
ON THE CHANGE OF INDEX FOR SUMMABLE SERIES

D I E T E R GAIER

1. Introduction. Assume we have given a series

(1.1) α 0 + a l + a2 + + an +

and consider

(1.2) b 0 + b i + b 2 + + b n + w i t h b 0 = 0 a n d b n = a n . ι ( n > _ l ) ;

denote the partial sums by sn and tn, respectively. Since sn = ί Λ + i , the con-

vergence of (1.1) is equivalent to that of (1.2). However, if a method of sum-

mability V is applied to both series, the statements

(1.3) (a) V-Σan=s (b) V-Σbn=s1

need not be equivalent (for example, if F i s the Borel method; see [4, p. 183]).

If V(x;sv) and Vix tp) denote the F-transforms of the sequences { sn \ and

{tn \, respectively, it is therefore interesting to investigate, for which methods

V and under what restrictions on { an \ the relations

(1.4) ( a ) V(x;sv)^ K . x* ( b ) V(x; tv) ~ K . χ<?

(x—> XQ , K c o n s t a n t ; q >_ 0, f i x e d ) 2

are equ iva lent .

The c a s e s V^C^ ( C e s a r o ) and V~A ( A b e l ) are quickly d i s p o s e d of

( § 2 ) , while V~E ( g e n e r a l E u l e r t ransform) and V~B ( B o r e l ) p r e s e n t some

i n t e r e s t ( § § 3 - 5 ) .

2. THEOREM 1. The statements (1.4.a) and (1.4.b) are equivalent for

XWe shall always let L ° ° s o n = Σ, an.

x—y XQ through values depending on the method V,
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V = Ck(k > - 1 ) and V ~ A. 3

Proof. If

s < f c ) - < * ( * . „ ) . ( " +

and

we have by definition of the Cesaro means

(2.1) (l-x)k+ι Σ.τlk)xn

the series being convergent for | x \ < 1. The proof of Theorem 1 now follows

from the inner equality in (2.1) and the relation

γ(k) o(k) S^^
n τ ι - 1 " - 1 . .

\n —> oo .ίn + k\ jn + k\ /n-l + k\

\ n I \ n I \ n - 1 /

3. Let g(w) = Σ,γnw
n be regular and schlicht in | w \ £ 1, and assume

g ( 0 ) = 0 , g ( l ) = l. Then the ^-transforms of Σ,an and 22b n are obtained

by the formal relations [ 5 ]

Σ,anz
n = Σ,an[g(w)]n = Σ,0Lnw

n; E(n;sp)= ^ av

(3.1) (τι = 0 , l , . . . ) .

Σbnz
n=Σbn[g(w)]n=Σβnw"; E(n;tv)=Σ β*

THEOREM 2. The statements (1.4.a) and (1.4.b) are equivalent for V - E.

Proof. First we note that if either

E{n;sv)^0(n^) or E U; tv) = O(n^) (n—*ω),

}For q = Osee [4, p. 102].
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then the formal relations (3.1) are actually valid for \w \ < 1 and also

( 3 . 2 ) Σ,βnw
n= Σbn[g(w)]n=g{w). Σan[g(w)]n = g(w). Σ Clnw

n

(\w\ < 1) .

Denote by Anf Bn9 Cn the partial sums of Σdn, Σβn, Σγn, respectively.

We assume first

E (n; sv) - An ~ K n^ (n —> oo) .

Then, since by (3.2) Σ,βn is the Cauchy product of Σ,(Xn and Σ y π , we have

E(n;tv) = Bn=γnA0 +γnmlAί + ... + γιAn_ι

and for ^ >. 1

( 3 . 3 ) — = — A 0 + γ _ . _ + ..,. + γ
(u-l)q

For the matrix cnV in this transformation of the convergent sequence \Ann"^

we have clearly

lim cnV = 0 ( v = 0, 1, •)«

n —• oo

Furthermore

n-1 vq \γn\ n oo

finally we prove

lim

For ςr = 0 this follows from



532 DIETER GAIER

for q > 0

nH

£ ί/n v\? fn-v-l\1

and the last term is a positive regular transformation of the sequence { Cn\

tending to g ( l ) = 1, whence

^2. cnv —> 1 ( n —>oo) .

v

Therefore the transformation ( 3 . 3 ) of \ An n"^ \ converges to K, which proves

Bn - K-n? ( Λ — > ( » ) .

