ON HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH ARBITRARY CONSTANT COEFFICIENTS

A. SEIDENBERG

Let K be an arbitrary ordinary differential field – for our purposes it is sufficient to consider an arbitrary (algebraic) field K which is converted into a differential field by setting c'=0 for every $c \in K$. Let u be a differential indeterminate over K and let $u = u_0, u_1, \cdots$ represent the successive derivatives of u. Further, let c_0, \cdots, c_m be arbitrary constants over the field $K \langle u \rangle =$ $K(u_0, u_1, \cdots)$, that is, m + 1 further indeterminates with which we compute in the usual way, setting $c'_i = 0$. In addition to the ring $R = K\{u\} = K[u_0, u_1, \cdots]$, we will also be interested in the rings $R_{t+m} = K[u_0, u_1, \cdots, u_{t+m}]$. Theorems referring to some one of these rings R_{t+m} may, if convenient, be regarded as belonging to ordinary, rather than differential, algebra, but we will still apply the operation of differentiation to elements of R_{t+m} (not involving u_{t+m}). This then amounts to a convenience in writing formulas.

Let $l_0 = c_0 u_0 + \cdots + c_m u_m$. This element generates a prime differential ideal $[l_0] = (l_0, l_1, \cdots)$ in $S = K(c) \{u\}$, where $l_i = c_0 u_i + \cdots + c_m u_{i+m}$. We are interested in having explicitly a basis for $[l_0] \cap K\{u\}$. If $\Delta(u)$ is the determinant of coefficients of any m + 1 of the l_i regarded as linear forms in the c_j , then clearly $\Delta(u) \in [l_0] \cap K\{u\}$ and Theorem 2 below asserts that the $\Delta(u)$ obtained from all choices of the l_i form the required basis.

Let us confine ourselves to the rings R_{t+m} and $S_{t+m} = K(c)[u_0, \dots, u_{t+m}]$. In S_{t+m} , let $p = (l_0, \dots, l_t)$.

LEMMA 1. $p = (l_0, \dots, l_t)$ is an m-dimensional prime ideal in S_{t+m} .

Proof. Let $G(u_0, \dots, u_{t+m}) \in S_{t+m}$. Eliminating successively u_{t+m} , $u_{t+m-1}, \dots, u_m \mod (l_0, \dots, l_t)$, we may write $G(u_0, \dots, u_{t+m}) \equiv G_1(u_0, \dots, u_{m-1}) \mod (l_0, \dots, l_t)$, where $G_1 \in S_{t+m}$ is a polynomial in the indicated variables. Moreover, starting with indeterminate values ξ_i for u_i , $i = 0, \dots, m-1$, we can build up a zero $(\xi_0, \dots, \xi_{t+m})$ of p by defining ξ_m from the condition

Received December 7, 1953, This paper was written while the author was a Guggenheim Fellow.

Pacific J. Math. 5 (1955), 599-606

 $l_0(\xi) = 0$, and defining ξ_{m+i} successively from the condition $l_i(\xi) = 0$. Then $(\xi_0, \dots, \xi_{t+m})$ is clearly a general point of p, whence p is prime and m-dimensional.

LEMMA 2. Let $p \cap R_{t+m} = P$; and let $t \ge m - 1$. Then P is a 2m-dimensional prime ideal in R_{t+m} .

Proof. Consider the equations:

$$c_{0} \xi_{0} + \dots + c_{m} \xi_{m} = 0$$

$$c_{0} \xi_{1} + \dots + c_{m} \xi_{1+m} = 0$$

$$\vdots$$

$$c_{0} \xi_{m-1} + \dots + c_{m} \xi_{2m-1} = 0.$$

From these we are going to solve successively for the c_i , $i = 0, \dots, m-1$. Since $\xi_0 \neq 0$, we can solve for c_0 and find $c_0 \in K(c_1, \dots, c_m, \xi_0, \dots, \xi_m)$. Suppose in this way, solving successively for the c_i , we find

$$c_0, \dots, c_i \in K(c_{i+1}, \dots, c_m, \xi_0, \dots, \xi_{m+i}), \qquad i < m-1.$$

In fact, assume we have found inductively that

$$(A_i) c_0, \dots, c_i \in K(\xi_0, \dots, \xi_{2i+1}) \cdot c_{i+1} \\ + K(\xi_0, \dots, \xi_{2i+2}) \cdot c_{i+2} + \dots + K(\xi_0, \dots, \xi_{i+m}) \cdot c_m.$$

Since

dt
$$K(c_0, \dots, c_m, \xi_0, \dots, \xi_{m+i})/K(c_0, \dots, c_m) = m$$
 and

$$\mathrm{dt} \ K(c_0,\ldots,c_m)/K=m+1,$$

we have

dt
$$K(c_0, \dots, c_m, \xi_0, \dots, \xi_{m+i})/K = 2m + 1$$

= dt $K(c_{i+1}, \dots, c_m, \xi_0, \dots, \xi_{m+i})/K$,

where dt stands for "degree of transcendency". From this we see that ξ_0, \dots, ξ_{m+i} are algebraically independent over K (since the set $c_{i+1}, \dots, \xi_{m+i}$ has

600

2m + 1 members), in particular they are not zero. The coefficient of c_{i+1} in $l_{i+1}(\xi)$ is $\xi_{2(i+1)}$ plus a term in $K(\xi_0, \dots, \xi_{2i+1})$ arising from $c_0 \xi_{i+1} + \dots + c_i \xi_{2i+1}$, and since i+1 < m, we have 2(i+1) < m+i+1 and $\xi_{2(i+1)} \notin K(\xi_0, \dots, \xi_{2i+1})$. Hence $c_{i+1} \in K(c_{i+2}, \dots, \xi_{m+i+1})$; also A_{i+1} holds. Continuing, we have $c_0, \dots, c_{m-1} \in K(c_m, \xi_0, \dots, \xi_{2m-1})$. Hence ξ_0, \dots, ξ_{2m-1} are algebraically independent over K. Thus P is at least 2m-dimensional.

Let $\Delta_i(\xi)$, $i \ge m$, be the determinant of the coefficients of the forms $l_0(\xi), \ldots, l_{m-1}(\xi)$, $l_i(\xi)$ regarded as linear forms in c_0, \ldots, c_m ; that is,

$$\Delta_i(\xi) = \begin{cases} \xi_0 \cdots \xi_m \\ \xi_1 \cdots \xi_{1+m} \\ \cdots \\ \xi_{m-1} \cdots \xi_{2m-1} \\ \xi_i \cdots \xi_{i+m} \end{cases}$$

Then one finds $c_j \Delta_i(\xi) = 0$, so that $\Delta_i(\xi) = 0$. The coefficient of ξ_{i+m} in this equation is a polynomial in the indeterminates ξ_0, \dots, ξ_{2m-1} ; this coefficient contains the term $\xi_0 \xi_2 \dots \xi_{2m-2}$ and hence is not zero (therefore also $l_0(\xi), \dots, l_{m-1}(\xi)$ are linearly independent over $K(\xi)$). Thus P is at most 2*m*-dimensional, and hence exactly 2*m*-dimensional, Q.E.D.

LEMMA 3. Let M = M(u) be the matrix:

$$\left|\begin{array}{c}u_{0}\cdots u_{m}\\u_{1}\cdots u_{1+m}\\\cdots\\u_{m}\cdots u_{2m}\\\cdots\\u_{t}\cdots u_{t+m}\end{array}\right|, t \geq m.$$

Let A be the ideal generated in R_{t+m} by the $(m + 1) \times (m + 1)$ subdeterminants of M(u). Then $A \subseteq P$.

Proof. Since $l_0(\xi), \dots, l_{m-1}(\xi)$ are linearly independent over $K(\xi)$ (and in fact over any field containing $K(\xi)$) but $l_0(\xi), \dots, l_{m-1}(\xi)$, $l_i(\xi)$ are linearly dependent over $K(\xi)$, the matrix $M(\xi)$ has rank m. Hence $A \subseteq P$.

