ON HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH ARBITRARY CONSTANT COEFFICIENTS

A. Seidenberg

Let K be an arbitrary ordinary differential field - for our purposes it is sufficient to consider an arbitrary (algebraic) field K which is converted into a differential field by setting $c^{\prime}=0$ for every $c \in K$. Let u be a differential indeterminate over K and let $u=u_{0}, u_{1}, \cdots$ represent the successive derivatives of u. Further, let c_{0}, \cdots, c_{m} be arbitrary constants over the field $K\langle u\rangle=$ $K\left(u_{0}, u_{1}, \cdots\right)$, that is, $m+1$ further indeterminates with which we compute in the usual way, setting $c_{i}^{\prime}=0$. In addition to the ring $R \triangleq K\{u\}=K\left[u_{0}, u_{1}, \cdots\right]$, we will also be interested in the rings $R_{t+m}=K\left[u_{0}, u_{1}, \cdots, u_{t+m}\right]$. Theorems referring to some one of these rings R_{t+m} may, if convenient, be regarded as belonging to ordinary, rather than differential, algebra, but we will still apply the operation of differentiation to elements of R_{t+m} (not involving u_{t+m}). This then amounts to a convenience in writing formulas.

Let $l_{0}=c_{0} u_{0}+\cdots+c_{m} u_{m}$. This element generates a prime differential ideal $\left[l_{0}\right]=\left(l_{0}, l_{1}, \ldots\right)$ in $S=K(c)\{u\}$, where $l_{i}=c_{0} u_{i}+\cdots+c_{m} u_{i+m}$. We are interested in having explicitly a basis for $\left[l_{0}\right] \cap K\{u\}$. If $\Delta(u)$ is the determinant of coefficients of any $m+1$ of the l_{i} regarded as linear forms in the c_{j}, then clearly $\Delta(u) \in\left[l_{0}\right] \cap K\{u\}$ and Theorem 2 below asserts that the $\Delta(u)$ obtained from all choices of the l_{i} form the required basis.

Let us confine ourselves to the rings R_{t+m} and $S_{t+m}=K(c)\left[u_{0}, \cdots, u_{t+m}\right]$. In S_{t+m}, let $p=\left(l_{0}, \cdots, l_{t}\right)$.

Lemma 1. $p=\left(l_{0}, \cdots, l_{t}\right)$ is an m-dimensional prime ideal in S_{t+m}.
Proof. Let $G\left(u_{0}, \cdots, u_{t+m}\right) \in S_{t+m}$. Eliminating successively u_{t+m}, $u_{t+m-1}, \cdots, u_{m} \bmod \left(l_{0}, \cdots, l_{t}\right)$, we may write $G\left(u_{0}, \cdots, u_{t+m}\right) \equiv G_{1}\left(u_{0}, \cdots\right.$, $\left.u_{m-1}\right) \bmod \left(l_{0}, \cdots, l_{t}\right)$, where $G_{1} \in S_{t+m}$ is a polynomial in the indicated variables. Moreover, starting with indeterminate values ξ_{i} for $u_{i}, i=0, \cdots, m-l$, we can build up a zero ($\xi_{0}, \cdots, \xi_{t+m}$) of p by defining ξ_{m} from the condition

Received December 7, 1953, This paper was written while the author was a Guggenheim Fellow.

Pacific J. Math. 5 (1955), 599-606
$l_{0}(\xi)=0$, and defining ξ_{m+i} successively from the condition $l_{i}(\xi)=0$. Then $\left(\xi_{0}, \cdots, \xi_{t+m}\right)$ is clearly a general point of p, whence p is prime and m-dimensional.

Lemma 2. Let $p \cap R_{t^{+} m}=P$; and let $t \geq m-1$. Then P is a $2 m$-dimensional prime ideal in R_{t+m}.

