'—'Kz d’y.
(R |y=ul|™#%)

where K, and K, are two constants depending on n.

Clearly (19) tends to zero as R—> for u in D,(0,ro/2) —0; so Bg is

(C,n) summable to zero and the lemma is proved.

LEMMA 9. Let G(x) be a function in L, on E, which vanishes in Dp(0,ry),

ro > 0. Suppose that [ et G (%) dx is spherically convergent to a function
n
F(x) which is in C* on E,. Then for u in D,(0,ro/2) =0

./E‘[e'i(x’U)F(x)-(—-e'i(x’U)lurz)AF(x)]dx

is spherically summable (C,n) to zero.

For (14) also holds in this case, and as in Lemma 8, we have to show that

both A and Bg are (C, n) summable to zero.

Since both F(x) and ¢n(|x |/R)(x,u) are in L, on E,, Parseval’s formula
gives us both (15) and (16). We therefore conclude as before that Ag is (C,n)

summable to zero for u in D,(0,r¢/2) - 0.

To show that Bg is summable (C, n) to zero, we obtain (17) as in Lemma 8.
Then from the fact that Ag is (C,n) summable to zero and from [3, Theorem
551, it is sufficient once again to show that (18) holds.

But by Parseval’s formula, we obtain that the expression in (18) is equal
to (19). Observing that for u in D,(0,r/2) —= 0 and for y in E; — D,(0,r,) there

exists a constant K, such that
Wntp-1(Rly —u])| <Ku(Rly —u|)?/? for R > 1

and that for such u, |y -ull/z'” is in L, on E, = D,(0,r,), we conclude that
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(18) holds and consequently that Bg is (C, n) summable to zero, which proves
the lemma.

5. Proof of Theorem 1. To prove Theorem 1, it is sufficient to show that
for any ry > 0, ¢ (u) =0 almost everywhere in D,(0,r,/2). Set

i(x,u)__l__-
Fl(x)z—/ [e i(x,u)] () du

Dn(O,ro) lulz

Then, F;(x) is in C(w)on E, and

AFy (x) =/; ( )ei(x’”)c(u)du.
n\0,T0

Set

ix u)C(U/)
s I2

u

o,
2 (x) E,-D,(0,rq) |u

which is by (iii) continuous in E,. Then by LLemma 2 and (ii),

Tim ‘val(Fz;x;r)/rzl <

r—o0

in £, - Z and by Lemma 3 and (i), A; F,(x) =~ AF,(x) almost everywhere.

Set F(x)=F,(x)+ F,(x). Take any x, in E, and consider D,(xq,r1),
ry > 0. From the definition of a closed set of vanishing capacity, we see that

there is a closed bounded set of capacity zero Z; such that

Tim |22V, (F;257)/r? | < |AF ()] + lim |20V, (Fp;57)/r? | < 0

r—o0 r—0

for x in the domain G = D,(x¢,r1) = Z1D,(x,r;). Furthermore almost everywhere
in G, A{F(x) = AF;(x) + A{F,(x) = 0. Consequently it follows from Lemma 7,
that F(x) is harmonic in the domain G = D,(x¢,7r;) = Z1D,(xg, 7). But F(x)
is continuous in D,(xq,ry). Therefore by [7, p.335], F(x) is barmonic in

D,(x0,7;) and since xq is arbitrary, F (x) is harmonic in E,,.

From the fact that F(x) is harmonic in £,, we now have that F,(x) = F(x)
—Fi(x) is in c(*) on E, and that AF,(x) = - AF;(x) for all x. Also by [1,
Theorem 1] we obtain that
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(217)'”/ e B8 (1) du

n

is spherically summable (C,n) to zero for u in D,(0,ry/2) — 0. Therefore by

Lemma 8 for such u,

/ e-i(x,u) [-AF)(x)1dx

Eqn

is spherically summable (C,n) to zero. But for almost all such u, we have that

(27)™ / e'i(x’”)AFl(x)dx
E

n

is spherically summable (C,n) to ¢ (u). Since AF;(x) = — AF,(x), we conclude
that for almost all » in D, (0,r¢/2), ¢(u) = 0, which proves the theorem.

