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Introduction, In this paper the word ring will always mean a ring
with identity, and the Boolean algebra associated with a Boolean ring
B will mean the Boolean algebra corresponding to B in the one-to-one
correspondence, described by Stone [10], between the set of all Boolean
rings and the set of all Boolean algebras. In a Boolean algebra, Γ\, \J,
', will denote the operations of intersection, union, and complementation
respectively.

A commutative ring R will be called a Boolean valued ring if there
exists a Boolean algebra 33, and a single valued mapping x->φ(x) of R
into 33 satisfying:

( i ) φ(x)=0 if and only if x=0 ,

(iί) Φ(χy)=Φ(χ) Γ\Φ(v),

(iii) Φ(χ+y)QΦ(χ)\JΦ(v)

When such a mapping exists it will be called a valuation for R. It is
not difficult to show that a ring is a Boolean valued ring if and only if
it is isomorphic to a subdirect sum of integral domains. Hence every
commutative regular ring is Boolean valued.

In a Boolean valued ring the function d(x, y) = Φ(x—y) satisfies the
usual requirements for a distance function, except that the "distance"
is an element of a Boolean algebra. The investigation of the geometric
properties of a Boolean ring with respect to the distance function de-
fined above was begun by Ellis [3, 4] and has been extended by Blumen-
thal [1]. The present paper is mainly concerned with extending some
of these results to a larger class of Boolean valued rings, namely the
p-rings.

It seems that p-rings were first defined and studied by McCoy and
Montgomery [7] in order to generalize the well known theorem of
Stone on the structure of Boolean rings. In [7] it is shown that every
p-ring is a subdirect sum of fields Ip. In any commutative ring R the
idempotents form a Boolean ring with respect to the multiplication of
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R and addition defined by x ®y=x + y — 2xy (see [6, Exercise 2, p. 211]).
This Boolean ring will be called the Boolean ring of idempotents of R.

1 • A representation theorem for p-rings. The main theorem of this
section, Theorem 1, and its first corollary are due to Foster [5]. (This
fact was unknown to the author until after this paper was presented
to the Society.) The proof given here is different from Foster's and
quite a bit shorter. Corollary 2 is, to the best of the author's know-
ledge, new. In connection with Corollary 2 reference is made to Stone's
theorem [11, p. 383] on the automorphism group of a Boolean ring. It
may be of some interest to note that it is a consequence of Theorem 1
that every p-ring is uniquely determined by the prime p and the Boolean
ring of idempotents.

THEOREM 1. Let B be a Boolean ring, p a fixed prime, j?* the set
of all (p — iytuples of pairwise orthogonal elements of B. If addition
and multiplication for elements of R* are defined by

( i ) (al9 a,, . . , αp-O + ί&j, &2, , 6 p _ 1 )=(c 1 , cλ9 , cp-i),

where

1 Σ δ H
.7 = 0

and the integers ί and j are reduced mod p; and

(ii) (a19 a,, ., ap^)(bl9 b,9 , 6p_1) = (^i, d1

p-l
where di=^ajbj-\i and j ' 1 is the least integer mod p satisfying jx=l

mod p, then 72* is a p-ring which has for its Boolean ring of idempotents
a ring isomorphic to B. Further, every p-ring is isomorphic to a p-ring
of this type.

COROLLARY 1. Every element a in a p-ring may be uniquely expres-
sed in the form a=al + 2a,+ 4-(#--l)αJJ_1, where 2, , p-l are the
successive summands of 1 and the at are pairwise orthogonal idempotents.

COROLLARY 2. The automorphism group of a p-ring is isomorphic
to the automorphism group of its Boolean ring of idempotents.

