
SUMMABLE TRIGONOMETRIC SERIES

R. D. JAMES

l Introduction. One of the problems in the theory of trigono-
metric series in the form

(1.1) -—OD + Σ {an cos nx + bn sin nx) = Σ «n(aθ

is that of suitably defining a process of integration such that, if the
series (1.1) converges to a function f(x), then f(x) is integrable and
the coefficients anf bn are given in Fourier form. The problem has been
solved by Denjoy [3], Verblunsky [10], Marcinkiewicz and Zygmund [8],
Burkill [1], [2], and James [6]. In Verblunsky's paper and in BurkilΓs
first paper, additional hypotheses other than the convergence of (1.1)
were made, and in all the papers some modification of the form of the
Fourier formulas was necessary:

An extension of the problem is to consider series that are summable
(C, k), &2>1. This has been solved by Wolf [11] when the sum func-
tion is Perron integrable. The problem of defining a process of inte-
gration which may be applied to any series summable (C, k) may be
solved if an additional condition involving the conjugate series

(1.2) Σ (an sin nx - bn cos nx) = -

is imposed. With this extra condition, it is proved, in § 2, that the
formal product of cos px or sin px and a series summable (C, k) to f(x)
is also summable (C, k) to f{x)c,o$px or /(a?) sin pa:.

In § 3, some properties of integrated series are discussed and then,
in § 4, it is shown that the generalized Pfc+^integral [7] integrates any
trigonometric series summable (C, k) and satisfying the extra condition.
In addition, the coefficients are given by a natural modification of the
Fourier formulas. These are the principal results of the paper. They
were described briefly for the special case k=2 in the author's invited
address at the 1954 Summer Meeting of the American Mathematical
Society.

It is also possible to improve the results slightly and only require
summability for all x in [0, 2π] with the possible exception of a count-
able set. This requires a minor modification in the definition of the
Pfc+2-integral and these changes are indicated in §§5 and 6.
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2 Formal multiplication of summable trigonometric series* Follow-
ing the notation of Hardy [4, § 5.4], let

(2.1) A°n(x)=An(x)=Σ ar(x), A*(x)=£ A^\x),
r=o r=0

(2.2)

where

an(x)=an cos nx + bn sin nx ,

)=bncos nx — ansmnx, n

and let Ek

n={n + k)\ln\k\. If A*(a?)/£7*->/(a?) as ^->CXD, the series (1.1)
is said to be summable (C, &) to /(#) and the notation is

The formal product of g(x)=λ cos px-hμ sin pa;, pl> 1, and the series
(1.1) is the series obtained by multiplying each term by g{x), replacing
the trigonometric products by sums of cosines and sines, and rearrang-
ing the terms in the form

(un cos nx + vn sin nx) == Σ un(x),

where

(2.3)

with the usual convention that a.r(x)=ar(x), bo(x)=O, b-r(x)=— br(x).
Similarly, the formal product of g(x) and the conjugate series (1.2) is

Σ (vn cos nx—un sin nx) = — Σ vn{%) >
W = l W = l

where

(2.4) Vn{χ)

Before proving the main result of this section, it is convenient to
find expressions for Uk

n(x) and V%(x). It will be seen later that it is suf-
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ficient to consider the case x=0. The method is similar to that of Zyg-
mund [12], who proved the analogous result for Abel (or Poisson) sum-
mability.

The definitions (2.1), with x=0, are equivalent to the identity

(2.5)

When the formulas (2.3), (2.4), with #=0, are substituted in the right
side of (2.5), the coefficient of λ\2 may be written in the form

(2.6)

and the coefficient of μj2,

(2.7) (l-z)-*-*[(l-*
72 = 1 7^ = l

The first series in (2.6) becomes

1
22? —2 W /I oo \ \ (2J9-2 W oo Λ

W = 0 ) I \ 2 71 = 1 /) ( 71 = 0 j (τi = 0 j

where

\<p-n-l p<Ln<:2p-2.

The second series in (2.6) is

(2.9) P(z)(l-z)-k=P(z)ΣiE
k

n'
1zn,

n = o

where P(2;) is a polynomial of degree 2p —1 at most. Similarly, the
series in (2.7) become

(2.10) { Σ V } { Σ Bl'ιzn} * and Q{z) £El~ιzn,
o i i

where Q(̂ ) is a polynomial of degree 2p—2 at most.
Since 2££"1~w*~1/(λ;—1)!, it follows by equating coefficients in (2.5)

and (2.8), (2.9), (2.10), that

(2.11) U*-λA*=-±-λ Σ c
£ r=n-p+2
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A similar computation shows that

(2.12) V*-lPn=KpE* + ± "f

where

r=n-p+2

The main result of the section now follows from (2.11) and (2.12).