Assume on the other hand Bn ^ Knq in —» oo). Putting w = 0 in ( 3 . 2 ) , one

obtains βQ = 0, so that

Zanw
n = [g{w)}-1 Σβnw

n=w[g(w)Yι

is regular in \w\ < 1. Furthermore the expansion of the function w[g{w)]~ι

for w = 1 converges absolutely to 1, s ince w = 0 is the only zero of g{w) in

Iu; I £ 1. An argument similar to the one above shows then that Bn^.ί gί Knq

(n—> QQ) implies An ^ Kn^ (n —>oo), which completes the proof of Theorem

2.

We add a few remarks about the assumptions on the function z = g(w) by

which the E-method is defined.

a. Theorem 2 becomes false if only regularity of g{w) in \w\ < 1, and con-

tinuity and schl ichtness in \w\ <_1 are assumed. For there exist such functions

g(w) whose power ser ies do not converge absolutely on | w \ = 1 (cf. [ 2 ] ) .

Therefore in ( 3 . 2 ) one could find a convergent Σ α n whose transform Σ,βn

diverges.

b. All that was used about the function g(w) in the proof of Theorem 2

was that the power ser ies of g(w) and of w[g{w)Yι converge absolutely to

the value 1 for w = 1. This can be guaranteed by the weaker assumption that

g(w) with g ( l ) = l and g ( 0 ) = 0 is regular in \w \ < 1, continuous and schlicht
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in \w\ <. 1, and that the image of \ w \ = 1 under the mapping g(w) is a recti-

fiable Jordan curve. Because then

< ooΪ27T \g\e^
Jo

and hence ϋL \γ \ < oo [8, p. 158]; on the other hand also

/ \G'{eιφ)\dφ < oo,
Jo

where

I' giw) -wg'(w)£'(„,)_[-£_] =
ίg(w)]2

so that also the power series of G(w) converges absolutely to the value 1 for

c. If

g(w) ~ w[(p + 1 ) - pw]~ι (P >_ 0> fixed )

one has E - Ep as the familiar Euler method of order p, for which Theorem 2 is

known in the case q — 0 [4, p. 180],

d. The function

g(w) = (2 - « , ) - 2(1 -wΫΛ ( g ( 0 ) = 0 )

leads to the method of Mersman [6] , as Scott and Wall showed [7, p. 270 ].

Here Theorem 2 is also applicable, since the more general conditions about

g{w) in remark (b) are satisfied, as is readily seen.

4. The Borel method is defined by the transformation

svx
v

-χΣ ( x > o ) ,e

where the power series is assumed to define an entire function. It is known

that B(x sp)—>K [x—»oo) implies B{x;tv) —>K (x —»co), but not con-

versely [4, p. 183]. We now prove more generally
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THEOREM 3. The relation

B(x;sv) ~ Kx^ {x—> oo)

implies

B{x\tv) Ξί Kx^ (x—>oo).

Proof. We have for x > 0 [4, p. 196]

v\ {v+ 1)1

B (t; sv )<; f v /*r , * B(t:sv)
-^- dt-χ-1 I e-^-'h* —dt.
v\ Jo t^

This transformation of the convergent function B{t;sv)t"^ (t—»oo) by means

of the 'matrix

, (0<t<x)

is regular, since

I \c(x9t)\dt—*0 (%—> oo t u t 2 > 0, fixed)
Jtγ

and

Γx foe / t \ q

\c(x,t)\dt= I c(x, t)dt =e"x e Ί - l dt—>1 (x—>oo).
Jo Jo \x I

Therefore B(x;tv) ^ Kx^ (x—> oo).

We discuss now the converse of Theorem 3.

THEOREM 4. The relation

B(x;tv) z Kx* U—» oo)

implies
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B(x;sv) 21 Kx^ (x—>oo),

if

( 4 . 2 ) l im s u p \an \
ί/n < oo,

that is, if the series 2Lanz
n has a positive radius of convergence.

Proof. Using (4 .1) we have for % > 0

Fix) ^x'^B(x;tv)=x^e"x [% etB (t; sv)dt.

