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1. Introduction. In 1948, R. W. Ball [2] presented methods for
obtaining information about the number of absolute points of a corre-
lation of a finite projective plane in which neither the theorem of
Desargues nor any other special property (except, of course, the existence
of the correlation) is assumed. This work was, in a sense, a continua-
tion of an earlier investigation by R. Baer [1] of the case that the
correlation is a polarity.

We shall show how, using an incidence-matrix approach1, one may
obtain the principal results of [2] somewhat more directly. Some of
the results are strengthened. In addition, our method is sufficiently
general to apply at once to the so-called symmetric group divisible
designs, a class of combinatorial configurations including the finite pro-
jective planes. For simplicity, we shall present our main discussion in
the language of planes, reserving to the end indications of the generali-
zation.

As pointed out in §§ 3 and 4 the geometric problem with which we
are concerned leads naturally to the question : What are the irreducible
polynomials whose roots are roots of natural numbers? This question
is treated in the following section.

2 Polynomials whose roots are roots of natural numbers. Let
f(x) be an irreducible polynomial with integral coefficients and let one
of its roots be z=nιlIcζ, (n, k natural numbers, ζ a root of unity). Clearly
z satisfies the equation

(1) zkln=ζk=ζh

for some h, where from now on we use ζh to denote a primitive hih
root of unity. From (1) we see that Φh(zkln) = 0, where Φh is the
cyclotomic polynomial of order h. Hence

(2) f(x)\n«h>Φh(x*ln).

The problem is therefore reduced to that of finding the irreducible
factors of Φh(xkln) for arbitrary positive integers h, k, n. It will suffice
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1 Arithmetic properties of the incidence matrix have been exploited with conspicuous
success ([4], [5]). In this paper we study its characteristic polynomial.
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for our purpose here to consider only the reducibility of Φh(x2\n) (that
is the case k=2). The general case is settled in the note following
this paper [9].

If nnh)Φh(x2ln) is divisible by an irreducible polynomial g(x), then
g(x) is not a polynomial in x2. Hence g{ — x), which also divides
nnh)φh(x2lri), is different from g(x) and is irreducible. Therefore,

for g(x)g( — x) is a polynomial in x\ and n*(h)Φh(a?lit) is irreducible in x\
Then by (3), Vnζh or -Vnζh is a root of g(x); thus ζh=(±v/

nζh)
2ln

is in the splitting field for g(x). Thus the splitting field for g(x) contains
the hth roots of unity; but by (3), the degree of this splitting field is
φ(h). Therefore the splitting field for g(x) is the same as R(ζh). Con-
versely since Vnζh is a root of Φh(x2jn), Vnζh^R{ζh) implies that Φh(x2ln)
is reducible. We are thus led to the following lemma:

LEMMA 1. The polynomial Φh(x2ln) is reducible if and only if Vnζh

is contained in R(ζh).

LEMMA 2. The polynomial Φh(x2\n) where n=n*2n', n' squarefree, is
reducible if and only if n'\h and one of the following conditions holds:

(a) h = 1 (mod 2) and nf = 1 (mod 4)
(b) h = 2 (mod 4) and n' = 3 (mod 4)
(c) h = 4 (mod 8) and n' = 0 (mod 2).

Proof. We first list for convenience several facts to which we shall
make reference in the course of this proof and subsequently.

(i) The discriminant of a subfield of an algebraic number field
divides the discriminant of the whole field [7, p. 95, Satz 39].

(ii) The discriminant of R{\/Ίn)y m a squarefree integer, is 4m if
m = 2, 3 (mod 4), and m i f m ^ l (mod 4) [7, p. 157, Satz 95].

(iii) The discriminant of the field of the rath roots of unity is
divisible only by primes which divide m [7, p. 146, Satz 88].

(iv)

[8, p. 177, Theorem 99].
(v) If (r, s) = l, then ζrζs is a primitive rsth root of unity.
(vi) If m is odd and squarefree, m\r then {( — iym~υl2m}φeR(ζr)

(This can be shown in a variety of ways: for example, from (iv) or
from (i), (ii), (iii)).

m-l t>

 !

ΣC£=<

(1 4- i)τ/ m

[ .

if
if

if

m = 0 (mod
m ΞΞΞΞ 1 (mod

m = 3 (mod
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We now turn to the proof proper. We first prove the necessity.
Assume Φh(x2jn) is reducible that is, by Lemma 1,

( 4 )

Therefore χ/^7 eR(λ/ζl)> so by (i), (ii), (iii), n' is the product of primes
each of which divides 2h. If h is even, then n'\h. If h is odd, then
since φ(2h)=φ(h), we have R{]/'ζh)=R(ζh)9 so that by (i), (ii) and (iii)
we have again n'\h. Next,

(a) Assume h odd. Then V ζh£ R(ζh)> so that (4) implies n' eR(ζh).
Further nf is odd, since n'\h, so either n' = 1 (mod 4) or n' = 3 (mod 4).
But we cannot have n' =Z (mod 4), for, by (ii), (i), and (iii), this would
imply 2\h.

(b) Assume h = 2 (mod 4). Then, since φ(2h)^>φ{h)1 it follows
that T/CΛ£-R(CΛ), S O Vn7ZheR{ζh) implies τ/^gi2(CΛ). If n' is odd,
this implies rc/=3 (mod 4), by the fact that n'\h and (vi). Further n1

cannot be even. If nf were even, write n'=2n". There are two cases :
ra" = l (mod 4), n" = 3 (mod 4). If n" = 1 (mod 4), then VnΎ^
V 2 V n" VΊΰ e R(ζh) implies V2v/ζheR(ζh)f since V nff eR{ζh) by the
fact that n"\h and (vi). But this means V 2 eR(ζh), which is impossible.
For iί(τ/cD contains i and if it also contains τ/!Γ, it would contain
Cβ==:(l + i)/-|/"2 By (v), it follows that R(V"ζj) would then contain a
primitive 8(A/2) = 4Λ,th root of unity; therefore the degree of R{ζh)
would be at least φ(4h)^>φ(2h); the actual degree of -R(i/Ί^).

If n" = 3 (mod 4), then i/w"cft

 e Λ(CΛ), for %Vn!' e i?(CΛ) by the fact
that ra" I A. and (vi), and it is easy to see (for example by (v)) that
i l / α e β(CΛ). Therefere V nf ζh ' = {%Vn"){- Wζh) eR(ζh). Hence,
i/~2~ei2(Cft),

 a n ( i a fortiori i/"2" 6 i2(i/cΛ), a n ^ ^ e preceding argument
applies.

(c) Assume finally A ΞΞΞ4 (mod 8). Then ra' cannot be odd. For
since R(ζh) contains i, and w'|A, we learn from (vi) that V^/eR(ζh).
Therefore, -]/n'ζheR(ζh) implies \/~ζ^eR(ζh), which is impossible, since
φ(2h)>φ(h).

It remains to show that if A~0 (mod 8), then Vnfζh$R{ζκ) for
any n'. The argument used in (c) shows that nr cannot be odd. If nr

were even, n'=2n", then since ζs=(l + i)IVΎ and ieR(ζh), we have
VΎeR(ζh). Hence τ/w/Cft

==sv/2w//"CΛ

 e i 2 ( C J implies i / ^ ' e O
Then we may use the argument just given to cover the case in which
n' is odd. Hence we cannot have k = 0 (mod 8).

The sufficiency is established simply by constructing g{x) of (3).
We first prove that in cases (a), (b)

(5 ) z=n*ζh xV'" '—* W ' C* Σ C/ln'
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is a zero of Φh(x2[ri). Since Crln' is a primitive w'th root of unity we
obtain from (iv):

in case (a) z=n*ι/~<nfζ!ι=v/~nζh=a zero of Φh(x2!n)

in case (b) z^n*V n>'iζiι = V~nζiζh=a> zero of Φh(x2ln) .

In case (c) we have

(6) Z — V C Γ E V Γ ^ ' = ^ V 2 W ' ( 1 + i)CΛ=wV"^CβCΛ>

a zero of >Φh(xΊln). The conjugates z(O of s in R{ζh) are now obtained
simply by substituting ζi for ζh in (5) or (6) where (l,h) = l. Thus we
obtain

g(x)= *π (x-zw) .

