ON THE NUMERICAL INTEGRATION OF QUASI-LINEAR
PARABOLIC DIFFERENTIAL EQUATIONS

JIM DouGLAS, JR.

1. Introduction. The following differential equation will be con-
sidered in the region 0 <2z <1,¢>0:

1.1) gmu=F(x t, u)zlt‘ +G(x, t, u), F>m>0.

Physical phenomena leading to equations of this type include heat con-
duction problems in which the thermal diffusivity depends on both
position and temperature, certain diffusion problems, and the flow of
compressible single-phase fluids through porous media.
The simplest example of (1.1) is the classical heat flow equation
o _ K u

; -, K constant,
o ot

which describes the flow of a fluid of constant compressibility in a line-
ar reservoir as well as the conduction of heat in a bar insulated except
possibly at its ends. If either of these problems is considered in an
annular region in which radial symmetry exists, then the equation

2,
a“ — K& %
ox* ot

applies, where z is to be interpreted as the logarithm of the radius.
A somewhat more complex example is furnished by the linear flow
of an ideal gas. In this case,

u _ K ou
ot 2w ot

where u=7p" p being the pressure. The effect of treating real gases
rather than ideal is that the coefficient of u, becomes more involved.
Diffusion problems involving chemical reactions often may be an-
alyzed by studying equations of the type
o'u
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— 2 =K== dqgx t u).
ox® ot o« )

As each of the examples cited are special cases of the general equa-
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tion (1.1), it is of considerable practical interest to obtain methods for its
solution. The form of the functions F and G or the boundary con-
ditions arising in most engineering work usually prevents the solution
of (1.1) in terms of the known functions of mathematical physics.

Numerous previous papers have been published dealing with various
numerical integration schemes using finite difference techniques for (1.1)
or some simpler parabolic equation. TUntil quite recently apparently no
proofs were offered to show that the solution of the difference equation
converged to that of the differential equation; however, F. John [4]
has presented an extensive study of initial value problems for certain
quasi-linear equations in the half-plane —co< 2 < o, t >0, and several
papers [3, 5, 6, 8] have been devoted to the study of the heat flow
equation.

In each of these articles the difference equation used was of ex-
plicit type; that is, the function u(x, £+ 4¢) can be expressed in the form

(1.2) e, t+4t)= Sieu@, ) u@+kda, 1).

It is well known that such methods require the use of quite small time
steps for both numerical stability and adequate convergence.

Certain implicit schemes requiring the solution of simultaneous
linear equations have been proposed [2, 7, 9] that allow the computer
to use larger increments in the time direction; these methods have been
shown to be numerically stable, though no attempt has been made to
demonstrate convergence of the methods.

It is the purpose of this report to prove convergence for one such
method. The method of proof is based on the procedure of Rothe [10]
in his paper on the existence of solutions of (1.1) when F(z, t, u)=
F(xz, t). The existence of a sufficiently smooth solution of (1.1) satis-
fying the initial and boundary conditions will be assumed; sufficient
conditions for this solution to exist can be obtained by extensions of
Rothe’s method.

2. Difference equation. Let the initial and boundary conditions
associated with (1.1) be

[u(% 0)=r(x), 0<zr<1
(2.1) ¢ u(0, )= g,@) , t >0
Lu(lr t)= gz(t) ’ t>0 .

Assume that a solution of (1.1), (2.1) exists in the closed region R: 0 <
<1, 0<¢t<T such that 2x/cz* and 2"/ot* exist and are bounded in
R. Moreover, assume that " and G are boundedly differentiable with
respect to u.
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Consider a lattice imposed on 0 <2 <1, 0<¢t<T with grid points
x,=4dx, 1=0,1,---, N, t,=ndt, n=0, 1, ---, [T/4t], with dex=1/N. De-
note Z(x;, t,) by Z,,.

The following difference equation will be studied as an approxi-
mation to (1.1), (2.1):

[ Wio="U;=f(a;)

2 w — W; M
) Auji,n+l=F(xi’ tn-H’ win)""l"n+1”" AT +G(xi) tn+17 u)zn) ’ ?’l,_>__0

(2.2) At
Wy =Uyny Wyxpn=Uny, »
where
(2.3) L= (Wi, n—2W4p + w1, ) [(4X).