We want to prove A = P, in particular that A is prime. Conversely, if we

knew that A were prime, we could conclude immediately that A = P. In fact, suppose A is prime and let $\eta_0, \dots, \eta_{t+m}$ be a general point of A. Since A has a basis of forms of degree m + 1, no form of degree m vanishes at η . Hence all $m \times m$ subdeterminants of $M(\eta)$ differ from zero, and it follows that A is 2m-dimensional, whence A = P.

In proving A = P, we proceed by induction on m, the assertion being clearly true for m = 0. For given m, we proceed by induction on $t(t \ge m)$. For t = m, we have to prove the following lemma.

LEMMA 4. Let D be the determinant

$$\begin{vmatrix} u_0 \cdots u_m \\ u_1 \cdots u_1 + m \\ \cdot & \cdot \\ u_m \cdots u_{2m} \end{vmatrix}$$

Then D is different from zero and is irreducible in R_{2m} .

Proof. By induction on m, being trivial for m = 0. D is linear in u_0 , the coefficient δ of u_0 being different from zero and irreducible by induction: in particular, therefore, $D \neq 0$. Also D is linear in u_{2m} and the coefficient δ' of u_{2m} is irreducible. D is reducible if and only if δ is a factor of $D - u_0 \delta$, hence of D. Similarly for δ' . Now δ and δ' are not associates, since they are of different degree in u_0 . So D is reducible if and only if it is divisible by $\delta\delta'$. For m = 1, this means if and only if $u_0 u_2 - u_1^2$ is divisible by $u_0 u_2$. This is not the case. For m > 1, D is reducible only if it is of degree at least 2m, whereas it is of degree m + 1. Hence for every m, D is irreducible.

DEFINITION. An ideal is called homogeneous if it has a basis of forms. Similarly we call an ideal *isobaric* if it has a basis of isobaric polynomials.

LEMMA 5. A and P are homogeneous and isobaric.

Proof. A is clearly homogeneous. Moreover consider one of the $(m + 1) \times (m + 1)$ subdeterminants of M(u), say one involving the *i*th and *j*th rows, i < j. Then u_{i+k-2} is the element in the *i*th row and *k*th-column and u_{j+l-2} is the element in the *j*th row and *l*th column. Suppose k > l. The determinant in question has together with a term $\pi \cdot u_{i+k-2}u_{j+l-2}$ also a term $\pm \pi \cdot u_{i+l-2} \cdot u_{j+k-2}$, which is of the same weight. Hence if rows i_0, \dots, i_m are involved, each term has the weight of the term $u_{i_0}u_{i_1+1}u_{i_2+2}\cdots u_{i_m+m}$, that is, the determinant is

isobaric. Thus A is isobaric. As for P, we know that p is homogeneous, and from this and the fact that $P = p \cap R_{t+m}$ one concludes immediately that P also is homogeneous. To see that P is isobaric, let $g(u) \in P$ and write g(u) = $g_r(u) + g_{r+1}(u) + \cdots$, where $g_j(u)$ is zero or isobaric of weight j. It is clearly sufficient to prove $g_r(u) \in P$, assuming $g_r \neq 0$. Since $g(u) \in P$, we have

$$h(c)g(u) = \sum A_i(c, u) l_i(c, u),$$

where h(c) is a polynomial in the c_i alone, and the A_i are polynomials in the c_i and u_j . We assign to c_i the weight m - i. Let $h(c) = h_s(c) + h_{s+1}(c) + \cdots$, where $h_j(c)$ is zero or isobaric of weight j and $h_s(c) \neq 0$. Observe that the $l_i(c, u)$ are isobaric. Comparing terms of like weight on both sides of the above equation we see that $h_s(c)g_r(u) = \sum A_i(c, u)l_i(c, u)$. Hence $g_r(u) \in p$.

THEOREM 1. A = P. In particular, therefore, for m > 0, $A: u_0 = A$.