Later on we shall need the sum of the z(l\ We therefore establish
the following lemma:

LEMMA 3. // (3) holds, then the sum of the roots of g(x) is
(a) ±n*nr if hφO (mod 4) and squarefree,
(b) 0 if hφO (mod 4) and h is not squarefree,
(c) ±n*nf if ΛΞΞΞO (mod 4) and h/4 is odd and squarefree,
(d) 0 if hΞΞΞO (mod 4) and hjA is odd and not squarefree.

Proof. Let us first note that, by Lemma 2, the foregoing enumera-
tion accounts for all cases in which nHh)Φh{xιln) may be reducible. Also,
the ± in (a) and (c) is to be expected, since we are clearly unable to
distinguish between g(x) and g( — x).

We now set h=2epL

eι pί*, nf=2*p\ι pl* where e, e4=0, 1; and

write Aα=2β, h^pf; ri^2\ wi=p?; Cco>=CΛj, Co ) = < Λ j .
Then CΛ=C(o)C(i) C(fc) a n d its conjugates ζ{ are the products of the

conjugates C*°> C!},» * >C* where ί==^ (mod Af). Cases (a), (b) of this
(.1),) (.1^ (,/v^

lemma correspond to cases (a), (b) of Lemma 2. Here ζQ=±l so that
we obtain from (5)

( 7 )
ΊV - 1 fC ί

j=0 i = l «ί = l c l J

As jι runs from 0 to nr — 1 its residues (mod n[) run independently
from 0 to rii — 1; hence we can write
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(8) a=Σ*"=±n*u Σ Σ
j ί 1

In order to evaluate the at we first observe that the sum of the primi-
tive mth roots of unity

(9) if ?m=μ(m).

This is seen most simply by observing that

Now for A > r a ί we have ζ^ln'*1] a primitive ^ t h root of unity

and therefore

V-1 V 1

 2 r V"1

(10) <χ*= Σ Σ C^1*^ / w / + 1 ] = Σ μi^d^^Φi^d •

For Ai=wί we have A/w' relatively prime to pt so that

'"pj if P i ^ l (mod 4)
(11)

if p4 ^ 3 (mod 4).

Where the sign depends on whether h\nr is or is not a quadratic
residue (mod pt). Similarly

V-1

 2 //xV- 1

 2 / / \
(12) Σ C ^ *=(—) Σ ζ& > ί— )=Legendre symbol.

From (11) and (12) we obtain

V-1 / / \ V-1 ,
( 1 3 ) α i = = ± i?i ( )ζω ΣoC&

Now

(14)

where Σ i ranges over those s in 1, •• ,p t —1 which are quadratic
residues (mod pt) and Σ2 ranges over those t in 1, •••, pt — 1, which are
quadratic nonresidues (mod pέ). According to (9)

(15)



88 A, J. HOFFMAN, M. NEWMAN, E. G. STRAUS AND O. TAUSSKY

and obviously

(16) Σ C ^ = l + 2ΣiC?.).

Combining (15) and (16) we have

(17) Σ i C f o - Σ i f i o - ^ Σ C^

Substitution in (13) now yields

(18) α,= ±( Σ C& ) = ±Pi=

From (8), (10) and (18) we now obtain

(19) a=±n*n'μ{h) ,

which proves cases (a), (b). In cases (c), (d) we have case (c) of Lemma
(2) and therefore equation (6) obtains. We now have a=±7i*cwv**a fc

where alf , ak are the same as in (10) and (18). The only new factor
is according to (6)

(20) * - | £ χ Σ β CW>«>.

If hoy>4: then, as in (10), we obtain

(21) aΰ

If A0=4 then ζ(Q)=i-and

(22) α d-l[C(o)4-α)+α
Li

Thus, finally, in cases (c), (d)

(23) α - ±w*w'rμ(hβ)

which proves these cases.

3 The incidence matrix* We assume that we have a finite pro-
jective plane 77 with n + 1 points on a line, rc>l, and consequently
N=n2 + n +1 points in the plane. We further assume that the plane
admits a correlation p, that is a one-to-one mapping of the set of points
of II onto the set of lines of 77, together with a one-to-one mapping of
the set of lines of 77 onto the set of points of 77 such that a point is on
a line if and only if the image of the point is on the image of the line.
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Our attack on the study of the number of absolute points of a
correlation, that is, the set of points each of which lies on its image,
is based on the following:

LEMMA 4. Let p be a correlation of a finite protective plane Π, and
let the points P19 * ,PN and lines ll9 ,lN of Π be so numbered that
pp.=l. (i=l, , N). Let A=(α o ) be a square matrix of order N defined
by the rule α ί J f =l if P* is on lJ9 and 0 otherwise, and let P={pυ) be a
permutation matrix defined by pif=l if p2Pi=Pj, and 0 otherwise. Then
if Aτ denotes the transpose of A, we have (i) AT=PA, and (ii) the number
of absolute points of p is tr A (the trace of A).

Proof. The second part of the lemma is immediate. To prove (i),
observe that the (i,j)th element of Aτ is lφ=^>αji=lφφPj is on li^^lJ=pPj

is on pli=pΨi. But from the definition of P, the (ΐ,i)th element of PA,
is K^pΨt is on lj. Hence AT=PA.

Of course, it is also true that if A is an incidence matrix of a
finite protective plane, and there exists a permutation matrix P=(pυ)
such that AT=PA, then the mappings P έ~>^; lt->Pj9 where p«j=l,
define a correlation.

Because of (ii), it is clear that knowledge of the eigenvalues of A
will contribute to the solution of our problem. Now, AT=PA implies
A is normal. For if AT^PA, then A=ATPT. Hence AAτ=AτPτPA=ArA.
Thus the eigenvalues of AAT are the squares of the moduli of the
eigenvalues of A. But the eigenvalues of AAT can easily be computed
from the fact that the incidence properties of a plane imply

(24) AAτ=nI+J

where / is the identity matrix and J is the matrix every element of
which is unity [4]. The eigenvalues of AAT are

(25) (n 4-1)3, n,n, , n .

But by (24), n-hl is an eigenvalue of A with (1,1, *, 1) as correspond-
ing eigenvector; hence the eigenvalues of A are

(26) n + 1, V~nei(*ι, VΊϊeioί*, * , VneiΛNΊ

Let the permutation P split up into cycles of length dx, dz, * ,cίr;
di + άkπ hdr=N. Then the eigenvalues of P are the d^th roots of
unity, the d2th roots of unity, •••, and the cϋrth roots of unity. If
we write out these eigenvalues of P as

(27) l9e%e»*, -- ,eiθ*-i

then it follows from AτA'1^Pt the normality of A, (26), and (27) that



90 A. J. HOFFMAN, M. NEWMAN, E. G. STRAUS AND O. TAUSSKY

(28) e-iθj=en«J i = l , 2, , 2V-1.

These elementary consideraticns alone suffice to prove the following:

THEOREM 1 (see [2, Theorem 2.1] and [1, Theorem 4]). If n=n*2nJ',
where n! is squarefree, and M is the number of absolute points of p, then
MΞΞΞI (mod ri*n').

Proof. By (26) and Lemma 4, we have

(29) M=n + l + V rit ,

where £==Σί="ϊlei*7 * s &n algebraic integer, by (27) and (28). Therefore,
(Λf--(n4-l))J = 0 (mod ri), which implies the theorem.

4. The characteristic polynomial. By virtue of (26), the character-
istic polynomial of A may be written

(30) (x-(n + l))Q(x) ,

where Q(x) = (x-v/^nei«ή(x-v

/-ne
ί**).. -(x-Vn**"-1)- Then since N-l

=n2 + n is even, we have

(31) Q(x)Q(-x)==(xz~-neH«ή(x2~neH«ή>. -(xz-neu^^) .