THEOREM 2.1. / /

(2.13) Al'\x^o{n% JSJTfoHΦ**)>

then

(2.14) Σ K(^o)-^o)M^o)} =0 (C,

(2.15) Ut2(xo)=o(n«), Vl-\xQ)=o{n«).

Proof. Since

( ) ( x Q ) cos w#-f &w(#0) s in

with similar expressions for bn(x0 + x) and g(xo + x), formula (2.11) is
valid with Ul, λ, Al, replaced respectively by Un(x0), g(xQ), Al(xQ), and
with similar replacements on the right side. Thus,

and this is equivalent to (2.14).

Similarly, since (2.13) imply

for τ<^ky the other conclusions of the theorem follow from (2.11) and (2.12)
with k replaced by k—2 and k — 1, respectively.

3. Integrated trigonometric series* In the work of Riemann there
are two fundamental results for series (1.1) with coefficients an and bn

tending to zero [13, §11.2]. These results have been generalized for
series in which an=o(nk), bn=o(nk). They involve generalized (symmet-
ric) derivatives [13, §10.41] defined successively by

x, h)= \imθp(F; x, h),

where, for p=2m,
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(3.1) η!jrrrOJtx, h) \{F{x + h) + F(xh)} %£^
(2m)! 2 s=o (2s)!

and, for p=2m + l,

(3 2) (£ϋk | I
The generalizations of Riemann's results are given in [11, Theorem

E\ and [13, § 10.42] and are conveniently stated in terms of the follow-
ing conditions that may be imposed on the series (1.1):

(3.3) αM=o(n*), bn=o(n«),

(3.4) AΪXzJ-oW),

(3.5) ±-aa + ±an(x0)=f(xa) (C, k).
2 ι

THEOREM 3.1. If condition (3.3) is satisfied, then the series obtained
by integrating (1.1) formally term-by-term kΛ-2 times converges uniformly
to a continuous function F(x). If conditions (3.3) and (3.4) are both
satisfied, then Dk+2~2rF(x0) exists for 1 < I r ^ ( & - f l)/2 and

(3.6) hθk+2 (x0, h) -> 0 as h-+Q.

If conditions (3.3) and (3.5) are both satisfied, then (3.6) holds and, in
addition,

( 3 > 7 ) l (2r) ! + ( 1]h~Vr D b™ ^'k *r>

for 0<Lr < (fc + l)/2.

It may happen that the derivatives exist for all x in an interval

(α, b). For later purposes it is necessary to know under what conditions

no derivative has an ordinary discontinuity in (a, b). A sufficient con-

dition involves the series

where cn(x)=bn(x)ln. This series is, of course, obtained from (1.1) by

integrating formally term-by-term.

THEOREM 3.2. // conditions (3.3), (3.4), and

(3.9) CJ"2(α;0)=o(^fc"1)

are all satisfied for every xQ in an interval (a, b), then no derivative
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B*+*-»F(x)9 l<Ir<;(&-{-l)/2, has an ordinary discontinuity in (α, b).

Proof. The function F(x) of Theorem 3.1 is also the function ob-
tained by integrating (3.8) formally term-by-term k-h 1 times. Since
conditions (3.3) imply that the coefficients of (3.8) are oin*'1), it follows
from (3.9) and Theorem 3.1 that each of hθk+1(x0, h) and hβk+2{xQ, h) tends
to zero as h~>0. If k is even, definitions (3.1) and (3.2) show that

\ΔSy.

and there are similar results when k is odd.
Hence, by addition and subtraction,

But this is precisely the definition [13, § 10.41] of the generalized non-
symmetric derivatives of F(x). Thus DrF(xd)-=Fc^(xQ) and it is known
[7, Lemma 8.1] that when F{x) is continuous, then F^(x) cannot have
an ordinary discontinuity.

4* The expression of an everywhere summable trigonometric series
in Fourier forπu This section contains the principal results of the
paper.

THEOREM 4.1. // the series (1.1) is summable (C, k) for all x to a
finite function f(x)y and if condition (3.9) holds for all x, then f(x) is
Pk+2-integrable [7, Definition 5.1] over (at; x) for every x in [a, β]. Here
[a, β~] is any finite closed interval and

Proof. Since the series is summable (C, k) for all x, conditions
(3.3) are satisfied [13, § 11.11] and (3.4) holds for all x. It follows from
Theorem 3.1 that (3.6) and (3.7) are valid for all x. By Theorem 3.2,
no derivative Dk+2~'ZrF(x), 1 <><!(& +1)/2, has an ordinary discontinuity.
Let

fc+2

(4.1) Q(x)=F(x) - Σ λ(x;
1 = 1

where
λ(x; ai)=Ώ(x--aJ

is a polynomial of degree &4-1. Then
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hθk+2(Q; x, h)=hθM(F; x, h),

Thus Q(#) satisfies all the conditions [7, Definition 5.1] for both a major
and a minor function of f(x), and /(a?) is therefore P*+Mntegrable over
(at; x).

THEOREM 4.2. Under the hypotheses of Theorem 4.1, but with (3.9)
replaced by

(4.2) S*-1(a?)=o(w*) /or all x ,

the functions f(x)cospx and f(x)sinpx, p l > l , are eac& Pk+z-integrable
over (cίi) x).

Proof. It is not difficult to see (for example, by the method of
proof of [4, Theorem 50]) that (4.2) implies (3.9), so that the hypotheses
of Theorem 4.2 are stronger than those of Theorem 4.1.

All the hypotheses of Theorem 2.1 are satisfied for all x so that
(2.14) is true. Thus, with Λ=l, ^ = 0 , .

(4.3) A u0 -f ΣPjx)=/(α) cos px (C, k)
2 n = ι

and un=o(nk), vn=o(nk). By Theorem 3.1, the series obtained by inte-
grating (4.3) formally term-by-term k + 2 times converges uniformly to
a continuous function Gp(x) such that (3.6) and (3.7) hold, with F re-
placed by Gp, for all x.

It remains to show that no derivative of Gp(x) has an ordinary dis-
continuity. The series corresponding to (3.8) is

where wn(x)=vn(x)[n. By (2.15) of Theorem 2.1, Vf-\x)=o(nk) and this,
as noted above, implies W%~2(x)=o(nk-1). Thus, by the proof of Theorem
4.1, f(x)cospx is Pfc+2-integrable over (a,,; x).

By taking Λ=0, μ=l in (2.14), it follows in a similar fashion that
the same result is true for f(x) sin px.

COROLLARY. // ά = 2 m - 2 , let 7-fc = (2rn)!/(m!)2 and let (at) be the set

(4.4) (-2mτr, . . . , -2π, 2τr, . . ,2mτr).

( ~ 2 m τ r , •••, - 2 τ r , 2τr, . , (2m-f 2)π) .
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Then, under the hypotheses of Theorem 4.2, the coefficients of the series
(1.1) are given by

(4.5) ap^^Jή^-^f(x) cos

(4.6) δ p = — J ξ ^ j*/(*) sin ̂  d, +,x .

Proof. Only the case & = 2m—2 will be considered, since the de-
tails for &=2m—1 are quite similar. It follows from the proof of
Theorem 4.1 and the definition of the P2m-integral that, for ocm<^x

(AΊΛ (— Λ\m\ f(Άrl Ύ—TP(Ά — V ^ ΓΫ \TPdy Λ

When k=2m — 2, F(x) may be written in the form G(x) + H(x), where
G(x)=aQx2ml2(2m)l and H(x) is a periodic function with period 2π. If
(αέ) is the set (4.4) and x=Q, the right side of (4.7) becomes

2m 2m

(4.8) G(0) - g/KO; ^G(tfiH#(0)-ΣΛ(0; a4)H(O).

The terms involving G(x) are equal to Π?ϊ1(--αί) multiplied by a divided
difference [9, Chapter I] of order 2m for the function G(x). Since every
divided difference of order 2m for the function x2m is equal to 1 and
the divided difference of the constant H(0) is equal to 0, the expression
(4.8) reduces to

ao riί^^\— (~~ l)m#o2fc+1πfc+2

2(2m)! i-i 4/ γk

by (4.4). This, together with (4.7) shows that (4.5) is true when p=0.
If P^A> it is only necessary to consider the formal product of (1.1)

and g(x) with either Λ=l, /z=0 or ^=0, μ=l. In the first case the
constant term of the new series is αp/2 and, in the second, it is 6p/2.
Hence (4.5) and (4.6) are true for p^>l.