Proof. Consider the equations:

$$
\begin{gathered}
c_{0} \xi_{0}+\cdots+c_{m} \xi_{m}=0 \\
c_{0} \xi_{1}+\cdots+c_{m} \xi_{1+m}=0 \\
\vdots \\
c_{0} \xi_{m-1}+\cdots+c_{m} \xi_{2 m-1}=0 .
\end{gathered}
$$

From these we are going to solve successively for the $c_{i}, i=0, \cdots, m-1$. Since $\xi_{0} \neq 0$, we can solve for c_{0} and find $c_{0} \in K\left(c_{1}, \cdots, c_{m}, \xi_{0}, \cdots, \xi_{m}\right)$. Suppose in this way, solving successively for the c_{i}, we find

$$
c_{0}, \cdots, c_{i} \in K\left(c_{i+1}, \cdots, c_{m}, \xi_{0}, \cdots, \xi_{m+i}\right), \quad i<m-1
$$

In fact, assume we have found inductively that

$$
\begin{align*}
& c_{0}, \cdots, c_{i} \in K\left(\xi_{0}, \cdots, \xi_{2 i+1}\right) \cdot c_{i+1} \tag{i}\\
& \quad+K\left(\xi_{0}, \cdots, \xi_{2 i+2}\right) \cdot c_{i+2}+\cdots+K\left(\xi_{0}, \cdots, \xi_{i+m}\right) \cdot c_{m}
\end{align*}
$$

Since
$\mathrm{dt} K\left(c_{0}, \cdots, c_{m}, \xi_{0}, \cdots, \xi_{m+i}\right) / K\left(c_{0}, \cdots, c_{m}\right)=m$ and

$$
\text { dt } K\left(c_{0}, \cdots, c_{m}\right) / K=m+1 \text {, }
$$

we have

$$
\begin{aligned}
& \text { dt } K\left(c_{0}, \cdots, c_{m}, \xi_{0}, \cdots, \xi_{m+i}\right) / K=2 m+1 \\
& \quad=\operatorname{dt} K\left(c_{i+1}, \cdots, c_{m}, \xi_{0}, \cdots, \xi_{m+i}\right) / K
\end{aligned}
$$

where dt stands for "degree of transcendency". From this we see that ξ_{0}, \ldots, ξ_{m+i} are algebraically independent over K (since the set $c_{i+1}, \cdots, \xi_{m+i}$ has
$2 m+1$ members), in particular they are not zero. The coefficient of c_{i+1} in $l_{i+1}(\xi)$ is $\xi_{2(i+1)}$ plus a term in $K\left(\xi_{0}, \cdots, \xi_{2 i+1}\right)$ arising from $c_{0} \xi_{i+1}+\cdots+$ $c_{i} \xi_{2 i+1}$, and since $i+1<m$, we have $2(i+1)<m+i+1$ and $\xi_{2(i+1)} \notin$ $K\left(\xi_{0}, \cdots, \xi_{2 i+1}\right)$. Hence $c_{i+1} \in K\left(c_{i+2}, \cdots, \xi_{m+i+1}\right)$; also A_{i+1} holds. Continuing, we have $c_{0}, \cdots, c_{m-1} \in K\left(c_{m}, \xi_{0}, \cdots, \xi_{2 m-1}\right)$. Hence $\xi_{0}, \cdots, \xi_{2 m-1}$ are algebraically independent over K. Thus P is at least $2 m$-dimensional.

Let $\Delta_{i}(\xi), i \geq m$, be the determinant of the coefficients of the forms $l_{0}(\xi), \ldots, l_{m-1}(\xi), l_{i}(\xi)$ regarded as linear forms in c_{0}, \cdots, c_{m}; that is,

$$
\Delta_{i}(\xi)=\left|\begin{array}{c}
\xi_{0} \cdots \xi_{m} \\
\xi_{1} \cdots \xi_{1+m} \\
\cdots \\
\xi_{m-1} \cdots \xi_{2 m-1} \\
\xi_{i} \cdots \xi_{i+m}
\end{array}\right|
$$