From (27), the fact that the complex conjugate of a cZth root of
unity is a dth root of unity, and the definition of dL, d,, , dr, we may
write the characteristic polynomial of P as

(32) lϊ (xcli-l)==(x-l)(χ-e~iθή(x-e~iθή' -(x-e-^-') .
i = l

In (22), replace x by xz/n and multiply both sides by nN. There
results

(33) Π (xMi-ndή=(x?-

Comparing (33) and (31) we deduce

(34) - * 11 {xldi - n*t) = Q(x)Q( - x) ,
x2— n *=i

so that the irreducible factors of Q(x) are of the type discussed in §2.

5 The number of absolute points of p. In this section we apply
the results of §2 to present criteria sufficient to insure that M=
If we write



ON THE NUMBER OF ABSOLUTE POINTS OF A CORRELATION 91

Then by (30), M=n + l-a.
We wish to prove that, under certain circumstances, α=0, and this

will certainly hold if every irreducible factor of the left side of (34) is
a polynomial in x2. These factors are the irreducible factors of Φh(x2jn),
h\di9 which were investigated in § 2.

On the basis of Lemma 2, we can assert the following.

THEOREM 2. If, for each divisor of the orders difd2, ,dr of the
cycles of P, none of the conditions of Lemma 2 holds, then M=n + 1. In
particular (see [2]), M=n + 1 if n' and (2=l.c.m. {(2J satisfy one of the
following:

(a) n'Jfd;
(b) 2n'Jfd and n'' φl (mod 4);
(c) there exist odd primes p and q such that p^Ξq (mod 2d) and

(n'lp)(n'lq)= — l, where (α/6) is the generalized Legendre-Jacobi
symbol;

(d) ci!=l,2, or p*1, where p is a prime ΞΞ3 (mod 4), k a positive
integer, n'^>l.

Proof. The principal statement is an immediate consequence of
Lemma 2.

Proof of (a): Since n')(d implies nr\h for any h\dif the irreduci-
bility of each Φh(3?[ri) follows from Lemma 2.

Proof of (b): Assume (b) false. Then by virtue of (a), we may
assume there exists a positive integer h such that for some dt we have
n'\h\di, and Φh(x2ln) reducible. If h is odd, then we obtain the contra-
diction n' ΞΞI (mod 4) by Lemma 2. If h is even, then n' must be even,
otherwise 2n'\h. But by Lemma 2 (c), nr even implies &==0 (mod 8),
hence we are forced to the contradiction 2n'\h.

Proof of (c): We have (n'lp)(n'lq)=—l. Assume Φh{xι\n) reducible
for some h\d. Then if h is odd, nf = 1 (mod 4), thus (n'lp)=(p/n')9

(n'lq) = (qlnf), by the quadratic reciprocity law. Hence —l = (nflp)(nflq)
= (pln')(qln;). But p^q (mod 2c?) implies p^q (mod n'), since n'\h\d.
Therefore {pjnf)=(qjnf). Combined with —l=(pln')(qfri), this yields a
contradiction.

Now let h be even, &ΞΞΞ2 (mod 4). Then by Lemma 2(b), ^ = 3
(mod 4). By the quadratic reciprocity law

implies p- fg^0 (mod 4).
But p^ΞΞq (mod 2d) implies p - g ^ 0 (mod 4), since h\d. Therefore,

2p = 0 (mod 4), contrary to the fact that p is an odd prime.
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Finally, let h^O (mod 4). Then by Lemma 2 (c), n' is even. Write
nf=2n". Then

since p^q (mod 8). If n" =~1 (mod 4), we obtain a contradiction as
in the first case considered above. If w"==3 (mod 4), we obtain a
contradiction as in the second case. Note that the hypothesis p^q
(mod d) (instead of p^q (mod 2d)) is sufficient in all cases except when
simultaneously n1

 ΞΞΞ3 (mod 4) and dφO (mod 4).
Proof of (d): If d==l (see [1, Theorem 6]) or d=29 then the only

h\d are h=l or h=2. If Λ=l we cannot have n'\k. If A=2, then n'\h
implies n'=2, contrary to Lemma 2(b). If d=-pk, p a p r i m e s 3 (mod
4), then k\d implies h is also of this form. Assume now Φh(xι\ri) re-
ducible. Since n'\h, nf = p. By Lemma 2 (b), this implies h is even, a
contradiction.

