QUOTIENT ALGEBRA OF A FINITE AW*-ALGEBRA

Ti Yen

1. Introduction. In a recent paper [5] Wright proves that if A is an $A W^{*}$-algebra [2] having a trace and if M is a maximal ideal of A, then $A!M$ is an $A W^{*}$-factor (that is, an $A W^{*}$-algebra whose center consists of complex numbers) having a trace. The trace enters into his argument in the characterization [5, Theorem 3.1] of the one-to-one correspondence between maximal ideals of A and those of its center Z. This is, in turn, used to verify that A / M satisfies the countable chain condition, namely : every set of mutually orthogonal projections is at most countable, which is crucial to prove that every set of mutually orthogonal projections has a least upper bound (LUB). It is the purpose of this paper to prove the following.

Theorem. Let A be a finite $A W^{*}$-algebra, and M a maximal ideal of A. Then A / M is a finite $A W^{*}$-factor.

It is not known whether a finite $A W^{*}$-factor always has a trace. Since [3] a finite $A W^{*}$-algebra of type I always has a trace, our result adds nothing new in this case, and we shall be solely concerned with algebras of type $I I_{1}$.

Our terminology is that of [2]. We assume familiarity with [2] and [1] (especially [1, pp. 234-242]).
2. Maximal ideal M. We begin with a slightly sharpened version of [5, Theorem 2.5] on p-ideals. A set P of projections is called a p-ideal if
(1) P contains $e \bigvee f$ whenever it contains e and f
(2) P contains f whenever it contains an $e \succ f$.

It follows from (1) that $e_{1} \vee \cdots \vee e_{n}$ is in P if e_{1}, \cdots, e_{n} are in P. For any set S of A let S_{p} denote the set of projections contained in S.

Lemma 1. Let A be an $A W^{*}$-algebra. The closed linear subspace M generated by a p-ideal P is an ideal with $M_{p}=P$. Conversely an ideal M of A is the closed linear subspace generated by the p-ideal M_{p}.

Proof. Let P be a p-ideal and M the closed linear subspace generated by P. For M to be an ideal we need to prove that M contains $x e$ for any $x \in A$ and $e \in P$. The left projection $\lceil 2, p$. 244〕 f of $x e$, being $<e$, is contained in I^{\prime}. Hence P^{\prime} contains $!=e \backslash f$. $x e \in g A g \subset M$,

Received February 1, 1955.
as $g A g$ is the closed linear subspace generated by all projections $\leqq g$.
Let M_{0} denote the linear subspace algebraically generated by P; the elements of M_{0} are of the form $x=\sum_{i=1}^{n} \lambda_{i} e_{i}$ (λ_{i} complex numbers, $e_{i} \in P$). As P contains $e_{1} \vee \cdots \vee e_{n}$, the left and right projections of x are in P. Take an f in M_{p}, and an $\varepsilon>0$. There is an $x \in M_{0}$ with $\|f-x\|$ $<\varepsilon$. The left projection h of $f x$, being $<$ the right projection of x, is in P. We have $h \leqq f$ and $\|f-h\|=\|(f-h)(f-f x)\| \leqq\|f-f x\|<\varepsilon$. Hence $f=h$. This proves that $M_{P}=P$.

Assume now that M is an ideal. M_{p}, is [5, Lemma 2.1] a p-ideal. