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l Let ωn{χ), n=l, 2, •••, 0<Ia?<Il , be an orthonormal set of
functions which are uniformly bounded,

( 1 )

Γ l

If ΣlttnK00, and if I \g(%)\dx<C°° we may define
i Jo

( 2 ) f(x)= Σ <V*Φ0, δ»= Γ flr(a?)ώn"(α?)ώ?.
w = l JO

The following inequalities were established by R. E. A. C. Paley [1]:
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In the present paper we shall establish some related results which are
however a great deal simpler. We shall prove that

i/2 Γ ~ -μ/2

^ Λ ( ) [ Σ l l ' ' J

t "Jl/2 Γ f l -]l/2

Σ lί>Ja w-ωJ ^ ^ ( α ) L ) 0 lίK*)!1 ̂ M * c j (0 <:« < 1/2).
As Paley pointed out, the inequalities (3) include the inequalities of
F. Riesz which assert that
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(The best values of the constants B(p) cannot be obtained by this argu-
ment however). The inequalities (4') and (4") also include (5) (again
not with the best values for B(p)). The demonstration of Riesz's theo-
rem which one obtains in this way is unusually simple.

2* We now proceed to the demonstration of the inequalities 1(4). We
assert that A1(a)=A2(a) and thus that either of the inequalities implies
the other. Suppose that the inequality 1(4') holds. We define

By assumption

FN{x)\2χ-'«dxS, Al(a) Σ \bnn-2«\2n2« = AJ(α)Σ
i l

We have

Σ \bn\
2 n~™ = ^FN(x)g(x)dx^^ \FN{x)Yxι«dx J ^ I g(x) |aαr*

^\A\{a) Σ |6n|
2w-^

L n-l J LJo

Σ \KYn-**Jk A(*)[\l

Q \g(χ)\ιz2*

Allowing N to increase without limit we see that Az(a) <L A^cc). Sup-
pose now that 1(4'') holds. Set

By assumption

Σ I K \*n-2«^Al{a)[ I f{x)x~2« \2x2«dx=Al(a)[ \ f{x) \2x~2«dx.
n=ί Jo Jo

We have

Γ \f(x)\2x-'"dx= []Σanωn(
Jo Jl|_rc = i

= Σ «A

and thus A^cήiϊLA.Jfiί). Since Λ(«) = A^a) we may write 4̂(α) for
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and Ajίμ).
It is evidently sufficient to prove either 1(40 or 1(4"). We shall

prove 1(4'). There are four cases: (i) a=0, (ii) 0 < α < l / 4 , (in) α==
1/4 and (iv) 1/4 < a < 1/2 .

Case ( i) . The desired conclusion follows from BessePs inequality.

To demonstrate the remaining cases we set

j v μ = Γ |ί2μ(a?)Ωv(a?)| ar2"cte.
Jo

We fur ther define

iίj?= P iί2μ(^)ί2v(^) ( a?-wώ?, /ξj?= f' ίί2μ(^)Ov(^) I ̂ - 2 Λ f ώ .
Jo Jε

We begin by proving two inequalities we shall use repeatedly:

l.u.b.

/
( l ) S,M\ ΣKI2^2 Λ Σ ^ 2

L2μ-1 J L 1

U l -jl/2 Γ2^-l Πli

|o μ (^) | 2 ^ = Σ Ki2

0 J L,μ-1 J

_ 2 μ -

( 2 )

Here and later A will be any constant depending only on M and a.

Case (ii). Suppose that v^μ. We have

and
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Setting ε = 2 " μ we find that (for all μ and v)

Since f(x) = ^-otlp(x) we have

μ, V = 0

_ μ = 1 V = 0

We have

from which it follows that

-as |v-μ|

(iii): a = l / 4 . Suppose that v^μ. We have

.u.b. |Ωμ(a?)|Tl.u.b. |
OSa Sε J L OSxgs

Ql Π1/2Γ ~)ί/2ΓΓl

\Ω,Jx)\2dx l.u.b. |JX(#)| 1 |Ωμ(α?)|2<
ε J L ε^^i J LJε

11/4

Choosing ε =2- / x / 3 - 2 V / 3 we obtain (for all μ and v)

and the proof may be completed as before.

Case (iv): l/4<^α:<O/2. We again suppose v^>μ. We have

/$<d l.u.b. |Ωμ(a?)|Tl.u.b. |ί2 v(^)|ΊΓ^-2 α i^
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Choosing ε==2"v we find that (for all μ and v)

The proof of the inequality 1(4) is now complete.

It is evident that 1(4') remains valid if the condition ^,Γ I an I <C °°
is abandoned, provided that f(x) is interpreted as limit in the mean.