5. Upper and lower sums (C, k). Let Sk(x) and sJc(x) denote the
lim sup and lim inf, respectively, as n—>oo, of An(x)jEn In order to
extend the results of § 4 to the case where (1.1) is not summable for
every x, some information is needed concerning the behavior of Sk(x)
and sk(x) at points of non-summability.

LEMMA 5.1. Let P denote the set of points x for which
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Then P is a set Fσ.

Proof. Let Sl(x) and sk

n{x) denote the sup and the inf, respectively,
of the set A*n{x)lEk

m for m^n. Then Sk(x) is a monotone decreasing
sequence of lower semicontinuous functions with limit Sk(x) and sk(x) is
a monotone increasing sequence of upper semicontinuous functions with
limit sk(x). If Pn denotes the set of points x for which Sl(x) — sl{x)^n1

then each Pn is closed and, clearly,

LEMMA 5.2. If condition (3.3) is satisfied and F{x) is the function
of Theorem 3.1, let Δk+2F(x) and δk+2F(x) denote the lim sup and lim
inf, respectively, as h-*0 of (3.1) if k+2=2m and of (3.2) if k+2=2m
+ 1. Then Jk+2F(x) and δk+2F(x) lie in the interval

(φk(x)-Ckψ*(x), φ

where

2φk(x)=Sk(x) + sk(x), 2ψk(x)=Sk(x)-sk{x),

and Ck depends only on k.

Proof. This result is equivalent (when k+2=2m) to [11, Theorem
B] and it may also be proved by the method of [13, § 10.42].

THEOREM 5.1 Suppose that the series (1.1) is summable (C, k) to a
finite function f(x) for all xe [0, 27i] —E, where E is at most countable.
Then the set S of points x for which either Δk+%F(x)= + ̂  or 3k+2F(x)
= — oo is a scattered set {clairseme, [3, p. 90]), that is> a set which
contains no subset that is dense-in-itself.

Proof. It follows from (3.7) with r = 0 that SCE so that S is at
most countable. By Lemma 5.2, S is the complement of the set P and
is therefore a set Gδ. But a set Gδ that is at most countable cannot
contain a subset that is dense-in-itself [5, VIII, p. 136].

6 A new definition of the Pfc+2-integraL Since only the case k =
2m — 2 is considered in detail in [7], the same restriction will be made
in this section. Two of the requirements for a major function Q(x) and
a minor function q(x) are [7, Definition 5.1]

(6.1) δ2mQ(x) ̂  f(x) ^ Δϊmq(x) x e (a, b),

(6.2) 32mQ(x) =£ - co, Δ^q{x) φ+o* xe(a,b).

Under the hypotheses of Theorem 5.1, the function Q(x) defined by
(4.1) satisfies (6.1) only for #e [0, 2π\—E, where E is at most countable,
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and (6.2), only for xe[0, 2π]—S, where S is scattered. In order to ex-
tend the results of § 4, it must be possible to weaken (6.1) and (6.2)
and still define an integral.

It is not difficult to see that there is no change in the P2w-integral
if (6.1) holds only for xe(a, b)—EQ1 where Eo is of measure zero. The
method is similar to that used for the Perron integral and the P2-inte-
gral [6, Theorem 3.1]. The modification of (6.2) is not quite so easy.

If the reasons for requiring (6.1) and (6.2) are examined, it is seen
that they are needed to make sure that the difference

δ2mQ(x)-A2mq(χ)

is defined and nonnegative for xe{a, b). This, in turn, goes back to
[7, Theorem 4.1] which gives sufficient conditions that a continuous
function F(x) should satisfy in order that D2m'2F(x) should be convex.
For convenience, the theorem is restated here :

// F(x) satisfies conditions A2m and B2m-2 [7, § 2] in (α, b) and if

(6.3) A2mF(x)>0 xe(a,b),

then D2m~2F(x) is convex andf for l^!Lr<^m-- 1, each D2m~~2rF(x) is conti-
nuous in (α, b).

It is therefore necessary to establish the conclusions of this theo-
rem under weaker hypotheses.

LEMMA 6.1. The conclusions of [7, Theorem 4.1] remain true if
(6.3) is replaced by Δ2mF{x)^0, xe(a, b).