Then one finds $c_{j} \Delta_{i}(\xi)=0$, so that $\Delta_{i}(\xi)=0$. The coefficient of ξ_{i+m} in this equation is a polynomial in the indeterminates $\xi_{0}, \cdots, \xi_{2 m-1}$; this coefficient contains the term $\xi_{0} \xi_{2} \ldots \xi_{2 m-2}$ and hence is not zero (therefore also $l_{0}(\xi), \ldots, l_{m-1}(\xi)$ are linearly independent over $\left.K(\xi)\right)$. Thus P is at most $2 m$-dimensional, and hence exactly $2 m$-dimensional, Q.E.D.

Lemma 3. Let $M=M(u)$ be the matrix:

$$
\left\|\begin{array}{c}
u_{0} \cdots u_{m} \\
u_{1} \cdots u_{1+m} \\
\cdots \\
u_{m} \cdots u_{2 m} \\
\cdots \\
u_{t} \cdots u_{t+m}
\end{array}\right\|, t \geq m
$$

Let A be the ideal generated in R_{t+m} by the $(m+1) \times(m+1)$ subdeterminants of $M(u)$. Then $A \subseteq P$.

Proof. Since $l_{0}(\xi), \cdots, l_{m-1}(\xi)$ are linearly independent over $K(\xi)$ (and in fact over any field containing $K(\xi))$ but $l_{0}(\xi), \cdots, l_{m-1}(\xi), l_{i}(\xi)$ are linearly dependent over $K(\xi)$, the matrix $M(\xi)$ has rank m. Hence $A \subseteq P$.

We want to prove $A=P$, in particular that A is prime. Conversely, if we
knew that A were prime, we could conclude immediately that $A=P$. In fact, suppose A is prime and let $\eta_{0}, \cdots, \eta_{t+m}$ be a general point of A. Since A has a basis of forms of degree $m+1$, no form of degree m vanishes at η. Hence all $m \times m$ subdeterminants of $M(\eta)$ differ from zero, and it follows that A is $2 m$ dimensional, whence $A=P$.

In proving $A=P$, we proceed by induction on m, the assertion being clearly true for $m=0$. For given m, we proceed by induction on $t(t \geq m)$. For $t=m$, we have to prove the following lemma.

Lemma 4. Let D be the determinant

$$
\left|\begin{array}{c}
u_{0} \cdots u_{m} \\
u_{1} \cdots u_{1+m} \\
\cdot \cdot \\
u_{m} \cdots u_{2 m}
\end{array}\right|
$$

Then D is different from zero and is irreducible in $R_{2 m}$.
Proof. By induction on m, being trivial for $m=0 . D$ is linear in u_{0}, the coefficient δ of u_{0} being different from zero and irreducible by induction: in particular, therefore, $D \neq 0$. Also D is linear in $u_{2 m}$ and the coefficient δ^{\prime} of $u_{2 m}$ is irreducible. D is reducible if and only if δ is a factor of $D-u_{0} \delta$, hence of D. Similarly for δ^{\prime}. Now δ and δ^{\prime} are not associates, since they are of different degree in u_{0}. So D is reducible if and only if it is divisible by $\delta \delta^{\prime}$. For $m=1$, this means if and only if $u_{0} u_{2}-u_{1}^{2}$ is divisible by $u_{0} u_{2}$. This is not the case. For $m>1, D$ is reducible only if it is of degree at least $2 m$, whereas it is of degree $m+l$. Hence for every m, D is irreducible.

Definition. An ideal is called homogeneous if it has a basis of forms. Similarly we call an ideal isobaric if it has a basis of isobaric polynomials.