Proof. The given Boolean ring B may be regarded as a subring of
the ring of all functions defined on a set O with values in the two ele-
ment field /,. For a given prime p consider the ring Ap of all functions
defined on O with values in the prime field Ip. Note that an idempotent
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/ in Ap takes on only the values 0 or 1 at each point of O. If there
is an element g in B such that g(ω)=-0 if and only if f(ω)=01 then /
will be said to belong to B. Denote by 1, 2, , p — 1 the identity of
Ap and its successive summands and define a subset jβ* of Ap to be the
set of all x for which the idempotents

x^l-ix-i)*-1, i = l , 2, , .p-1 ,

belong to B, Note that if xeR* then # 0 = l —.Σ^* * s a n idempotent and
2 = 1

belongs to B. It is now easy to verify that

( i ) R* is a subring of ̂ 4P ,

(ii) there is a one-to-one correspondence between i?* and the set
i?* which preserves the operations, and

(iii) the Boolean ring of idempotents of iϋ* is isomorphic to JS.

This takes care of the first part of the theorem.
Now, let R be a p-ήng and B its Boolean ring of idempotents. The

ring R may be regarded as a subring of the ring of all functions de-
fined on a set Ω with values in Ip, and B as a subring of the ring of
all functions defined on the same set Ω with values in /2. Note that
for each x in R, l — (x — i)p~1 is an idempotent for i = l , 2, , p —1, and
hence is an element of B (it should be pointed out that here the ele-
ments of B are a subset of R). Further, note that xi=l — (x — i)p-1 may
be characterized as that function for which a?4(ω) = l if x(ω)=i and ^(ω)
=0 if x(ω)φi. It follows readily from this observation that the p-ήng
R* constructed with B as in the first part of the theorem is precisely
the given p-ring R.

The proof of Corollary 1 also follows readily from the observation
made above. To prove Corollary 2 let R be a p-ήng and B its Boolean
ring of idempotents. Denote by 8tΛ and 31̂  the automorphism groups
of R and B respectively. Clearly, every T in %R is a permutation of
the elements of B. Further,

for every α, 6eJ5, so that Te%R determines an element T in 31*. It
is easily seen that the mapping T^T' of Ϊ\B into %B is a homomorphism.
It remains to show that the mapping is an isomorphic mapping of 3lΛ

onto 2ίΛ. By Corollary 2, every a in R may be written
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where α ^ l - ί α - i ^ e i?. For each Tf in 21*, define a mapping T of
R into R by

Since T7' has an inverse it follows that T also has an inverse, and hence
that T is a one-to-one mapping of R onto R. Further, if b e R, so that
b*=bι + 2bi i + (p —l)δp-i, where 6*6.6, then by the theorem

α-fδ==c14-2cSί+ + (p—l)cp-.1 ,

where

Ci^afii φ &A-! Θ . . 0 αp-A-(P-υ .

Clearly,

ctT
f=a,T%Tf φ αι3P/6<-ιΓ

/ Θ Θ αJI-ι2
τ/6<-(p-1)ϊ

7/.

Hence,

Similarly it is seen that (ab)T=(aT)(bT) for all α, 6 in # . Thus, T7 is
an automorphism of i2. It follows from the definition of T that aT=
aTf in case a is an idempotent in R, and hence that the mapping T-*
Tf defined aboye is a mapping of 8lΛ onto SίΛ. Finally, let Te%R such
that T-^Ef

f the identity of ?ta. Then T is an automorphism of R
which maps every idempotent into itself. If aeR, so that a=aι-\-2at + -

l)αp-i, then

Thus, the kernel of the homomorphic mapping defined above contains
only the identity of StΛ, and hence SίΛ and SIΛ are isomorphic.

If B is the Boolean ring of idempotents of a p-ring R and S3 the
associated Boolean algebra, then the mapping α->φ(α)==αp~x of Λ onto
33 obviously satisfies Conditions ( i ) and (ii) of the definition of a Bool-
ean valued ring. That Condition (iii) is also satisfied is seen by verifying

for all x, y in i2, where the addition and multiplication are those of R
and the inclusion that of 33. This relation is equivalent to the identity

which is readily verified (as pointed out by the referee) by noting that
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is the identity element for the subring of R generated by x and y, so
that (x+yyz=(x + yY for any positive integer t. It follows readily from
the proof of Theorem 1 that

where α^=l — (a—i)p~K This completes the proof of the following.

THEOREM 2. The mapping

Σ

of a p-ring R onto its Boolean algebra 35 of idempotents is a valuation
for R.

