AN INEQUALITY FOR SETS OF INTEGERS

PETER SCHERK

Small italics denote nonnegative integers. Let $A = \{a\}, B = \{b\}, \dots$ be sets of such integers. Define $A + B = \{a + b\}$ and put

$$A(n) = \sum_{0 \le a \le n} 1 \quad \text{and} \quad A(m, n) = \sum_{m \le a \le n} 1.$$

Thus

A(n) = A(0, n) and A(m, n) = A(n) - A(m) if $m \le n$.

The following estimate is well known:

LEMMA. If
$$m < k < n$$
, $n \notin A + B$, then
(1) $k - m \ge A(n - k - 1, n - m - 1) + B(m, k)$.

Proof. If b = n - a, then $n = a + b \in A + B$. Hence the A(n - k - 1, n - m - 1) numbers n - a with $m < n - a \le k$ and the B(m, k) numbers b satisfying $m < b \le k$ are mutually distinct. The right hand term of (1) gives their total number. It is not greater than the number k - m of all the integers z with $m < z \le k$.

The most important result on A + B is due to Mann [2]: Let $n \notin C = A + B$. Then there exists an *m* satisfying $0 \le m \le n$ and $n - m \notin C$ such that

$$C(m, n) \ge A(n - m - 1) + B(n - m - 1).$$

I wish to prove a less well known inequality which is implicitly contained in [4] and in a paper by Mann [3]. The present proof uses an idea by Besicovitch and is rather simpler than Mann's method [cf. 1].

THEOREM 1. Let

(2)

$$(x = 0, 1, 2, \dots, h; h \ge 0)$$

Received December 29, 1953.

 $x \in A$

Pacific J. Math. 5 (1955), 585-587

PETER SCHERK

$$(3) \qquad 0 \in B \quad or \quad 1 \in B,$$

Finally let

(5)
$$C(n) < A(n-1) + B(n).$$

Then there is an m satisfying

$$(6) m \notin C, \quad 0 < m < n - h - 1$$

such that

(7)
$$C(m, n) \ge A(n - m - 1) + B(m, n).$$

We note that (7) is trivial but useless without the second half of (6). Obviously, (2)-(4) imply m > h if $0 \in B$ and m > h + 1 if $1 \in B$.

Proof. Instead of (3), we merely use the weaker assumption that B is not empty. Let b_0 denote the largest $b \leq n$. Thus $B(b_0, n) = 0$. Since C contains the integers $b_0 + a$ with $0 < a \leq n - b_0$, we have

$$(8) C(b_0, n) \ge A(n - b_0) \ge A(n - b_0 - 1) = A(n - b_0 - 1) + B(b_0, n).$$

From (5) and (8), $b_0 > 0$. By (2), the numbers $b_0, b_0 + 1, \dots, b_0 + h$ lie in $A + B \subset C$. Hence $n \notin C$ implies $b_0 \leq n - h - 1$. Thus

(9)
$$0 < b_0 \leq n - h - 1.$$

By (2), $b_0 \in C$. Let *m* denote the greatest $z < b_0$ with $z \notin C$. If no such *z* exists, put m = 0. Applying (1) with $k = b_0$, we obtain

(10)
$$C(m, b_0) = b_0 - m \ge A(n - b_0 - 1, n - m - 1) + B(m, b_0).$$

Adding (8) and (10), we obtain

$$C(m, b_0) + C(b_0, n) \ge A(n - b_0 - 1) + A(n - b_0 - 1, n - m - 1) + B(m, b_0) + B(b_0, n),$$

that is (7). By (7) and (5), m > 0. Hence $m \notin C$. Finally (9) and $m < b_0$ imply m < n - h - 1.

The following corollary of Theorem 1 was proved in a different way by Mann.

586

THEOREM 2. Suppose the sets A, B, C satisfy the assumptions (2)-(4). Let $0 < \alpha_1 < 1$ and

(11)
$$A(x) > \alpha_1(x+1)$$
 $(x = h + 1, h + 2, \dots, n).$

Then

(12)
$$C(n) \geq \alpha_1 n + B(n).$$

Proof. By (2), $0 \in A$. Furthermore, (11) and (2) imply $1 \in A$. Hence, (3) implies $1 \in C$. Thus our theorem is true for n = 1. Suppose it is proved up to $n - 1 \ge 1$.

If $C(n) \ge A(n-1) + B(n)$, then (11) with x = n - 1 yields (12). Thus we may assume (5). Choose *m* according to Theorem 1. By (6), $n - m - 1 \ge h + 1$. Hence, by (7), (11), and our induction assumption

$$C(n) \ge C(m) + A(n - m - 1) + B(m, n)$$

$$\ge C(m) + \alpha_1(n - m) + B(m, n)$$

$$\ge \alpha_1 m + B(m) + \alpha_1(n - m) + B(m, n) = \alpha_1 n + B(n).$$

The case h = 0 of Theorem 2 is due to Besicovitch [1]. Obviously, this theorem can be extended to the case that $0 \notin B$, B(n) > 0.

A recent result by Stalley also follows readily from Theorem 1.

REFERENCES

1. A.S. Besicovitch, On the density of the sum of two sequences of integers, J. London Math. Soc. 10 (1935), 246-248.

2. H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. of Math. 43 (1942), 523-527.

3. _____, On the number of integers in the sum of two sets of positive integers, Pacific J. Math. 1 (1951), 249-253.

4. P. Scherk, Bemerkungen zu einer Note von Besicovitch, J. London Math. Soc. 14 (1939), 185-192.

5. R.D. Stalley, A modified Schnirelmann density, Pacific J. Math. 5 (1955), 119-124.

UNIVERSITY OF SASKATCHEWAN