Even in case one or more of the polynomials n?(h)Φh(a?lri) where h
divides some dt is reducible, we may still obtain information about M.
We can use the results of Lemma 3 as follows. Let dlf •••, dr be the
lengths of the disjoint cycles of P. For each i = l , , r let h% be defined
as follows:

(i) if n'ΞΞΞI (mod 4), let kt be the number of divisors of d% each
of which is odd, squarefree and a multiple of n';

(ii) if n' ΞΞΞ3 (mod 4), let h% be the number of divisors of dt each
of which is even, squarefree and a multiple of n';

(iii) if ri ΞΞΞΞ 2 (mod 4), let fc4 be the number of divisors of dh each
of which is a multiple of nf', and of the form 4ί, £ odd and squarefree.
Then we have the following theorem.

THEOREM 3. // kt is defined as above, then M=n-\-lJ

rsn*nf, where

~ Σ h ^ s .< Σ *i Further, s = Σ Λ, (mod 2).
ί l ί l

Proof. All that remains to be verified is the second sentence,
which follows immediately from the fact that the sum of the roots of
Q(x) in (34) is the sum of Σ&* numbers ±n*n'.

6 In this section, we compare the number of absolute points of
p\ where j is any number prime to twice the order of p\ with the
number of absolute points of p. The results obtained coincide with
those of [2], so we shall merely sketch the present approach.

The index j in what follows is an integer prime to twice the order
of p2=2d. Let Mj be the number of absolute points of pj, so that
Mι=M in our previous notation. If we let j=2c + l, then P~CA is an
incidence matrix for 11 that bears the same relation to pj that A does
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to p. In particular, M3=tτP-eA. Referring back to (26), (27), and
(28), we see that

But from Theorem 1, n~ιl2(Mι — (n +1)) is of the form uVn1\ where u is
a rational integer. Further, if m is the least common multiple of the
orders of the α's, then n~ιlJ(Mj~(w + 1)) is the image of κi/w' under
the automorphism of R(ζm) which sends ζm -> Cm

Now m=d if d is odd, m=2d if d is even. In either case, however,
the indices j considered correspond biuniquely to all automorphisms of
R(ζm). Thus, if M^n-hl (so that we know V"n/eR(ζm))f we have

Mj=M1 if the automorphism ζm-*ζJ

m fixes V~n',

— Mι the automorphism ζm -> ζJ

m sends τ/w' into — V^nJ *

One may use the Gauss sums of Lemma 2(iv) to show explicitly
that in general

where (n'/j) is defined to be 1 if {j,ri)y>l. Among other things, this
formula includes the equation Mj=M1 if n is a square.

7. We now show how the preceding results may be extended to
symmetric group divisible designs. (See [3] and [6] for a definition and
discussion of the interesting properties of these designs.) For our
purpose, it is appropriate to employ the following:

DEFINITION. A symmetric group divisible design Δ is a combinatorial
configuration consisting of a set with v elements and v distinguished
subsets such that

(i) each subset is incident with exactly k elements, and
(ii) the subsets can be partitioned into g groups, each group con-

taining s subsets (gs=v), such that two distinct subsets in the same
group have exactly λι elements in common, two subsets in different
groups have exactly λ> elements in common.

We assume that the design Δ admits a correlation p; that is, a one-to-
one mapping of the elements of Δ onto the distinguished subsets of Δ,
together with a one-to-one mapping of the subsets onto the elements such
that an element is in a subset if and only if the image of the element
contains the image of the subset. Now the existence of p implies that
in the definition given above, we may interchange, in (i) and (ii) the
words subset and element. Number the elements Eu E,, ••, Ev such
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that Elf E2, ••• ,E8 are the elements of the first group, Es+ι,Es+2,
•• ,2?2S are the elements of the second group, and so on. Number the
subsets Si,S29 ,Sυ so that pEi==Si. Define the incidence matrix
A=(aiJ) of order v, by the stipulation au=l if Et is in SJ9 0 otherwise,
and the permutation matrix P=(pίj) such that pυ=l if and only if
p2Ei=Ej. Then as in the case of planes, we have

(35) AT=PA, so A is normal. Further

(36)

where / and J are as before, and K is the direct sum of g matrices of
order s each of which consists entirely of Γs.

