
AN INEQUALITY FOR SETS OF INTEGERS

PETER SCHERK

Small italics denote nonnegative integers. Let A = {a ί, B = { b ! , be sets

of such integers. Define A + B = 1 a + b \ and put

Thus

/4 ( n ) = /I (0, n ) and A(mtn) ** A(n) —A ( m ) if m < n.

The following estimate is well known:

LEMMA. If m < k< n, n fi A + B, then

(1) k-m>_A(n-k-l, n-m-D +B(m9 k).

Proof. If b = rc —α, then n = α + !) E/l + β . Hence the ̂ 4 (/z. — Λ; — 1, n — m — 1)

numbers rc — α with m < n —a <^k and the B (m9 k) numbers b satisfying m < b <_ k

are mutually distinct. The right hand term of (1) gives their total number. It is

not greater than the number k — m of all the integers z with m < z <_ k.

The most important result on A + B is due to Mann [2] : Let n fc C = A -f β.

Then there exists an m satisfying 0 <̂  m < n and n — m ft. C such that

C{m9n) ^Ain-m-D + Bίn-m-D.

I wish to prove a less well known inequality which is implicitly contained

in [4] and in a paper by Mann [3], The present proof uses an idea by Besicovitch

and is rather simpler than Mann's method [cf. l ]

THEOREM 1. Let

(2) xeA ( % = 0 , l , 2 , . . .,A; h > 0 ) ,
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( 3 ) 0 G B or 1 G B9

( 4 ) AΪBCC, n £ C.

Finally let

(5) C(n) < AU-Ό + BU).

Then there is an m satisfying

(6) m £ C9 0 < m < n - h - I

such that

( 7 ) C(m9n) >_A(n-m-l) +B(m,n).

We note that ( 7 ) is trivial but useless without the second half of ( 6 ) .

Obviously, ( 2 ) - ( 4 ) imply m > h if 0 G B and m > h + 1 if 1 G B.

Proof. Instead of ( 3 ) , we merely use the weaker assumption that B is not

empty. Let 60 denote the largest b <^n. Thus B(bo9n) = 0. Since C contains

the integers 60 + a with 0 < a <^ n — bo, we have

(8) C(bo,n) >_A(n-b0) > A (n - bQ - 1) = A U - b0 - 1) + B (bθ9 n).

From ( 5 ) and ( 8 ) , b0 > 0. By ( 2 ) , the numbers bOf b0 + 1, , b0 + h lie in

A + B C C. Hence n jέ C implies 6 0 <. τι - A - 1. Thus

( 9 ) 0 < 60 < / ι - A - l .

By ( 2 ) , b0 £C. Let m denote the greatest z < b0 with z j£ C. If no such

z exists, put m = 0. Applying ( 1 ) with k = &o> w e obtain

(10) C ( m 9 b o ) = b 0 - m > A ( n - b 0 - 1 , n - m - 1 ) + B ( m 9 b 0 ) .

Adding ( 8 ) and (10) , we obtain

C(m9 b0) + C(bθ9n) >_ A (n - b0 -~ I) + A {n - bo - I, n - m - I)

+ B(m9 b0 ) + B(bθ9n)f

that i s (7). By ( 7 ) and ( 5 ) , m > 0. Hence m fi C. Final ly ( 9 ) and m < b0 imply

m < n - h — 1.

The following corollary of Theorem 1 was proved in a different way by Mann.
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T H E O R E M 2. Suppose the sets A, B, C satisfy the assumptions ( 2 ) - ( 4 ) .

Let 0 < 0Ci < 1 and

(11) Λ{x) > ux{x + 1 ) U = A + 1, A + 2 , . . . , Λ ) .

( 1 2 ) C U )

Proof . By ( 2 ) , OeΛ. F u r t h e r m o r e , ( 1 1 ) and ( 2 ) imply ISA. H e n c e , ( 3 )

i m p l i e s 1 £ C. T h u s our t h e o r e m i s t r u e for n = 1. S u p p o s e i t i s p r o v e d up to

τ ι - 1 > 1.

If C(n) >_A(n-l) + B(n), t h e n ( 1 1 ) with x = n~l y i e l d s ( 1 2 ) . T h u s we

may a s s u m e ( 5 ) . C h o o s e m a c c o r d i n g to T h e o r e m 1. By ( 6 ) , n — m — 1 >_ A + 1.

H e n c e , by ( 7 ) , ( 1 1 ) , a n d our i n d u c t i o n a s s u m p t i o n

C(n) >_C{m)+A{n-m~l)+B(m9n)

>_C(m) + α t (7i - m ) + B(m9n)

The case h = 0 of Theorem 2 is due to Besicovitch [ 1 ]. Obviously, this

theorem can be extended to the case that 0 j£ B$ B in) > 0.

A recent result by Stalley also follows readily from Theorem 1.
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