It may be of interest to mention that the principal ideals of a go-
ring R form a Boolean algebra with respect to ideal union and intersec-
tion. This is a special case of a result of von Neumann [9] which states
that the principal ideals of any commutative regular ring form a Boolean
algebra. Further, it may be shown that the mapping {x)-^xp~ι of the
set of principal ideals of R onto its Boolean algebra of idempotents is
an isomorphism. A proof of this may be obtained from the following two
facts, (i) if xp~ι and yp~ι are any two idempotents in R then

is their Boolean algebra union; and (ii) if (x) and (y) are any two
principal ideals of R then (xy) and (z) are their intersection and union
respectively.

2. The matrix ring Bp-.19 It was mentioned in the introduction
that a Boolean valued ring admits a distance function. This notion is
made more precise by the following.

DEFINITION. An abstract set 3JΪ is called a Boolean distance space
(or simply a Boolean space) if with each pair of elements α, 6 there is
associated a unique element d(a ,6) of a Boolean algebra S3 satisfying:

( i ) d(a, b)=d(b, a) ,

(ii) d{a, δ)=0 if and only if α=6,

(iii) d(a, b) £ d(a, c) \J die, b) for all d, 6, c in 1 .

It is readily verified that any Boolean valued ring becomes a Boolean
space by defining d(a, b)=φ(b — a). It follows from Theorem 2 that every
p-ring R is a Boolean space. Further, if in the representation of R by
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the elements of JB*, the elements of B in a particular {p — l)-tuple are
thought of as "coordinates", then the sum of the coordinates is the
distance between the given element and zero.

It is desirable at this point to consider a certain ring of matrices
associated with a p-ring R. Let B be the Boolean ring of idempotents
of R and denote by Bp-τ the set of all (p — l ) x ( p - l ) matrices with
elements in B. Some of the matrices in Bp-.τ may be used to define
transformations of R into itself as follows. Let aeR and α* the element
of R* corresponding to a in the isomorphism of Theorem 1, let MeBp-ly

and form the matrix product a*M, using the addition Θ of the Boolean
ring B. Clearly a*M is a (p — l)-tuple of elements of B, but it may or
may not be in ϋ?*. If a*Meϋ?*, let b be the element of R corresponding
to α*M and write b=aM. If x*MeR* for all x in R, that is, xM is
defined for all x in R, then M defines a transformation of R into itself.
It is not difficult to see that a necessary and sufficient condition that a
matrix M=(aij) in j?p_t define a transformation of R is that αtβαM=0 for
i, s, ί = l , 2, , 29 — 1, s=££, in other words, that each row of M be an
element of jβ*.

Before the next definition is given it should be recalled that for
every matrix in the ring of nxn matrices over an arbitrary commutative
ring, a determinant may be computed in the usual way. Further, it
may be shown that such a matrix is nonsingular if and only if its de-
terminant has an inverse in the given ring (see [6] or [8]). Thus, since
in a Boolean ring the identity is the only element which has an inverse,
M in Bp-X is nonsingular if and only if det (Λf)=l.

DEFINITION. A nonsingular matrix M=(ai3) in Bp^ for which

aisau = ΰ , i, s, ί = l , 2, , p —1, &φt9

is called orthogonal if φ(xM)=φ(x) for all x in R.
It is readily verified that the set of orthogonal matrices in Bv-λ is

a subgroup of the group of nonsingular matrices. The next theorem
will show that the set of orthogonal matrices coincides with the set of
all nonsingular matrices for which aisait = 0, sφt, that is, all nonsingular
matrices which define transformations of R. (The original version of
Theorem 3 stated only that (i) and (iii) are equivalent. The author is
indebted to the referee for pointing out that (ii) may be included, thus
making possible a considerable simplification.)

