ON THE CHANGE OF INDEX FOR SUMmable SERIES

Dieter Gaier

1. Introduction. Assume we have given a series

$$
\begin{equation*}
a_{0}+a_{1}+a_{2}+\cdots+a_{n}+\cdots \tag{1.1}
\end{equation*}
$$

and consider
(1.2) $b_{0}+b_{1}+b_{2}+\cdots+b_{n}+\cdots$ with $b_{0}=0$ and $b_{n}=a_{n-1} \quad(n \geq 1)$;
denote the partial sums by s_{n} and t_{n}, respectively. Since $s_{n}=t_{n+1}$, the convergence of (l.1) is equivalent to that of (1.2). However, if a method of summability V is applied to both series, the statements
(a) $V-\sum a_{n}=s$
(b) $\quad V-\sum b_{n}=s^{1}$
need not be equivalent (for example, if V is the Borel method; see [4, p. 183]). If $V\left(x ; s_{\nu}\right)$ and $V\left(x ; t_{\nu}\right)$ denote the V-transforms of the sequences $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$, respectively, it is therefore interesting to investigate, for which methods V and under what restrictions on $\left\{a_{n}\right\}$ the relations

$$
\begin{align*}
\text { (a) } V\left(x ; s_{\nu}\right) \cong K \cdot x^{q} \quad \text { (b) } \quad V\left(x ; t_{\nu}\right) \cong K \cdot x^{q} \tag{1.4}\\
\left(x \longrightarrow x_{0}, K \text { constant; } q \geq 0, \text { fixed }\right)^{2}
\end{align*}
$$

are equivalent.
The cases $V=C_{k}$ (Cesàro) and $V=A$ (Abel) are quickly disposed of (§2), while $V=E$ (general Euler transform) and $V=B$ (Borel) present some interest (§§3-5).
2. Theorem l. The statements (1.4.a) and (1.4.b) are equivalent for

[^0]${ }^{2} x \longrightarrow x_{0}$ through values depending on the method V.
Received December 1, 1953. This work has been sponsored, in part, by the Office of Naval Research under contract N5ori-07634.

Pacific J. Math. 5 (1955), 529-539
$V=C_{k}(k>-1)$ and $V=A .{ }^{3}$
Proof. If

$$
S_{n}^{(k)}=C_{k}\left(n ; s_{\nu}\right) \cdot\binom{n+k}{n}
$$

and

$$
T_{n}^{(k)}=C_{k}\left(n ; t_{\nu}\right) \cdot\binom{n+k}{n}
$$

we have by definition of the Cesàro means

$$
\begin{equation*}
(1-x)^{k+1} \sum T_{n}^{(k)} x^{n}=\sum b_{n} x^{n}=x \cdot \sum a_{n} x^{n}=x(1-x)^{k+1} \sum S_{n}^{(k)} x^{n} \tag{2.1}
\end{equation*}
$$

the series being convergent for $|x|<1$. The proof of Theorem 1 now follows from the inner equality in (2.1) and the relation

$$
\frac{T_{n}^{(k)}}{\binom{n+k}{n}}=\frac{S_{n-1}^{(k)}}{\binom{n+k}{n}} \cong \frac{S_{n-1}^{(k)}}{\binom{n-1+k}{n-1}} \quad(n \rightarrow \infty)
$$

3. Let $g(w)=\sum \gamma_{n} w^{n}$ be regular and schlicht in $|w| \leq 1$, and assume $g(0)=0, g(1)=1$. Then the E-transforms of $\sum a_{n}$ and $\sum b_{n}$ are obtained by the formal relations [5]

$$
\sum a_{n} z^{n}=\sum a_{n}[g(w)]^{n}=\sum \alpha_{n} w^{n} ; \quad E\left(n ; s_{\nu}\right)=\sum_{\nu=0}^{n} \alpha_{\nu}
$$

$$
\begin{equation*}
(n=0,1, \cdots) . \tag{3.1}
\end{equation*}
$$

$$
\sum b_{n} z^{n}=\sum b_{n}[g(w)]^{n}=\sum \beta_{n} w^{n} ; \quad E\left(n ; t_{\nu}\right)=\sum_{\nu=0}^{n} \beta_{\nu}
$$