3. Truncation error equation. The truncation error at a mesh
point is
3.1) Vin=Usn —Win .

In order to bound wv,, as a function of 4¢, it is necessary to develop its
difference equation. It is easy to see that

(. U, us 1 o
Ui — Uin _ O _ 1w VAt
(3.2) At ot 2 o
By tusrs tn) = @3y sy Uynar) = (lonss — ) 0L
ou
Gy tarsr Un)=Gl@sr tussy Uypar) = U=y iafj- :

where the barred derivatives are evaluated at intermediate argument
values as called for by the mean value theorem. Substituting (3.2) into
(1.1),

9 U; —U;
A—ui,nH:F(xi’ tn+]s uin)_‘zvn-’j’i*"m +G(xu tn+ly uzn)

1 o ,,.. 1 u
3.3 +{*’ - Ax 2+""F ’ tn+ ’ uin —_'—At
(8:3) 12 ax‘( ) 2 (@, ! ) ot?
OF (a1 —Usn) 1 oF 2
o ATwnl ) oy - T T nt1—Uin At
du 4t * 2 ou o (s = tn)

+ “ag_ (ui,n+ 1 uin)} .
ou
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The assumptions on u above require the boundedness of all the
derivatives appearing inside the bracket along with the ratio (%;,,,—
Uy)/ 4t in the region 0 <2 <1, 0<¢t<T. Hence, in this region,

(3'4) Azui,n+1=F(wi’ tn+1) u‘in)'uim".z;um“+G(mi’ tn+1; uin)“"gin:
with
3.5) 9in=0((dxy’ + 4¢) .

If (2.2) is subtracted from (3.4),

2 Ui pe1— Uy Win+1— Win
By =F (4 Cpayy Ugp)—2" j”t“’“—"‘F(xiytnﬂy Win) " ;’t :
(3'6) +G(xiv tn+1! uin)—G(xi! 2':n+ly wzn)+gin
T, by, ) Vit "V OF U =t (OG-
@ Brasy 0} =250 ou At auw Y
as
=
F(xiy tn+1v u:n)zF(xu tn+1’ wm)-l_“a'le(uin_wm) .
Thus,
" 1
3.7 LV 01 "‘*AEF(%; basty Win)Vinn
1
== At F(xiv tn+17 win) {1+hmdt}vin+gm ’
where
(3.8) hm:( aalzj ﬂi.pjf_}fjﬂ__*_ zg)/F(wu Lor1y wm)=0(1)

4. Solution of truncation error equation. The following lemma on
ordinary difference equations will be important in the treatment of the
truncation error equation (3.7).

Lemma. If
(4.1) { LY~ pyi=9:, i=1,2, +-r, N=1
Yo=Yxy=0,
and p;, >0, then
(4.2) ma}xlyi!g max ’g)z l )
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Proof. Three cases will be considered. First, let g,>0. Then, ¥
has no positive maximum; for 4 <0 at the maximum and

Yax = 1 (A“’y—-g)g() .
‘0
Consequently, y, << 0. At a negative minimum, 4% >0 and
1 2 g
Yuin=""(LY—g)=——-.
P 14

Hence,

?

2
‘()

as was desired.

Next, let ¢,<<0. A similar argument shows that y,—>0 and

ymax g “g T
‘l)

The argument is completed by decomposing ¢ into a sum g*+g¢g-,
where g* >0, g~ <0, and g*g~=0.

Let

{ Lyt —pyi=gi
Ly; —pyi =097 .

Then, 0 <y; <max|g/p;l, 0< —yf <max|g/p;| and y=y* +y~. Asy*
and y~ have opposite signs,

ly:l =y +yi | <max (—y/, y7) <max|g,/p,|.

Now, v;, vanishes for n=0 and for ¢=0 or N, as w,,=u,, initially
and on the boundary. Hence, the lemma may be applied to (3.7) to
obtain

m:;),x’ Vo l =0

“43) o g

Vin :
' lF(wir tn+l9 win)

l max
(2

V1| = (1+ Adt) max + max
i 2

where A=max|A,|. As F(x;, t,.;, w,) >m >0 by assumption,

(4.4) max | vy, | < (1+Adt) max |v,, | + B{(48)* + (4t)(dx)] .
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Let

(4.5) dze=0((4t)"), a>0.
Then, for some C >0,

(4.6) max [ | S (A +C4E) max | v, | +C(48)8,

where

4.7) B=min (2, 1+2a).
LEMMA. If =0 and e,,,=(1+ C4t)e,+ C(4t)?, then

(4.8) e < C(4t)Pm(1+ Cdty™.