THEOREM 3. Let M=(aυ) e Bp^ for which aisait=0, ί, s, t=l, 2, ,
p —1, sφt, then the following are equivalent: (i) M is orthogonal, (ϋ)
M is nonsingular, (iii) MM'=I.
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Proof. That (i) implies (ii) is trivial. Suppose next that M=(aί1)
is any nonsingular matrix for which α i sα/t = 0, sφt. Then M' is non-
singular, as is M'M=(bjfc). Note however that

Σ

if j-φk, so that M'M is diagonal. Let the diagonal elements be dud,,
• . , cZp-x, then since 1 is the only element of B which has an inverse,
det (MfM)=d1d2 dp^ = l, hence each di=l, or M'M=I. It follows
that ikF = 7kf-\ and hence MM' =1. Thus, (ii) implies (iii). Finally, let
M==(aιj) be a matrix with aίsau = 0, sφt, and suppose that MM'=L
Then Af is nonsingular and defines a transformation of R. Let α e Jϊ,
and let (α2, a2, , αp-x) be the element of i2* corresponding to a in the
isomorphism of Theorem 1, so that aM in R corresponds to the (p—1)-

tuple (bl9 62, , δp-O, where δ.£= Σ αjα^ . By Theorem 2 and since

p-1 p-l fV-\ \ P-I /p-l \ 7>-l

= Σδt= Σ( Σ ¥ j = Σα,( Σα,,)= Σαj=
i = l ί = l \ J = 1 / J = l \i=l / j=l

Thus M is orthogonal, (iii) implies (i) and this completes the proof of
the theorem.

3. The group of motions of R. The group of orthogonal matrices
in Bp-ι will be used to describe the motions (isometries) of the Boolean
space of a p-ring R. This is done in Theorem 4, which also contains
(thanks to the referee) a geometric characterization of transformations
x-±xM of R defined by arbitrary matrices in Bp-ι. First, two lemmas
and a definition are needed. The lemmas are obvious and their proofs
are omitted.

LEMMA 1. In a Boolean algebra if αx=0 implies ay=0 then yξΞ=x.

LEMMA 2. Let R be a p-ring> B its Boolean ring of idempotents,
and B}^{ the matrix ring described in the last section. IfzeB, aeR,
and MeBp-! such that xM is defined for all x in R then z(aM)=(za)M.

DEFINITION. A one-to-one mapping x->f(x) of a Boolean space Tt
onto itself is called a motion (isometry) of 9)ί if d(f(x), f(y))=d(x, y) for
all x, y in 3Ji.

THEOREM 4. Let fl, B, B2)_ι be defined as in Lemma 2. The mapping
x —• f(x) of R into R has the properties
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(i) /(OHO,

(ii) d(f(x),f(y))Qd(x,y),

if and only if there exists an M=(α i?) in Bp-λ with aίsaίt = 0, sφt, such
that f(x)=xM for all x in R. Further, the mapping is a motion if and
only if M is orthogonal.

COROLLARY. The mapping x-+f(x) of R into R satisfies d{f{x),
f(y))S:d(xfy) if and only if f(x)=xMJra for some M in Bp^ with
αi,αie==0, sφt, and a in R. Further, the mapping is a motion if and
only if M is orthogonal.

Proof. Let M=(atJ)eBp-ι with α<βαie = 0, sφt, and consider the
transformation f(x)=xM. That / ( 0 ) = 0 is trivial. Let a,beR and
choose z in B so that z φ ( δ - α ) = 0 . Then φ(zb—za)=0, hence zb=za
and (zb)M==(za)M. Thus, by Lemma 2,

z(bM-aM)=0 , z φ(bM-aM)=0 ,

and hence by Lemma 1, d{f(b),f{a))(Qd{b,a). Further, if M is orthogonal
(recall that, by Theorem 3, orthogonality for such an M is equivalent to
nonsingularity) and if y is chosen in B so that y φ(bM—aM)=0 then
by Lemma 2, (yb)M=(ya)M. Since M is nonsingular this implies yb=ya
and hence that y φ(δ-α) = 0. Thus, d(bf a)Qd(f(b), f(a)) which, together
with the other inequality, gives d(f(b)9 f[a))=d(b, a). Since M has an
inverse it follows that x~->f(x) is a motion of the Boolean space of R.