Let alf a2, be a sequence of complex constants which approach
0 as n approaches oo. We denote by <z*, af, ••• the sequence \ax\,
\az\, ••• arranged in non-increasing order. Let f(x) be a complex
valued measurable function defined on [0,1]. We denote by /*(#) the
function equimeasurable with \f(x)\ and non-increasing. A simple and
well-known argument, see [2; pp. 207-211], enables us to restate our
inequalities in the stronger form,

(3 ') Γ [f*(x)γχ->"dx < A(α)Σ [<lV* (0 ̂  cc< 1/2);

(3") fKTn-
l

3. We now deduce the first of Riesz's inequalities. Let blf 62

be given such that i ? = ( Σ \bn\
p)llp is finite where I < p < i 2 . We may

1

write tf^ΣΓK?-

Since 6* is non-increasing ^[6*]*<:5* or b* <^n-llpB. It follows that

-* Σ \b*γ=B2.
n-i w=l

By 2(3') we have, if f{x)=Σ,bnωn{x),

Let F = | j o I f{x) \qdx\ where p ^ + g - ^ l . We have Fq=\ [f*(x)]qdx.

Since /*(#) is non-increasing ^[/*( ί r )p^F g or f*(x)^x~ιlqF. It
follows that

[
Jo

Since {q — 2)lq={2-~V)lv we obtain
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where Z?(p) may be taken as A(—"ZJLλ . A similar argument serves
L V 2p J A

to establish the other Riesz inequality.

4 It is natural to conjecture the existence of a general inequality
which includes Paley's inequalities 1(3) and the inequalities 1(4). We
shall prove that

(1) [tfixWx-^dx^Aϊir, r) Σ |α«
JO l

( 2 )

( 3 )

( 4 )

Let us prove (1). Choose q, 2<^r <^q . We have

We write (formally)

\g(x)\*M(x)=\f(x)\*χ-*>, \g(x)\«M(x)=\f(x)\«.

These relations suggest that we define g(x) and M(x) by

g(χ)=f(χ)χ2ΛlCq-2), Λί(^)=^-2Q19/C9-2).

Similarly from the (formal) relations

we are lead to the definitions

The mapping T{bn}?=g(x) is a linear transformation, and we have

\g(x)\iM(x)dx^A(a) Σ l&«l2m(w) ,

Γ I fli(ίB) |oΛf(a?)da; ^ A'(q) Σ I &„
Jo n = i
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By the Riesz interpolation theorem,

(5 ) [ £ \g(x)YM{x) dxjr^ C(a, r, q)[± \bn\
rm(n)J\

Now

Γ \g(x)\τM{x)dx= [ \f(x)\rx2ΛrK<1-^χ-2aqlC(1-^dxf

Jo Jo

Σ \bn\
rm(n)= Σ \an\

rnrn-2«rK«~Vq«-Q+mq-2\

If γ is defined by the equation

( 6 ) r r «

then (5) can be rewritten as

( ) ? ^ C ( α , r,
Jθ w-1

It is evident from (6) that, by properly choosing a and q, γ can assume
any value in the range 0<l 7-<!/?*• Thus we have established (1).
The relations (2), (3) and (4) can be dealt with similarly. For the
special case of Fourier series these inequalities have been established
by H. R. Pitt [3].

The " * " forms of these inequalities are also true.

5 In the present section we shall prove a result which is a slight
variant of the Riesz-Thorin convexity theorem. While this is probably
known I have not been able to find a reference for it.

Let [Tij] ( i=l , •••, m;j=l, •••, n) be a complex matrix, and let

Let μif σ% be positive for i=l, •••, m and vj9 r ; be positive for j=l,
• , n. For l^p, q^ 00 let

( 1 ) A(a, β)= l.u.b.

where t h e least upper bound is extended over all sets (bu •••,&„) such

t h a t

( 2 )

We assert that log^4(α:, β) is convex for — 00 < α , ^<^co that is, if
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( 3 )

then

( 4 ) A(ct, β) <; A(a19 β.γ-'Aia,, β,)θ.

To prove this let (bL, ••-,&„) be fixed, such t h a t (2) is satisfied and let

(β19 , cm) be such t h a t

( 5 )

Consider

The function f(w) is entire and is bounded in every vertical strip. Let
us set

so that

We have

and thus

Hi/p"Hi

J

further

Σ k ί(w)l3'>r ί )'^

Applying Holder's inequality we obtain

\f{iv)\<ίA{aι,β1).

We may similarly show that

By the three lines theorem
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which is equivalent to the inequality

m

Σ<W*i ^A(aι> βi)

Since this holds for all (clf c2, -- , c m ) satisfying (5) this implies t h a t

[ m ~]l/p

^ O I n \ P ttVOl/ <-^' A (sv Q \1 — θ Λ (rv Q \&

i = l J "

thus verifying our assertion. We have tacitly assumed above that p,
q < oo. The case where p or q or both are oo cae be dealt with by
passing to the limit.

We shall now apply this to show that if A(a) is defined as in § 2
then log^4(α) is convex. Let

ί
jln

ω%(x)dx ( i = l , •••, m ; j = l , •••, n )
Cj-Όln

and let f(x) be a step function taking the value bj for (j —

j In. If ai=\ f(x)ωi(x)dx then
Jo

Let

the least upper bound being taken over all b19 , 6ra such that

For every m and n, Am>n is a logarithmically convex function of a.
We have

lim Am}n(a)=A(a)

and from this if follows that A(a) is logarithmically convex.
Because of this fact it is sufficient in § 2 to deal only with cases

(i) and (iv), since (ii) and (iii) then follow by interpolation.
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