Lemma 5. A and P are homogeneous and isobaric.
Proof. A is clearly homogeneous. Moreover consider one of the $(m+1) \times$ $(m+1)$ subdeterminants of $M(u)$, say one involving the i th and j th rows, $i<j$. Then u_{i+k-2} is the element in the i th row and $l i$ th-column and u_{j+l-2} is the element in the j th row and l th column. Suppose $k>l$. The determinant in question has together with a term $\pi \cdot u_{i+k-2} u_{j}+l-2$ also a term $\pm \pi \cdot u_{i}+l-2 \cdot u_{j+k-2}$, which is of the same weight. Hence if rows i_{0}, \cdots, i_{m} are involved, each term has the weight of the term $u_{i_{0}} u_{i_{1}+1} u_{i_{2}+2} \cdots u_{i_{m}+m}$, that is, the determinant is
isobaric. Thus A is isobaric. As for P, we know that p is homogeneous, and from this and the fact that $P=p \cap R_{t+m}$ one concludes immediately that P also is homogeneous. To see that P is isobaric, let $g(u) \in P$ and write $g(u)=$ $g_{r}(u)+g_{r+1}(u)+\cdots$, where $g_{j}(u)$ is zero or isobaric of weight j. It is clearly sufficient to prove $g_{r}(u) \in P$, assuming $g_{r} \neq 0$. Since $g(u) \in P$, we have

$$
h(c) g(u)=\sum A_{i}(c, u) l_{i}(c, u),
$$

where $h(c)$ is a polynomial in the c_{i} alone, and the A_{i} are polynomials in the c_{i} and u_{j}. We assign to c_{i} the weight $m-i$. Let $h(c)=h_{s}(c)+h_{s}+1(c)+\cdots$, where $h_{j}(c)$ is zero or isobaric of weight j and $h_{s}(c) \neq 0$. Observe that the $l_{i}(c, u)$ are isobaric. Comparing terms of like weight on both sides of the above equation we see that $h_{s}(c) g_{r}(u)=\sum A_{i}^{\prime}(c, u) l_{i}(c, u)$. Hence $g_{r}(u) \in p$.

Theorem 1. $A=P$. In particular, therefore, for $m>0, A: u_{0}=A$.
Proof. We proceed by induction on m and t, and first show that $A: u_{0}=A$. Let $\xi_{0}, \cdots, \xi_{t+m}$ be the general zero of P introduced above. Let $D(u)$ be the determinant occurring in Lemma 4. From $D(\xi)=0$ we see that $\xi_{2 m}$ can be written as a quotient of two polynomials in the indeterminates $\xi_{0}, \cdots, \xi_{2 m-1}$, with the denominator being

$$
\left|\begin{array}{ccc}
\xi_{0} & \cdots & \xi_{m-1} \\
\cdot & \cdot & \cdot \\
\xi_{m-1} & \cdots & \xi_{2 m-2}
\end{array}\right|
$$

which is irreducible by Lemma 4 . Hence we see that

$$
\left|\begin{array}{ccc}
\xi_{2} & \cdots & \xi_{m+1} \\
\cdot & \cdot & \cdot \\
\xi_{m+1} & \cdots & \xi_{2 m}
\end{array}\right| \neq 0
$$