6. Proof of Theorem 2. The proof is quite similar to that of Theorem 1.

Once again it is sufficient to prove that for any ro > 0, ¢ (u) =0 almost every-

where in D,(0,rq/2).

Set
F*(x)="/ [ef®m) 1~ i(x,u)] ol du,
D, (0,rp) ME
and
Fy(x) == lim / ei(x,u)c("') "
R =00 YDy (0,r5)-Dp, (0,r) u|?

By (iii), #,(x) is continuous. Then in a manner exactly analogous to the proof
of Theorem 1 except that LLemmas 4, 5, and 6 are used instead of 2, 3, and 7,
we obtain that F,(x) is in €‘*) and that AF,(x) == AF;{(x). By Lemma 9
and [3, Theorem 55], we obtain that fEn e'i(x’u)[—AFz(x)]dx is spherically
summable (C,n) to zero for u in D,(0, ro/2) — 0. But by [1, Theorem 1] for

almost all such u, we have that

(27)7" / e'i(x’U)AFl(x)

n

is spherically summable (C,n) to c(u). Since ~AF,(x) = AF;(x), we con-
clude that ¢ (1) = 0 almost everywhere in D,(0,ro/2) and the theorem is proved.
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7. Proof of Theorem 3. Let Fy(x) be as in Theorem 2 with n replaced by
2, and let
c(u)

ei(x,u)

Fa(x) =~ lim
R > DZ(O'R)-D2(0:rO) |u|2

where ro > 0. This limit exists for x in Z by (ii) and for x not in Z by (i),
(iii), and Lemma 1. Furthermore by (ii) F,(x) is assumed continuous in E, — W,
It is clear from the proof of Theorem 2 that to prove this theorem we need only
show that F,(x) is continuous in £, or what is the same thing that F(x) =

Fi(x) + F;(x) is continuous in £,.

By (ii) F(x) is continuous in E, ~ W, and by Lemmas 5, AF(x) =0 in
E; —Z. Let Dy(xo,71) be any disc which has a null intersection with W. Then
as in the proof to Theorem 1, F(x) is harmonic in this disc and consequently
in £, —W. We also observe that now A,F(x) =0 in the whole plane and further-

more that F (x) is in L, on any bounded domain.

Let W; be the set of discontinuity points of F(x) and let xy be an isolated
point of W;. Then there is a closed disc 52(%0,7’2) whose intersection with
W\ is xo. Then by the above discussion we have that F (x) is in Ly on D2(xq,72),
harmonic in Dy (xg, r;) — %0, and satisfies the further condition that A,F (x4) = 0.
Consequently by [12, Lemma 4], F(x) is then harmonic in the whole disc and,

a fortiori, continuous at xg.

Therefore W;, has no isolated points and W, is a perfect set. But W, CWis
at most denumerable, and by [10, p.55], W, is then the empty set. Thus F(x)
is continuous in the whole plane, and, as mentioned above, the proof of this

theorem is reduced to that of Theorem 2.

8. Appendix. In closing we point out that the assumption W and Z have a
null intersection in Theorem 3 is a necessary one. For consider the double
trigonometric integral [, c(w)e!®®W gy with ¢(u)=1. (iii) and (iv) of
Theorem 3 are clearly satisfied. Observing that the spherical mean of rank R,

og)(x), with x # 0 is given by
og)(x) =4n],(|x|R)|x|"? =0(R"Y/?),

we see that (i) is satisfied with Z equal to the origin. Furthermore, we observe

that for x #0

lim

/ u|'2ei("’")du=2n/w Jo(r)rdr.
R o0 YD3(0,R)-D;(0,1) |2
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Consequently (ii) is satisfied with W consisting of the origin. But ¥ and Z do

not have a null intersection, and the conclusion of Theorem 3 does not hold.
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