Proof. For each positive integer n, let

Fn{x)=F(x) + x2mjn(2m)!.

Then, for l<Ξ><Ira—1,

D2m'2rFn(x)=D2m-2rF(x) + x2m-2rjn{2m - 2r)!

and

Δ2™Fn{x)=A2mF{x) + Vn > 0 .

Thus Fn(x) satisfies all the original conditions of [7, Theorem 4.1].
Since each D2m~2rFn(x) tends uniformly to D2m~2rF(x) the same conclusions
hold for D2m'2rF(x).

THEOREM 6.1. // in the hypotheses of [7, Theorem 4.1], the con-
dition (6.3) is replaced by the two conditions

(6.4) j2mF(x) ^ 0 x e (α, b)-S,
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where S is scattered, and

(6.5) lim sup hθ2m(x, h)^>0^> lim inf hθ2nι{x, h) x e S ,

then the conclusions remain true.

Proof. Let H denote the set of points x in (α, 6) for which Δ2mF(x)
< 0 . From (6.4) it follows that HC.S, and if H is not empty, it must
contain at least one isolated point x0 and there is an interval (α, β)
containing x0 but no other points of H. All the conditions of Lemma
6.1 are satisfied in each of the intervals (a, x0), (x0, β) and the conclu-
sions are valid in each interval. By [7, Lemma 3.4] they are also valid
in each of the closed intervals [a, x0], [x0, β].

Therefore, for the function p(x)=D2m-2F(x), the difference quotient
{p(%o)—ρ(xo—h)}lh ifc monotone increasing as h-+0. Hence the left-hand
derivative p-{x) exists (possibly equal to - f ^ ) , and, similarly, so does
the right-hand derivative ρ+{x^) (possibly equal to — oo). Then, since

2hθ2(p; x0, h)= {p(xo + h)-{-ρ(xQ~h)-2ρ(x0)}/h ,

(6.6) lim 2hθ2(p; x0, h)=p'+(x0) — ρ'-(
ft0

But, since each D2m~2rF(x) is continuous in [a, β~\, it follows [11,
Lemma 7] that F(x) has continuous ordinary derivatives FCs\x), l<Ls
<L2m-2, and in particular, FC2m-v(x)==D2m'2F(x). Hence, from (6.5) by
repeated application of the theorem on indeterminate forms,

lim sup hθ2(p; xQ, h)^>0^> lim inf hθ2(p; x0, h) .

Then, from (6.6), ρ'+(xo)=p-(%o) and p{x) is smooth at x=xQ. It follows
[13, § 11.31] that p(x) is convex in [α, β] and, in particular, that d2p(x0)
;>0. But then, by another application of the theorem on indeterminate
forms,

J2mF(xQ) > d2mF(x0) ^d2p(xQ) ^ 0 ,

which contradicts the fact that xQeH. Hence H must be empty and
J2mF(x)^>0 in (α, 6). The conclusions of Theorem 6.1 now follow from
Lemma 6.1.

Once Theorem 6.1 (replacing [7, Theorem 4.1]) has been established,
there is no further difficulty in defining a modified P2w-integral. The
only difference between the new and old definitions is that (6.4) and
(6.5) are replaced by

S2mQ(x) ^ f(x) ^ Δ2™q{x) x 6 (α, δ) - J57O,

where Eo is of measure zero, and
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δ2mQ(x) φ-ooy A2mq(x) φ+oo x e (χ9 b) - S,

where S is scattered, provided that Q(x) and q(x) satisfy (6.5).
The final result is the following:

THEOREM 6.2. Suppose that the series (1.1) is summάble (C, k) to a
finite function f(x) for all xe [0, 2π]—E, where E is at most countable,
and let f(x)=0, xeE. If il*"1(α?)=o(w*) for xeE and Bl'^x^oin*) for
xe [0, 2π], then f(x), f(x) cosp#, f(x) sin px are each PIC+2-integrable and
the coefficients of (1.1) are given by (4.5) and (4.6).

7 Remark on the PMntegraL It was noted in [7, § 6] that the
P2TO-integral for m = l was possibly not the same as the original PMnte-
gral. It is, however, not difficult to see that the new P2m-integral for
m = l is the same as the original. The reason is that the set of points
where δ2Q(x)= — oo or A2q(χ)= + oo is a set Gδ and, if at most countable,
it must be scattered.
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