Theorem 2. The statements (1.4.a) and (1.4.b) are equivalent for $V=E$.
Proof. First we note that if either

$$
E\left(n ; s_{\nu}\right)=O\left(n^{q}\right) \text { or } E\left(n ; t_{\nu}\right)=O\left(n^{q}\right) \quad(n \rightarrow \infty),
$$

[^1]then the formal relations (3.1) are actually valid for $|w|<1$ and also
\[

$$
\begin{array}{r}
\sum \beta_{n} w^{n}=\sum b_{n}[g(w)]^{n}=g(w) \cdot \sum a_{n}[g(w)]^{n}=g(w) \cdot \sum \alpha_{n} w^{n} \tag{3.2}\\
(|w|<1) .
\end{array}
$$
\]

Denote by A_{n}, B_{n}, C_{n} the partial sums of $\sum \alpha_{n}, \sum \beta_{n}, \sum \gamma_{n}$, respectively. We assume first

$$
E\left(n ; s_{\nu}\right)=A_{n} \cong K \cdot n^{q} \quad(n \longrightarrow \infty) .
$$

Then, since by (3.2) $\sum \beta_{n}$ is the Cauchy product of $\sum \alpha_{n}$ and $\sum \gamma_{n}$, we have

$$
E\left(n ; t_{\nu}\right)=B_{n}=\gamma_{n} A_{0}+\gamma_{n-1} A_{1}+\cdots+\gamma_{1} A_{n-1}
$$

and for $n \geq 1$

$$
\begin{equation*}
\frac{B_{n}}{n^{q}}=\frac{\gamma_{n}}{n^{q}} A_{0}+\gamma_{n-1} \frac{1^{q}}{n^{q}} \cdot \frac{A_{1}}{1^{q}}+\cdots+\gamma_{1} \frac{(n-1)^{q}}{n^{q}} \cdot \frac{A_{n-1}}{(n-1)^{q}} . \tag{3.3}
\end{equation*}
$$

For the matrix $c_{n \nu}$ in this transformation of the convergent sequence $\left\{A_{n} n^{-q}\right\}$ we have clearly

$$
\lim _{n \rightarrow \infty} c_{n \nu}=0 \quad(\nu=0,1, \cdots)
$$

Furthermore

$$
\sum_{\nu}\left|c_{n \nu}\right|=\sum_{\nu=1}^{n-1}\left|\gamma_{n-\nu}\right| \cdot \frac{\nu^{q}}{n^{q}}+\frac{\left|\gamma_{n}\right|}{n^{q}} \leq \sum_{\nu=1}^{n}\left|\gamma_{\nu}\right| \leq \sum_{\nu=1}^{\infty}\left|\gamma_{\nu}\right|=M<\infty ;
$$

finally we prove

$$
\lim _{n \rightarrow \infty} \sum_{\nu=0}^{n-1} c_{n \nu}=1
$$

For $q=0$ this follows from

$$
\sum_{\nu=0}^{n-1} c_{n \nu}=\sum_{\nu=1}^{n} y_{\nu} \longrightarrow g(1)=1 \quad(n \longrightarrow \infty) ;
$$

for $q>0$

$$
\begin{aligned}
\sum_{\nu=0}^{n-1} c_{n \nu} & =\frac{\gamma_{n}}{n^{q}}+\sum_{\nu=1}^{n-1} \gamma_{n-\nu} \cdot \frac{\nu^{q}}{n^{q}}=\frac{\gamma_{n}}{n^{q}}+\sum_{\nu=1}^{n-1} \gamma_{\nu}\left(\frac{n-\nu}{n}\right)^{q} \\
& =\frac{\gamma_{n}}{n^{q}}+\sum_{\nu=1}^{n-1} C_{\nu}\left[\left(\frac{n-\nu}{n}\right)^{q}-\left(\frac{n-\nu-1}{n}\right)^{q}\right]
\end{aligned}
$$

and the last term is a positive regular transformation of the sequence $\left\{C_{n}\right\}$ tending to $g(1)=1$, whence

$$
\sum_{\nu} c_{n \nu} \longrightarrow 1 \quad(n \longrightarrow \infty)
$$

Therefore the transformation (3.3) of $\left\{A_{n} n^{-q}\right\}$ converges to K, which proves $B_{n} \cong K \cdot n^{q}(n \longrightarrow \infty)$.