(for were it zero, then $\xi_{2 m}$ could be written as a quotient of two irreducible polynomials in $\xi_{1}, \cdots, \xi_{2 m-1}$, the denominator this time not being an associate of the other denominator $)$. Hence ξ_{0} is algebraic over $K\left(\xi_{1}, \cdots, \xi_{t+m}\right)$. Hence $\xi_{1}, \cdots, \xi_{t+m}$ defines a $2 m$-dimensional prime ideal P_{1} in $K\left[u_{1}, \cdots, u_{t+m}\right]$; and P_{1} is generated by the $(m+1) \times(m+1)$ subdeterminants of $M(u)$ which do not involve the first row of $M(u)$. Designating also by P_{1}, the extension of P_{1} to $K\left[u_{0}, \cdots, u_{t+m}\right]$, we see that $P_{1} \subseteq A$. Let now $u_{0} g(u) \in A$. We write
$u_{0} g(u)=\sum A_{i}(u) \Delta_{i}(u)$, where the $\Delta_{i}(u)$ are the $(m+1) \times(m+1)$ subdeterminants of $M(u)$, and the A_{i} are polynomials. We write $A_{i}=A_{i}^{\prime}+u_{0} A_{i}^{\prime \prime}$, where A_{i}^{\prime} does not involve u_{0}. We then have $u_{0}\left(g(u)-\sum A_{i}^{\prime \prime} \Delta_{i}(u)\right)=\sum_{i}^{i} A_{i} \Delta_{i}(u)$. The right hand side here is of degree at most one in u_{0}, hence $g_{1}=g(u)-$ $\sum A_{i}{ }^{\prime \prime} \Delta_{i}(u)$ does not involve $u_{0}: g_{1}=g_{1}\left(u_{1}, \cdots, u_{t+m}\right)$. Now $g(u)$ and $\Delta_{i}(u)$ vanish at $\xi_{0}, \cdots, \xi_{m+t}$, hence so does g_{1}; that is, g_{1} vanishes at $\xi_{1}, \cdots, \xi_{m+t^{*}}$ Hence, $g_{1} \in P_{1}$, whence $g \in A$. Hence $A: u_{0}=A$.

As a corollary to the above we get that $A: f=A$ for any polynomial $f \in R_{m+t}$ containing a term $d u_{0}^{r}, d \in K, d \neq 0(m>0)$. For suppose $f g \in A$: to prove $g \in A$. We may suppose f and g isobaric; and also homogeneous. We then get $d u_{0}^{r} g \in A$, whence $g \in A$.

We proceed to prove that A is prime. Let $\bar{l}_{i}=l_{i} / u_{0}=c_{0} v_{i}+\cdots+c_{m} v_{i+m}$, where $v_{i}=u_{i} / u_{0}$. We pass to the rings $\bar{R}_{t+m}=K\left[v_{1}, \cdots, v_{t+m}\right]$ and $\bar{S}_{t+m}=$ $K(c)[v]$. Observe that v_{1}, \cdots, v_{t+m} are algebraically independent over K. Let \bar{M} be the matrix of the coefficients of the \bar{l}_{i}, that is, the matrix:

$$
\left\|\begin{array}{ccccc}
1 & v_{1} & v_{2} & \cdots & v_{m} \\
v_{1} & v_{2} & v_{3} & \cdots & v_{1+m} \\
\cdot & & \cdot & & \cdot \\
v_{t} & v_{t+1} & v_{t+2} & \cdots & v_{t+m}
\end{array}\right\|
$$

and let A be the ideal generated in R_{t+m} by the $(m+1) \times(m+1)$ subdeterminants of $M(v)$. Each such subdeterminant is a power of u_{0} times an $(m+1) \times$ ($m+1$) subdeterminant of $M(u)$; and vice-versa. It would therefore be sufficient to prove \bar{A} prime, in fact it would be sufficient to prove that the extension of A to the quotient ring Q of \bar{R}_{t+m} relative to the ideal (v_{1}, \cdots, v_{t+m}) is prime. For suppose this proved and $g(u) h(u) \in A$, where we assume without loss of generality that $g(u), h(u)$ are homogeneous. Dividing by appropriate powers of u_{0} and setting

$$
g(u) / u_{0}^{r}=\bar{g}(v), h(u) / u_{0}^{s}=\bar{h}(v),
$$

we get $\bar{g}(v) \bar{h}(v) \in \bar{A}$, whence by assumption $\bar{f}(v) \bar{g}(v)$ or $\bar{f}(v) \bar{h}(v)$, say $\bar{f} \bar{g}$ is in \bar{A} for some $\bar{f}(v) \in \bar{R}_{t+m}, \bar{f} \notin\left(v_{1}, \cdots, v_{m}\right)$. Multiplying by a power of u_{0} we find $u_{0}^{\rho} f(u) g(u) \in A$, where $f(u)$ contains a term $d u_{0}^{\sigma}$. Hence $g(u) \in A$.