Next, suppose that x -> f(x) is a transformation of R with the pro-
perties (i) and (ii) stated in the theorem. Then φ(f(x))ξZφ(x) for all x
in R. Let at=f(i), i = l , 2, , p — 1, and let (aiU a>u, > α*fl,-i) be the
element in J?* corresponding to αt in the isomorphism of Theorem 1.
Define M in Bp-ι to be the matrix whose ith row is (aιl9 aii9 , α<flϊ-i)
and note that M defines a transformation of R. Now, let a? e R, then
clearly

S φ(f(x)

Further,

φ{f{x)-xM)

=<Kf(x)-f(i) + iM-xM) Q φ(f(x)-f(i)) \J φ{iM-xM) g φ(a;~

for i = l , 2, . . , p - 1 . Hence

Φ(/(«)-a?Λf) S l ϊ ' φ ^ - ^ -
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and hence f(x)=xM. If, in addition, x-+f(x) is a motion, then, since
φ(i)=l, i = l , 2, , p — 1, it follows that

Let ziίk = aikaJU i,j, fc=l, 2, , p - 1 , i ^ j , and note that z^a^z
kziJk, whence zi1k(ai — α,)=0. Since

φ(at-a,)=φ(f(i)-f(j))=φ(i-j)=l ,

it follows that α Γ - α ? has an inverse in iϊ. Thus, αiΛα,A,=2;ι,fc=0, ΐ
and hence MM'=I. By Theorem 3, ikf is orthogonal and this completes
the proof of the theorem.

The corollary is obtained by an obvious application of the theorem.

In case p=2 it is clear that Bp-ι contains only one orthogonal
element. Thus, the corollary to Theorem 4 generalizes a result of Ellis
[4] which states that any motion x->f(x) of the Boolean space of a
Boolean ring may be written f(x)=x + a. This result can also be easily
proved without reference to Theorem 4, thus, if R is a Boolean ring and
x-+f(x) a motion of the Boolean space of R then, since d(x,y)=x — y,
f(x)-f(y)=x-yf and hence f(x)=x + f(0).

4. Superposability Two subsets 2ί and S3 of a Boolean space 3Ji
are said to be congruent if there is a one-to-one mapping of 31 onto 93
which preserves distances. If the congruent mapping of 21 onto SB may
be extended to a motion of ΊDt, then 31 and SB are said to be superposable.
In case every two congruent subsets of 3Ji are superposable 3)1 is said
to have the property of free mobility. Ellis [3] has shown that the
Boolean space of a Boolean ring has the property of free mobility. It
will be shown in this section that this is in general not true for a p-ring
with p^>2. In fact the following theorem and its corollary will be
proved.

THEOREM 5. Let R be a p-ring, pl>2, B its Boolean ring of idem-
potents and 3B the Boolean algebra associated with B. A necessary and
sufficient condition that the Boolean space of R have the property of free
mobility is that 33 be a complete Boolean algebra.

COROLLARY. Every two congruent, finite subsets of the Boolean space
of a p-ring are superposable.

The following two lemmas are needed in the proof of the theorem.
It should be pointed out that the validity and proof of Lemma 4 are
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unchanged if the matrix ring Bp-ι is replaced by the ring of nxn
matrices over any Boolean ring.

LEMMA 3. Let a, b be elements of a Boolean valued ring S. If
ab=0 then

φ{a±b)=φ{a)\Jφ{b) .

Proof. By commutativity ba=ab=0, so that

φ(a 4- 6)[φ(α) U ΦΦ)]=φ(α 4- b)φ(a) \J φ(a 4- b)φ(b)=φ(a2) \J φ(62)=φ(a) \J φ(b) .

Hence, φ(a) \J φ(b) £Ξ φ(a-\-b). This last relation, together with φ(a4-6) S
φ(a) \J φ(b), implies φ(a + b)=φ(a) \J φ(b).

LEMMA 4. Let Ry B, Bp-i be defined as in Lemma 2. // M=(aυ)e
Bp-ι for which aυakj=0 and anajk=0, for i,j, h=l, 2, , p — 1, iφk,
then there exists a matrix C=(cυ) in Z?^ such that

(i ) M-hC is orthogonal,

(ii) circίs=0, for i, r, s==l, 2, , ρ~ 1, rφs,

(iii) α ί rc i s=0, /or i, r, s = l , 2, , p - 1 .