Assume on the other hand $B_{n} \cong K n^{q}(n \longrightarrow \infty)$. Putting $w=0$ in (3.2), one obtains $\beta_{0}=0$, so that

$$
\sum \alpha_{n} w^{n}=[g(w)]^{-1} \sum \beta_{n} w^{n}=w[g(w)]^{-1} \sum \beta_{n+1} w^{n}
$$

is regular in $|w|<1$. Furthermore the expansion of the function $w[g(w)]^{-1}$ for $w=1$ converges absolutely to 1 , since $w=0$ is the only zero of $g(w)$ in $|w| \leq 1$. An argument similar to the one above shows then that $B_{n+1} \cong K n q$ $(n \longrightarrow \infty)$ implies $A_{n} \cong K n^{q}(n \longrightarrow \infty)$, which completes the proof of Theorem 2.

We add a few remarks about the assumptions on the function $z=g(w)$ by which the E-method is defined.
a. Theorem 2 becomes false if only regularity of $g(w)$ in $|w|<1$, and continuity and schlichtness in $|w| \leq 1$ are assumed. For there exist such functions $g(w)$ whose power series do not converge absolutely on $|w|=1$ (cf. [2]). Therefore in (3.2) one could find a convergent $\sum \alpha_{n}$ whose transform $\sum \beta_{n}$ diverges.
b. All that was used about the function $g(w)$ in the proof of Theorem 2 was that the power series of $g(w)$ and of $w[g(w)]^{-1}$ converge absolutely to the value 1 for $w=1$. This can be guaranteed by the weaker assumption that $g(w)$ with $g(1)=1$ and $g(0)=0$ is regular in $|w|<1$, continuous and schlicht
in $|w| \leq 1$, and that the image of $|w|=1$ under the mapping $g(w)$ is a rectifiable Jordan curve. Because then

$$
\int_{0}^{2 \pi}\left|g^{\prime}\left(e^{i \phi}\right)\right| d \phi<\infty
$$

and hence $\sum\left|\gamma_{n}\right|<\infty[8, p .158]$; on the other hand also

$$
\int_{0}^{2 \pi}\left|G^{\prime}\left(e^{i \phi}\right)\right| d \phi<\infty,
$$

where

$$
G^{\prime}(w)=\left[\frac{w}{g(w)}\right]^{\prime}=\frac{g(w)-w g^{\prime}(w)}{[g(w)]^{2}},
$$

so that also the power series of $G(w)$ converges absolutely to the value 1 for $w=1$.
c. If

$$
g(w)=w[(p+1)-p w]^{-1} \quad(p \geq 0, \text { fixed })
$$

one has $E=E_{p}$ as the familiar Euler method of order p, for which Theorem 2 is known in the case $q=0[4, \mathrm{p} .180]$.
d. The function

$$
g(w)=(2-w)-2(1-w)^{1 / 2} \quad(g(0)=0)
$$

leads to the method of Mersman [6], as Scott and Wall showed [7, p. 270]. Here Theorem 2 is also applicable, since the more general conditions about $g(w)$ in remark (b) are satisfied, as is readily seen.
4. The Borel method is defined by the transformation

$$
B\left(x ; s_{\nu}\right)=e^{-x} \sum \frac{s_{\nu} x^{\nu}}{\nu!} \quad(x \geq 0)
$$

where the power series is assumed to define an entire function. It is known that $B\left(x ; s_{\nu}\right) \longrightarrow K(x \rightarrow \infty)$ implies $B\left(x ; t_{\nu}\right) \longrightarrow K(x \longrightarrow \infty)$, but not conversely [4, p. 183]. We now prove more generally