The ideal \bar{A} in \bar{R}_{t+m} has $\xi_{1} / \xi_{0}, \ldots, \xi_{t+m} / \xi_{0}$ as a zero, hence is at least ($2 m-1$)-dimensional. Also A remains at least ($2 m-1$)-dimensional upon extension to Q. In fact, if $\xi_{1} / \xi_{0}, \cdots, \xi_{t+m} / \xi_{0}$ determines \bar{P} in \bar{R}_{t+m}, then
$\bar{P} \subseteq\left(v_{1}, \cdots, v_{t+m}\right)$, as one sees from the fact that $\xi_{0}, \ldots, \xi_{t+m}$ determines a homogeneous and isobaric ideal P and $u_{0} \notin P$.

Subtracting v_{i} times the first row from the $(i+1)$ th row of \bar{M}, we get the matrix

$$
\left\|\begin{array}{cccc}
1 & v_{1} & v_{2} & \cdots v_{m} \\
0 & v_{2}-v_{1} v_{1} & v_{3}-v_{1} v_{2} & \cdots \cdot v_{m+1}-v_{1} v_{m} \\
\cdot & \cdot & \cdot & \cdots \\
0 & v_{t+1}-v_{t} v_{1} & v_{t+2}-v_{t} v_{2} & \cdots v_{t+m}-v_{t} v_{m}
\end{array}\right\|
$$

Each $(m+1) \times(m+1)$ subdeterminant of this matrix is also an $(m+1) \times$ $(m+1)$ subdeterminant of M. Hence one sees that every $m \times m$ subdeterminant of the matrix

$$
\left\|\begin{array}{lccc}
v_{2} & v_{3} & \cdots & v_{1+m} \\
\cdot & \cdot & \cdot & \cdot \\
v_{t+1} & v_{t+2} & \cdots & v_{t+m}
\end{array}\right\|
$$

is a leading-form of an element in $Q \cdot \bar{A}$. These $m \times m$ subdeterminants generate, by induction, a $2(m-1)$-dimensional prime ideal in $K\left[v_{2}, \ldots, v_{t+m}\right]$, and hence a $(2 m-1)$-dimensional prime ideal \bar{q} in $K\left[v_{1}, \ldots, v_{t+m}\right]$. The leading form ideal of \bar{A} contains or equals \bar{q}. If it contained \bar{q} properly, it would be of dimension less than $2 m-1$. But an ideal and its leading form ideal have the same dimension [1; Satz 8]. Hence \bar{q} is the leading-form ideal of \bar{A} and \bar{A} is ($2 m-1$)-dimensional.

Moreover A is prime. For quite generally in a local ring, if an ideal \bar{A} has a prime ideal \bar{q} as leading form ideal, it must itself be prime. In fact, suppose $g h \in \bar{A}, g \notin \bar{A}, h \notin \bar{A}$. Then the leading form ideal $L F I(\bar{A}, g)$ of (\bar{A}, g) contains \bar{q} properly, and likewise for (\bar{A}, h). But $\operatorname{LFI}(\bar{A}, g) \times \operatorname{LFI}(\bar{A}, h) \subseteq \operatorname{LFI}((\bar{A}, g) \times$ $(\bar{A}, h)) \subseteq L F I \bar{A}=\bar{q}$, a contradiction. Hence \bar{A} is prime, and the proof is complete.

The following theorem is an immediate consequence of Theorem 1.
Theorem 2. A basis for $\left[l_{0}\right] \cap K\{u\}$ is given by the $(m+1) \times(m+1)$ subdeterminants of the $\infty \times(m+1)$ matrix

$$
\left\|\begin{array}{cccc}
u_{0} & u_{1} & \cdots & u_{m} \\
u_{1} & u_{2} & \cdots & u_{i+m} \\
\cdot & \cdot & \cdot
\end{array}\right\|
$$

Reference

1. W. Krull, Dimensionstheorie in Stellenringen, J. Reine angew. Math. 179 (1938), 204-226.

UNiversity of California;
Berkeley, California