J o

C o n s i d e r n o w F ( x ) a s f u n c t i o n o f t h e c o m p l e x v a r i a b l e x f o r K { x ) >^ 1 . T h e n

( 4 . 2 ) i m p l i e s \tn\ <_ Mn f o r s o m e c o n s t a n t M > 0 a n d h e n c e i n H ( x ) >_ 1

and also

(4.3) \F(x)\ < aeP\x\ H(x)

for positive constants α and β. Hence one knows that

F(x)—>K (x—>+

implies

F'(x)—>0 (x—>+ω

t h a t i s ,

[X
B(t;sv)dt ί - 1 - !

from which the result follows.

5. We now show that Theorem 4 is best possible in a certain sense.

4 I f F{χ) i s r e g u l a r in K(x) > 1 a n d ( 4 . 3 ) h o l d s , t h e n Fix)—>A ix — > + o o ) im-
p l i e s F'(x)—>0 ix—>-f CXJ). T h i s lemma w a s u s e d a l s o in [ 3 ] , w h e r e T h e o r e m 4 w a s
p r o v e d for q = 0.
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THEOREM 5. In Theorem 4 the Condition (4.2) cannot be replaced by

(5.1) l i m s u p ne \an\
Wn < oo ( e > 0 ) .

For the proof we need the following

L E M M A . For every β > 1 , there exists a n entire f u n c t i o n f ( z ) of order

β satisfying

(5.2) / U ) _ > 0 U ^ + α>)f/'(*)-/-> 0 U — > + α>) U = *

Proof. Put α = /3"ι and consider the Mittag-Leffler function

which is an entire function of order Cί" = β. Let m be the integer with

α α
< m < + 1.

1 - α 1 - α

We first study the derivatives of Ea( z) of order 1, 2, , m on the line arg z -

OLπ/2 for large | z |. For these z (assume for definiteness | z | > 2) one has

[ 1 , pp. 272-275]

(5.3) £ . < * > - — / V ' ' - 2 - + i β ' l Λ \
2πiCl JL t - z α

the path L being

£ = re I oo > r > 1, Cίπ > φn > — I, t = e ( — ώn < φ < + φn ) ,
i — * ' o 9/ ^ — — r u 7

t = reiΦo (1 < r < oo);

ί ι / α is the branch which is positive for t > 0. The A th derivative of the integral

part in (5.3) can then be estimated as follows

Λ/a k\
* —dt

k\ Γ , . " a , |Λ

2πa\z\k+i
/

A/a
\el I

| l - (
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since for our values of z one has | 1 - (t/z) | >. δ > 0 and on the straight line

segments of L

— e c o s α with cos — < 0 .
Cί

Therefore

-j

£ ' ( 2 ) = o ( D + — ez z
(X 9

a2

ι/a-1

1
a

(5.4)
α3

£ > - ι > ( 2 ) = o ( l ) + —

Now we consider the function

which is again an entire function of order CC1. For \z \—» oo on arg z = dπ/ 2

we have by (5.4)

am

however

α m + 1

and herein | e ε l / α | = l and ( ( l / α ) - l ) r o - l > 0, so that F ' ( z ) - / * 0

( I z I—> co on arg z = a n / 2 ) . For the lemma it is therefore sufficient to take
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Proof of Theorem 5. Define the { an \ of (1.1) by

r< \ fx -t <Γ a v t V i ίx -ί / ^ 7/ ( % ) = / e

 Σ L ώ = / e

 ι a(t)dt,
Jo v\ Jo

w i t h t h e fix) of t h e a b o v e l e m m a a n d /3 = ( l - € ) " 1 . S i n c e fix) i s of o r d e r

β > 1, s o i s o ( ί ) , a n d t h e r e f o r e [ 1, p . 2 3 8 ] 5

an
λ / IΛ

sup
lim sup n ^ — e lim sup n" | α π | < oo ,

that is, (5.1) is fulfilled. Furthermore

/ ( % ) — > 0 (%-^ + oo),

which is equivalent to

B(x;tv)—>0 {x—> + oo).

However, in order that

B(x;sv) —>0 (x—> + oo),

it would be necessary and sufficient to have [4, pp. 182-183]

emχa(x)=f'(x)—*0 (x—>+oo),

which by our lemma is not fulfilled. So we have given an example of a ser ies

Σ o n for which B(x;tv) —» 0 (x —» +oo) does not imply B(x;sv) —> 0

(x —> + oo) and for which ( 5 . 1 ) holds.

Prof. Lδsch (Stuttgart) suggested to me the relation to the coefficient problem
for entire functions.
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