Proof. (The following proof is due to the referee. It is much more
simple and considerably shorter than the author's.) Suppose first that
B is the field I2 so that M is a matrix with at most a single 1 in each
row and each column. Then the desired matrix C must satisfy (i) MΛ-C
is nonsingular, (ii) C has at most a single 1 in each row, and (iii) C has
a zero row if the corresponding row of M is not zero. It is not difficult
to see that there exists a matrix C satisfying (ii) and (iii) and such that
M-hC has exactly one 1 in each row and column. Next suppose that
B is an arbitrary Boolean ring. Then the elements atJ of M together
with 1 generate a finite Boolean ring B' g B. It is sufficient to find a
matrix C with elements in Br. However, since Br is a complete direct
sum of fields /2, the desired matrix C may be obtained by applying the
process above to each summand in the direct sum.

Proof of Theorem 5. Let R be a p-ήng for which the Boolean
algebra 93 associated with the Boolean ring of idempotents is complete.
Let,Si and T1 be any two subsets of R which are congruent under the
mapping x->hλ(x) of Si onto Tλ. For some a in Sι consider the motions
x -> s(x)=x—af and x -> t(x)=x — h1(a). The subsets Si and T1 are mapped
by these motions into subsets S=s(Sι) and 2τ=ί(Tr

1) which are congruent
under the mapping
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Clearly S and T both contain 0, and &(0)=0. It follows that φ(h(x))=φ(x)
for x in S. To facillitate the following discussion let x=h(x) for each
x in S, and let (α?i, x2, , α^-i) and (5 ,̂ x2, , ̂ - 0 be the elements in
R* corresponding respectively to x and x in the isomorphism of Theorem 1.
For each i , i = l , 2, « ,p —1 define α υ = \J XtXJ9 and let ilί=(αw). Note

that even though aυ is defined by an operation of 95 it is nevertheless
an element of B. For fixed i and jφk and any y, z in S consider the
product b=(yiyj)(zizIC). Clearly, byi^by^bzi=-bzki=-b. Since the elements
in any (p — l)-tuple in R* are pairwise orthogonal, it follows that bys=
byiys^O for sφi. Similarly, bys = 0 for sj^j, bzs = Q for sφi> and bzs=0
for sφk. Hence,

Similarly, bz=ib, by=jb, and bz=Jcb. Since # -># is a congruent mapping
of S onto T, Φ(y—z)=-φ(y—z)f and since jφk, φ(j — k)=l. Hence,

b=b-φ(j-k)=: φ(jb - kb)=φφy - δi)=δφ(^ - δ)=δφ(i/ - z)

=φ(by-bz)=φ(ίb-ib)==O .

Thus,

in 93 and hence also in B, Similarly it may be shown that 0^/1^=0 for
'ifj, k=l, 2, , p — 1, i^ife. Thus, M satisfies the hypotheses of Lemma
4 and hence there exists a matrix C in i ? ^ such that M+C is orthogonal.
The matrix M+C defines a motion of R, and the matrix M defines, at
least, a transformation of R into R, as described in § 2. The transfor-
mation defined by M maps S onto a subset £*, which will now be
examined. For sin S, let s*=sM, and note that a*ji2s43, follows from
the definition of αίJβ Thus, SA, |2 s^, and since for pairwise orthogonal
elements a?β in 93, \ J # i = Σ # i ίn ^> it follows that

or

( 1 )

Further,

p-l

p-l p-l
8 )= Σ ΣSii

ιy2Σί

p-l

4-1

/ P-l

UΣα
\ 23 — 1

* J / 4-1
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and from (1) it follows that ψ(s*)2Ψ(s). Thus,

(2) Φ(8*)

If rφj, it follows from (1) that s*sό Qs?sf=Q, and hence that
From (2),

whence

l i - l p-l

2 J
 Si — 1Λ

 bi

p-l p-l

— b j 2 b ι — b j 2 J

It follows that sf^sJ9 and this together with (1) gives sf=sJ9 hence
sM=s*=s=h(s). Thus, the transformation defined by M maps S onto T
and coincides with the congruence s —> h(s).