Theorem 3. The relation

$$
B\left(x ; s_{\nu}\right) \cong K x^{q} \quad(x \rightarrow \infty)
$$

implies

$$
B\left(x ; t_{\nu}\right) \cong K x^{q}
$$

$$
(x \rightarrow \infty) .
$$

Proof. We have for $x>0$ [4, p. 196]
(4.1) $\quad x^{-q} B\left(x ; t_{\nu}\right)=x^{-q} e^{-x} \sum \frac{t_{\nu} x^{\nu}}{\nu!}=x^{-q} e^{-x} \sum \frac{s_{\nu} x^{\nu+1}}{(\nu+1)!}$

$$
=x^{-q} e^{-x} \int_{0}^{x} \sum \frac{s_{v} t^{\nu}}{\nu!} d t=x^{-q} \int_{0}^{x} e^{-(x-t)} t^{q} \frac{B\left(t ; s_{\nu}\right)}{t^{q}} d t
$$

This transformation of the convergent function $B\left(t ; s_{\nu}\right) t^{-q}(t \longrightarrow \infty)$ by means of the 'matrix'

$$
c(x, t)=e^{-(x-t)}\left(\frac{t}{x}\right)^{q} \quad(0 \leq t \leq x)
$$

is regular, since

$$
\int_{t_{1}}^{t_{2}}|c(x, t)| d t \rightarrow 0 \quad\left(x \rightarrow \infty ; t_{1}, t_{2}>0, \text { fixed }\right)
$$

and

$$
\int_{0}^{x}|c(x, t)| d t=\int_{0}^{x} c(x, t) d t=e^{-x} \int_{0}^{x} e^{t}\left(\frac{t}{x}\right)^{q} d t \rightarrow 1 \quad(x \rightarrow \infty)
$$

Therefore $B\left(x ; t_{\nu}\right) \cong K x^{q}(x \longrightarrow \infty)$.
We discuss now the converse of Theorem 3.
The orem 4. The relation

$$
B\left(x ; t_{\nu}\right) \cong K x^{q}
$$

$$
(x \rightarrow \infty)
$$

implies

$$
B\left(x ; s_{\nu}\right) \cong K x^{q} \quad(x \longrightarrow \infty),
$$

if

$$
\begin{equation*}
\lim \sup \left|a_{n}\right|^{1 / n}<\infty, \tag{4.2}
\end{equation*}
$$

that is, if the series $\sum_{a_{n}} z^{n}$ has a positive radius of convergence.
Proof. Using (4.1) we have for $x>0$

$$
F(x)=x^{-q} B\left(x ; t_{\nu}\right)=x^{-q} e^{-x} \int_{0}^{x} e^{t} B\left(t ; s_{\nu}\right) d t .
$$

Consider now $F(x)$ as function of the complex variable x for $R(x) \geq 1$. Then (4.2) implies $\left|t_{n}\right| \leq M^{n}$ for some constant $M>0$ and hence in $R(x) \geq 1$

$$
\left|B\left(x ; t_{\nu}\right)\right| \leq e^{-1} \sum \frac{M^{n}|x|^{n}}{n!}=e^{-1+M|x|},
$$

and also

$$
\begin{equation*}
|F(x)| \leq \alpha e^{\beta|x|} \quad R(x) \geq 1 \tag{4.3}
\end{equation*}
$$

for positive constants α and β. Hence one knows that

$$
F(x) \longrightarrow K \quad(x \longrightarrow+\infty)
$$

implies

$$
F^{\prime}(x) \longrightarrow 0
$$

$$
(x \rightarrow+\infty),{ }^{4}
$$

that is,

$$
\begin{aligned}
& x^{-q} B\left(x ; s_{\nu}\right)+\int_{0}^{x} e^{t} B\left(t ; s_{\nu}\right) d t\left[-1-\frac{q}{x}\right] e^{-x} x^{-q} \\
& \quad=x^{-q} B\left(x ; s_{\nu}\right)-K+o(1)=o(1) \quad(x \longrightarrow+\infty),
\end{aligned}
$$

from which the result follows.
5. We now show that Theorem 4 is best possible in a certain sense.