Proof. The demonstration is by induction. Equation (4.8) holds
for m=0, as ¢=0. Also,

ema1 < C(4t)°m(1 + C Aty + C(4t)? < C(4t)*(m + 1)1+ Cdt)™*?,
as (1+C4dt)y**'>1.

Thus,

(4.9) max |V | < C(4E)Pm(1 + Cdt)™.
Now,

(4.10) 1+ Cdt)’”:(l + C;in.)m< ootn

Thus, if y=min (1, 2«),

(4.11) max | v, | < Ct,e”m(4t)Y .

The above results may be collected into the following convergence
theorem.

THEOREM. If the differential equation (1.1) with boundary conditions
(2.1) possesses a solution u(w, t) in the region R: 0 < <1, 0t < T such
that d'ufox' and *u[dt* exist and are bounded in this region and the co-
efficients Fl(x, t, u) and G(x, t, v) have bounded first derivatives with res-
pect to U in the region, then the solution w,, of (2.2) converges to u(x;, t,)
in such a manner that, if de=A(4t)® and y=min (1, 2a), the truncation
error at a point (x;, t,) in the region is less than

Ct e (4t)' .

The constant C >0 depends only on A, the lower bound m of F(x, t, u)
in R, and the upper bounds on F, F,, G,, U, U;;,, and U, in R,
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Note particularly the relation (4.5). In the explicit difference me-
thods, the ratio of 4¢ to (dx)* is usually bounded from above; in this
case with a=1/2, the ratio is bounded from below. Consequently, the
number of time steps necessary to complete the numerical solution may
be reduced materially.

5. Optimum choice of «. The following question may be asked :

if the ratio

dx
(5.1) ( /At);ﬁz
is considered fixed for all «, what choice of « leads to least total work
to obtain the numerical solution out to a given time 7' with the trun-
cation error held less than a preassigned ¢>0 throughout the region
0<2<1, 0<t<T? Asthe total work is the produet of the number
of time steps required and the number of calculations to complete one
time step, it is necessary to determine the work for each step.

First, a set of Jocobi equations Az=y, where a,,=0 if |[i—7|>1
and a,;=1 for |7—j | =1, requires 6N arithmetic operations (N being the
number of equations) to complete the solution for Z[1, p. 82]. It will
be assumed that the evaluation of F(z, ¢, #) and G(=, t, ) require the
same number of operations regardless of the values of z, ¢, and u; this
certainly is the case if they are represented by polynomials. Then,
the evaluation of the coefficients in the equations is some fixed multiple
m of the number of equations. Thus, the work per time step is (m+.
6)/4x. The number of time steps is 7'/4¢. Hence, the total work is

W (m+6)T _ (m+6)T
(4t)(4) Aty

(5.2)

The truncation error is, by (4.11), bounded throughout the region by
(5.8) CTe " (4t), r=min (1, 2a).

Now, for fixed 1, C may be found independent of «, as C=max
(A, B(1+2)). If (5.3) is required to be less than >0,

5.4 ey << —p,
(5.4) (ty <
or
(5.5) 4t < 8V,
Hence,

(5.6) w> (m+6)T

= Za(l-t-w)/y
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As 0 <1 to be of any practical interest, W is minimized by mini-
mizing the exponent (1+a)/rof 8. For 0 <<a<1/2, 1+a)/y=(1+a)/2a;
thus a=1/2 gives the smallest value in this range. For a>1/2, (1+a)/r
=1+a«a, which is minimized again by a«=1/2. Thus,

(5.7) W, > M+ 6T
min=— 26J/l .

THEOREM. The choice of a leading to the least calculation to com-
plete the numerical solution by (2.2) 4s a=1/2. For this choice, the
truncation error is bounded by CTe‘ 4t for some C > 0.

There remains the problem of determining the best 21 in the ratio
Ax[(4t)'P=2.
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