It remains to show that sM=s(M-\-C) for s in S. By Lemma 4,
cwα ί r=0, i,r,j=l,2f ,p — l. For s in S let b=sicij, then 6 αir==0.
Since

xes

it follows that

or that &?r=0, r = l , 2 , « ,p —1. Thus, bφ(s)=bφ(s)=O, whence 6^=
Consequently 8^=6=681=0 for ifj=l, 2, , p — 1. Thus, s(M4-C)
for s in £>, and the motion of R defined by M + C coincides with k(s) on
S. Finally, let α, β, γ be the motions of R defined by the mappings
x—>s(x)=x — a, x~>x(Άί-\-C), x->t(x)=x — hι(a), respectively, and note
that the motion aβγ~ι coincides on Sx with the congruence x-^k^x) of
Si onto Tτ.

To prove the necessity it will be shown that a p-ring, p > 2 , whose
Boolean algebra of idempotents is not complete does not have the pro-
perty of free mobility. Let 35 be a Boolean algebra which is not com-
plete, and let X be a subset of 33 for which no least upper bound exists.
Since a C l for all x in X, the set X* of all upper bounds to X is not
vacuous. Let Y be the set of complements of elements of X*. It will
be shown that if x, y are any upper bounds to X, Y respectively then
xyz^zO. Suppose on the contrary that xy=0, then since x is not a least
upper bound to X, there exists & zCZ% which is an upper bound to X.
Then z' e Y9 hence z' £ # , and xz1 ^xy=0, or xz' = 0, whence xz=x. It
follows that xξZzdx, a contradiction. Thus, xy^O as stated. Note,
however, that for all a in Xf b in Y, α6=0.
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Now, let R be a p-ring, p > 2 , with 33 as its Boolean algebra of
idempotents, and let X, Y be the subsets of 33 described above. Suppose,
without loss of generality, that the cardinality of Y is greater than or
equal to the cardinality of X. Then there is a one-to-one correspondence
between X and a subset Yx of F, say x<—>f(x). Denote by Γ2 the
subset of Y consisting of those elements which are not in f(X), and
define subsets A and B of R as follows: A contains 0, each y in F,,
and for each x in X, the element x-\-f(x)\ B contains 0, 2y for each y
in F2, and for each x in X, the element # + 2/(α?) Consider the mapping
z->F{z) of A onto JB defined by

To see that

for all Zι,z2 in 4̂., note first that φ(F(z))=φ(z)=z for all s in A, and
hence that if either ^ = 0 or £2=0, the equality is immediate. Also, the
equality is obvious if zl9z2eY2CZA. If zι=xι-hf(x1) and 22=#2-
then

φ{F(zx) - F(zΛ))=φKsx - a?,) -f 2(/(α?1) - f(xt))] ,

and since (xι — x.ι){f{xι) — /(a?2))=0, it follows from Lemma 3 that

Similarly,

φ(2! - ^)=φ(x ι - a?2) + φ{f{x,) - f(x2)) -

Finally, if «ι=a? + /(α:) and z2=ye Y2, then, again by the use of Lemma 3,

Thus, z-+F(z) is a congruent mapping of A onto B. Suppose that A
and Z? are superposable. Then there exists an orthogonal matrix M=
(mυ) in Bv-λ such that the motion x->xM coincides with F(x) on A, or
F(x)=xM for all x in A Thus,

( ( ) f() ] for a: in X,
(3)

( (ii) 2y=yM for y in



206 JOSEPH L. ZEMMER

It follows from (3) (i) that

x + 2f(x)= [x+ / ( φ u + [a?

or that

whence x=xmu, / ( x ) = / ( φ 1 2 , so that

( 4 ) (i) x g mπ , (ii) /(#) gΞ m12 , for all a? in X.

Similarly, from (3) (ii) it follows that

( 5 ) yQm12f for all y in Y2.