Proof. We proceed by induction on *m* and *t*, and first show that $A: u_0 = A$. Let ξ_0, \dots, ξ_{t+m} be the general zero of *P* introduced above. Let D(u) be the determinant occurring in Lemma 4. From $D(\xi) = 0$ we see that ξ_{2m} can be written as a quotient of two polynomials in the indeterminates ξ_0, \dots, ξ_{2m-1} , with the denominator being

$$\xi_0 \cdots \xi_{m-1}$$

$$\vdots$$

$$\xi_{m-1} \cdots \xi_{2m-2}$$

which is irreducible by Lemma 4. Hence we see that

$$\begin{vmatrix} \xi_2 \cdots \xi_{m+1} \\ \vdots & \vdots \\ \xi_{m+1} \cdots \xi_{2m} \end{vmatrix} \neq 0,$$

(for were it zero, then ξ_{2m} could be written as a quotient of two irreducible polynomials in ξ_1, \dots, ξ_{2m-1} , the denominator this time not being an associate of the other denominator). Hence ξ_0 is algebraic over $K(\xi_1, \dots, \xi_{t+m})$. Hence ξ_1, \dots, ξ_{t+m} defines a 2*m*-dimensional prime ideal P_1 in $K[u_1, \dots, u_{t+m}]$; and P_1 is generated by the $(m+1) \times (m+1)$ subdeterminants of M(u) which do not involve the first row of M(u). Designating also by P_1 , the extension of P_1 to $K[u_0, \dots, u_{t+m}]$, we see that $P_1 \subseteq A$. Let now $u_0g(u) \in A$. We write $u_0g(u) = \sum A_i(u) \Delta_i(u)$, where the $\Delta_i(u)$ are the $(m+1) \times (m+1)$ subdeterminants of M(u), and the A_i are polynomials. We write $A_i = A'_i + u_0 A''_i$, where A'_i does not involve u_0 . We then have $u_0(g(u) - \sum A''_i \Delta_i(u)) = \sum A'_i \Delta_i(u)$. The right hand side here is of degree at most one in u_0 , hence $g_1 = g(u) - \sum A''_i \Delta_i(u)$ does not involve $u_0: g_1 = g_1(u_1, \dots, u_{t+m})$. Now g(u) and $\Delta_i(u)$ vanish at ξ_0, \dots, ξ_{m+t} , hence so does g_1 ; that is, g_1 vanishes at ξ_1, \dots, ξ_{m+t} . Hence, $g_1 \in P_1$, whence $g \in A$. Hence $A: u_0 = A$.

As a corollary to the above we get that A: f = A for any polynomial $f \in R_{m+t}$ containing a term du_0^r , $d \in K$, $d \neq 0$ (m > 0). For suppose $fg \in A$: to prove $g \in A$. We may suppose f and g isobaric; and also homogeneous. We then get $du_0^r g \in A$, whence $g \in A$.

We proceed to prove that A is prime. Let $\overline{l_i} = l_i/u_0 = c_0 v_i + \cdots + c_m v_{i+m}$, where $v_i = u_i/u_0$. We pass to the rings $\overline{R}_{t+m} = K[v_1, \cdots, v_{t+m}]$ and $\overline{S}_{t+m} = K(c)[v]$. Observe that v_1, \cdots, v_{t+m} are algebraically independent over K. Let \overline{M} be the matrix of the coefficients of the $\overline{l_i}$, that is, the matrix:

$$\begin{vmatrix} 1 & v_1 & v_2 & \cdots & v_m \\ v_1 & v_2 & v_3 & \cdots & v_{1+m} \\ \cdot & \cdot & \cdot & \cdot \\ v_t & v_{t+1} & v_{t+2} \cdots & v_{t+m} \end{vmatrix}$$

and let A be the ideal generated in R_{t+m} by the $(m+1) \times (m+1)$ subdeterminants of M(v). Each such subdeterminant is a power of u_0 times an $(m+1) \times (m+1)$ subdeterminant of M(u); and vice-versa. It would therefore be sufficient to prove \overline{A} prime, in fact it would be sufficient to prove that the extension of A to the quotient ring Q of \overline{R}_{t+m} relative to the ideal (v_1, \dots, v_{t+m}) is prime. For suppose this proved and $g(u) h(u) \in A$, where we assume without loss of generality that g(u), h(u) are homogeneous. Dividing by appropriate powers of u_0 and setting