[^2]Theorem 5. In Theorem 4 the Condition (4.2) cannot be replaced by

$$
\begin{equation*}
\lim \sup n^{-\epsilon}\left|a_{n}\right|^{1 / n}<\infty \quad(\epsilon>0) \tag{5.1}
\end{equation*}
$$

For the proof we need the following
Lemma. For every $\beta>1$, there exists an entire function $f(z)$ of order β satisfying

$$
\begin{equation*}
f(x) \longrightarrow 0(x \longrightarrow+\infty), f^{\prime}(x) \xrightarrow{\longrightarrow}(x \longrightarrow+\infty) \quad(z=x+i y) . \tag{5.2}
\end{equation*}
$$

Proof. Put $\alpha=\beta^{-1}$ and consider the Mittag-Leffler function

$$
E_{\alpha}(z)=\sum \frac{z^{n}}{\Gamma\left(1+\alpha_{n}\right)},
$$

which is an entire function of order $\alpha^{-1}=\beta$. Let m be the integer with

$$
\frac{\alpha}{1-\alpha} \leq m<\frac{\alpha}{1-\alpha}+1
$$

We first study the derivatives of $E_{\alpha}(z)$ of order $1,2, \cdots, m$ on the line $\arg z=$ $\alpha \pi / 2$ for large $|z|$. For these z (assume for definiteness $|z|>2$) one has [1, pp.272-275]

$$
\begin{equation*}
E_{\alpha}(z)=\frac{1}{2 \pi i \alpha} \int_{L} e^{t^{1 / \alpha}} \frac{d t}{t-z}+\frac{1}{\alpha} e^{z^{1 / \alpha}}, \tag{5.3}
\end{equation*}
$$

the path L being

$$
\begin{aligned}
t=r e^{-i \phi_{0}}\left(\infty>r \geq 1, \alpha \pi>\phi_{0}>\frac{\pi \alpha}{2}\right), & t=e^{i \phi}\left(-\phi_{0} \leq \phi \leq+\phi_{0}\right), \\
t & =r e^{i \phi_{0}}(1 \leq r<\infty)
\end{aligned}
$$

$t^{1 / a}$ is the branch which is positive for $t>0$. The k th derivative of the integral part in (5.3) can then be estimated as follows

$$
\begin{array}{r}
\left|\frac{1}{2 \pi i \alpha} \int_{L} e^{t^{1 / \alpha}} \frac{k!}{(t-z)^{k+1}} d t\right| \leq \frac{k!}{2 \pi \alpha|z|^{k+1}} \int_{L}\left|e^{t^{1 / \alpha}}\right| \frac{|d t|}{|1-(t / z)|^{k+1}} \\
=O\left(|z|^{-k-1}\right)=o(1) \quad(|z| \rightarrow \infty),
\end{array}
$$

since for our values of z one has $|1-(t / z)| \geq \delta>0$ and on the straight line segments of L

$$
\left|e^{t^{1 / \alpha}}\right|=e^{|t|^{1 / \alpha} \cdot \cos \phi_{0} / \alpha} \text { with } \cos \frac{\phi_{0}}{\alpha}<0
$$

Therefore

$$
\begin{align*}
& E_{\alpha}^{\prime}(z)=o(1)+\frac{1}{\alpha^{2}} e^{z^{1 / \alpha}} z^{1 / \alpha-1} \\
& E_{\alpha}^{\prime \prime}(z)=o(1)+\frac{1}{\alpha^{3}} e^{z^{1 / a}} z^{(1 / \alpha-1) 2} \\
& E_{\alpha}^{(m-1)}(z)=o(1)+\frac{1}{\alpha^{m}} e^{z^{1 / \alpha}} z^{(1 / \alpha-1)(m-1)} \\
& E_{\alpha}^{(m)}(z)=o(1)+\frac{1}{\alpha^{m+1}} e^{z^{1 / \alpha}} z^{(1 / \alpha-1) m} .
\end{align*}
$$