Relations (4) and (5) state that raπ is an upper bound to X, and m12 an
upper bound to Y. But w11rn12=0, and this contradicts the choice of X
and F. Thus, the congruent subsets A and B oί R are not superposable.
This completes the proof of the theorem.

Proof of the corollary. If the congruent subsets Sλ and Tλ in the
sufficiency part of the proof are finite then

α w = VI
xes

exists whether 33 is complete or not. The sufficiency proof then shows
that Si and Tx are superposable.

5 Betweenness and linearity. Let R be a p-ring, B its Boolean
ring of idempotents, and 33 the Boolean algebra associated with B. Since
φ(a — b)=a®b for all a,b in J5, it follows that the subset B of R is
congruent to the autometrized Boolean algebra S3 (autometrized Boolean
algebra is the name given by Ellis [3] to what is here called the Boolean
space of a Boolean ring (2-ring)). The same is true for the image of B
under any motion of i?. The subset f(B), where / is any motion of R,
will be called a one-dimensional subspace of R. Note that in view of
Theorem 5 the set of all one-dimensional subspaces of R is not necessarily
the same as the set of all subsets of R congruent to S3, unless 93 is a
complete Boolean algebra. In any event, all of the results of Blumenthal
[1] are applicable to a one-dimensional subspace of R. For example, one
is led to define betweenness for elements of R as follows:

DEFINITION. Let a,b, ce R, then b is said to be between a and c if
and only if

(i) aφbφc,
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(ίi) a,b,c are contained in a one-dimensional subspace of R,

(iii) φ(b-a)\Jφ(c-b)=φ(c-a) .

The symbol β(a, δ, c) will mean that b is between a and c.
Following Blumenthal [1] a set of m pairwise distinct elements of

R is said to be a β-linear m-tuple provided there exists a labeling, au

a>, , dm such that β(ail9 ah, ald) holds for all 1 <^i < i 2 < ^ ^ ^ .
The following theorem now follows almost immediately from the

corresponding theorem for an autometrized Boolean algebra [1, Theorem
4.2, p. 9].

THEOREM 6. // each triple of pairwise distinct elements of an m-
tuple, m > 4, is β-linear then the m-tuple is β-linear.

Proof. Since each triple is congruent to a subset of the autometrized
Boolean algebra 93, whose elements are the idempotents of R, it follows
from a theorem of Ellis [3, Theorem 5.1, p. 92] that the m-tuple is
congruent to an m-tuple of 33, for which all triples are β-linear. Hence,
by the theorem of Blumenthal referred to above, the given m-tuple is
β-linear.

6* Two unsolved problems* A set of k elements, al9 a2, , αft,
of a Boolean space is called a metric basis for the space if x is the only
point with distances d(aίf x) from the a%. It is not difficult to show that
in the Boolean space of a p-ring R the elements 1, 2, , p—1 form a
metric basis. However, necessary and sufficient conditions that a subset
A ξZ R form a metric basis are not known.

Another unsolved problem is the extension to the Boolean space of
a p-ring, p > 2 , of the result of Ellis used in the proof of Theorem 6.
Ellis calls an abstract set 2 a B-metrized space if with each x, y in 2
there is associated an element d(x, y) of a Boolean algebra 35, satisfying:
(i) d(x, ?/)=0, if and only if x=y, and (ii) d(x, y)=d(y, x) for all x, y in
2 . Thus, a Boolean space is a Z?-metrized space in which d(x, z) gΞ
d{Xy y) \J d(y, z) holds for all x, y, z. Ellis has shown in [3] that a given
abstract 5-metrized space 2 is congruent to a subset of the Boolean
space of a Boolean ring R if every three points of 2 are congruent to
some set of three points in R, and further, that three is the smallest
integer for which this is true. Whether or not there exists such an
integer in case R is a p-ring, p > 2 , is not known. If such an integer
n exists for a p-ήng R, then n is called the best congruence order of
the Boolean space of R with respect to the class of 5-metrized spaces.
The reader is referred to Blumenthal [2] for a discussion of congruence
orders of Euclidean spaces, and the metric characterization problem.
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