$$g(u)/u_0^r = \overline{g}(v), h(u)/u_0^s = h(v),$$

we get $\overline{g}(v)\overline{h}(v) \in \overline{A}$, whence by assumption $\overline{f}(v)\overline{g}(v)$ or $\overline{f}(v)\overline{h}(v)$, say $\overline{f}\overline{g}$ is in \overline{A} for some $\overline{f}(v) \in \overline{R}_{t+m}$, $\overline{f} \notin (v_1, \dots, v_m)$. Multiplying by a power of u_0 we find $u_0^{\rho} f(u)g(u) \in A$, where f(u) contains a term du_0^{σ} . Hence $g(u) \in A$.

The ideal \overline{A} in \overline{R}_{t+m} has $\xi_1/\xi_0, \dots, \xi_{t+m}/\xi_0$ as a zero, hence is at least (2m-1)-dimensional. Also \overline{A} remains at least (2m-1)-dimensional upon extension to Q. In fact, if $\xi_1/\xi_0, \dots, \xi_{t+m}/\xi_0$ determines \overline{P} in \overline{R}_{t+m} , then

 $\overline{P} \subseteq (v_1, \dots, v_{t+m})$, as one sees from the fact that ξ_0, \dots, ξ_{t+m} determines a homogeneous and isobaric ideal P and $u_0 \notin P$.

Subtracting v_i times the first row from the (i + 1)th row of \overline{M} , we get the matrix

$$\begin{vmatrix} 1 & v_1 & v_2 & \cdots & v_m \\ 0 & v_2 - v_1 v_1 & v_3 - v_1 v_2 & \cdots & v_{m+1} - v_1 v_m \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & v_{t+1} - v_t v_1 & v_{t+2} - v_t v_2 & \cdots & v_{t+m} - v_t v_m \end{vmatrix}$$

Each $(m + 1) \times (m + 1)$ subdeterminant of this matrix is also an $(m + 1) \times (m + 1)$ subdeterminant of M. Hence one sees that every $m \times m$ subdeterminant of the matrix

$$\begin{vmatrix} v_2 & v_3 & \cdots & v_{1+m} \\ \vdots & \vdots & \vdots & \vdots \\ v_{t+1} & v_{t+2} & \cdots & v_{t+m} \end{vmatrix}$$

is a leading-form of an element in $Q \cdot \overline{A}$. These $m \times m$ subdeterminants generate, by induction, a 2(m-1)-dimensional prime ideal in $K[v_2, \dots, v_{t+m}]$, and hence a (2m-1)-dimensional prime ideal \overline{q} in $K[v_1, \dots, v_{t+m}]$. The leading form ideal of \overline{A} contains or equals \overline{q} . If it contained \overline{q} properly, it would be of dimension less than 2m-1. But an ideal and its leading form ideal have the same dimension [1; Satz 8]. Hence \overline{q} is the leading-form ideal of \overline{A} and \overline{A} is (2m-1)-dimensional.

Moreover A is prime. For quite generally in a local ring, if an ideal A has a prime ideal \overline{q} as leading form ideal, it must itself be prime. In fact, suppose $gh \in \overline{A}$, $g \notin \overline{A}$, $h \notin \overline{A}$. Then the leading form ideal $LFI(\overline{A}, g)$ of (\overline{A}, g) contains \overline{q} properly, and likewise for (\overline{A}, h) . But $LFI(\overline{A}, g) \times LFI(\overline{A}, h) \subseteq LFI((\overline{A}, g) \times (\overline{A}, h)) \subseteq LFI\overline{A} = \overline{q}$, a contradiction. Hence \overline{A} is prime, and the proof is complete.

The following theorem is an immediate consequence of Theorem 1.

THEOREM 2. A basis for $[l_0] \cap K\{u\}$ is given by the $(m + 1) \times (m + 1)$ subdeterminants of the $\infty \times (m + 1)$ matrix

. .

A. SEIDENBERG

Reference

1. W. Krull, Dimensionstheorie in Stellenringen, J. Reine angew. Math. 179 (1938), 204-226.

UNIVERSITY OF CALIFORNIA; BERKELEY, CALIFORNIA