Our object, as before, is to obtain a count on the number of absolute
points of p= tr A=M.

Since the vector (1,1, •••, 1) is an eigenvector of A and Aτ corres-
ponding to the eigenvalue k, and is also an eigenvector of K with
eigenvalue s, we have from (27) that fc2 — λzv=k--λι + s(λι — λi). Hence,
we may compute [1] that

(37) \AAτ-xI\ = (lf-x)[k + λ1 + 8(λ1-λi)-xγ-\k-λι-x)*-<' .

Henceforth, let us assume ? ; > # > 1 . This is no restriction for the
combinatorial configurations apparently so excluded are realized by al-
lowing λ1=λi. (Indeed, the case λ1=λ2 with the further trivial restrictions
v^>k^>λ1==λ2^>0 is an important class of designs known as balanced
symmetric incomplete block designs. Further, ^ = ^ = 1 characterizes
finite protective planes.)

Because A is normal, the eigenvalues of AAT are the squares of the
moduli of the eigenvalues of A. Hence, by (37), the eigenvalues of A
are

k, Vnfi1"!, VΊnβ'**, , i/^β^-s VΈ/«°, , VΊϊβ**9-1 ,

where n1=k — λ1

On the other hand, if P is a product of disjoint cycles of lengths
du d2, , dr, dι+ +dr=v, then the eigenvalues of P are the c^th
roots of unity, the d2th roots of unity, , the drth roots of unity,
namely

(38) l,e ι ai,e fS -.^e**-* .

Now by (35) and (36) we have

(39) A*=(k-λ1)Pτ + (λι-it)PτK+(λ1-λi)J.

Further, each of A, PΊ', K, J commutes with the three others (for example,
to check that Pτ commutes with K multiply (39) on the left and right
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by P and apply (35)). Hence all four of these normal matrices can be
simultaneously diagonalized. Let us imagine then that (39) is in diagonal
form, and examine the diagonal elements. Note that one eigenvalue of
J is v, the rest are 0, and that g eigenvalues of K are s, the rest are
0. Clearly, then, we have

Jc(kλ1

(40)
n^t = (k

fo r £ = 1 , 2 , •••,# — 1 a n d s o m e g — 1 i n d i c e s j t in t h e s e t 1, • ••,?; — 1 ,
a n d a l so L

(41) nφliΛ^{k-λλ)e~iQ^

fo r u=g, g+1, •• , v — 1, a n d {jμ} t h e i n d i c e s in 1,2, •• ,v — l n o t in

We contend that the e~ίθj appearing in (40) can be partitioned into
classes, each class consisting of a conjugate set of roots of unity. For
the characteristic polynomial of PTK is (x—ζ)xυ~gf(x), where

(42) f{x)^°U{x-se"iβh) .
ί - l

But since PTK has rational coefficients, its characteristic polynomial is
rational, hence f{x) has rational coefficients. Let Iι(x)=snh)Φh(xls) be the
irreducible polynomial satisfied by se~iθh that is, e~iθh is a primitive Λth
root of unity. Then h(x) and f(x) have a root in common, so, by the
irreducibility of h(x), the set of roots of f(x) contains all roots of h{x),
namely all numbers sζh. Divide f(x) by h(x), apply the same argument
to the quotient, and continue. This verifies our statement.

We may now imitate our previous polynomial construction in § 4 for
the case of planes as follows: If the characteristic polynomial of A is

r

written as (x —k)Q(x) and the characteristic polynomial of P as Uφύ(x)J

ί = l i

then from the foregoing we have

(43) ± Q(x)Q(-x)^nrιnrσ Π ΦjJx2!^) Π Φh(x2ln2)
i t j J

where the ht and h5 are divisors of the cycle lengths dιy d.ly , dr,
Έ*iψ{hi)=g--1> Σijψ(^j)==v'-d' One can then proceed from (43) by the
techniques previously used in studying the consequences of (34).
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