Now we consider the function

$$
F(z)=\frac{1}{z}\left[E_{\alpha}^{(m-1)}(z)-E_{\alpha}^{(m-1)}(0)\right],
$$

which is again an entire function of order α^{-1}. For $|z| \longrightarrow \infty$ on $\arg z=\alpha \pi / 2$ we have by (5.4)

$$
F(z)=o(1)+\frac{1}{\alpha^{m}} e^{z^{1 / a}} z^{(1 / \alpha-1)(m-1)-1}=o(1)
$$

however

$$
F^{\prime}(z)=o(1)+\frac{1}{\alpha^{m+1}} e^{z^{1 / \alpha}} z^{(1 / \alpha-1) m-1},
$$

and herein $\left|e^{z^{1 / \alpha}}\right|=1$ and $((1 / \alpha)-1) m-1 \geq 0$, so that $F^{\prime}(z) \nrightarrow 0$ $(|z| \longrightarrow \infty$ on $\arg z=\alpha \pi / 2)$. For the lemma it is therefore sufficient to take

$$
f(z)=F\left(z e^{i a \pi / 2}\right) .
$$

Proof of Theorem 5. Define the $\left\{a_{n}\right\}$ of (1.1) by

$$
f(x)=\int_{0}^{x} e^{-t} \sum \frac{a_{\nu} t^{\nu}}{\nu!} d t=\int_{0}^{x} e^{-t} a(t) d t
$$

with the $f(x)$ of the above lemma and $\beta=(1-\epsilon)^{-1}$. Since $f(x)$ is of order $\beta>\mathrm{l}$, so is $a(t)$, and therefore $[1, \mathrm{p} .238]^{5}$

$$
\lim \sup n^{1 / \beta}\left|\frac{a_{n}}{n!}\right|^{1 / n}=e \lim \sup n^{-\epsilon}\left|a_{n}\right|^{1 / n}<\infty,
$$

that is, (5.1) is fulfilled. Furthermore

$$
f(x) \longrightarrow 0 \quad(x \longrightarrow+\infty)
$$

which is equivalent to

$$
B\left(x ; t_{\nu}\right) \longrightarrow 0 \quad(x \longrightarrow+\infty)
$$

However, in order that

$$
B\left(x ; s_{\nu}\right) \longrightarrow 0 \quad(x \longrightarrow+\infty),
$$

it would be necessary and sufficient to have [4, pp. 182-183]

$$
e^{-x} a(x)=f^{\prime}(x) \longrightarrow 0 \quad(x \longrightarrow+\infty),
$$

which by our lemma is not fulfilled. So we have given an example of a series $\sum_{a_{n}}$ for which $B\left(x ; t_{\nu}\right) \longrightarrow 0(x \longrightarrow+\infty)$ does not imply $B\left(x ; s_{\nu}\right) \longrightarrow 0$ ($x \rightarrow+\infty$) and for which (5.1) holds.

[^3]
Referenges

1. L. Bieberbach, Lehrbuch der Funktionentheorie, 2. ed., vol. II, Leipzig, 1931.
2. D. Gaier, Schlichte Potenzreihen, die auf $|z|=1$ gleichmässig, aber nicht absolut konvergieren, Math. Zeit. 57 (1953), 349-350.
3. Zur Frage der Indexverschiebung beim Borel-Verfahren, Math. Zeit. 58 (1953), 453-455.
4. G. H. Hardy, Divergent series, Oxford, 1949.
5. K. Knopp, ひ̈ber Polynomentuicklungen im Mittag-Lefflerschen Stern durch Anwendung der Eulerschen Reihentransformation, Acta Math. 47 (1926), 313-335.
6. W. A. Mersman, A new summation method for divergent series, Bull. Amer. Math. Soc. 44 (1938), 667-673.
7. W. T. Scott and H.S. Wall, The transformation of series and sequences, Trans. Amer. Math. Soc. 51 (1942), 255-279.
8. A. Zygmund, Trigonometrical series, Warsaw, 1935.

Harvard University

[^0]: ${ }^{1}$ We shall always let $\sum_{n=0}^{\infty} a_{n}=\sum a_{n}$.

[^1]: ${ }^{3}$ For $q=0$ see $[4, p .102]$.

[^2]: ${ }^{4}$ If $F(x)$ is regular in $R(x) \geq 1$ and (4.3) holds, then $F(x) \longrightarrow A(x \longrightarrow+\infty)$ implies $F^{\prime}(x) \longrightarrow 0(x \longrightarrow+\infty)$. This lemma was used also in [3], where Theorem 4 was proved for $q=0$.

[^3]: ${ }^{5}$ Prof. Lösch (Stuttgart) suggested to me the relation to the coefficient problem for entire functions.

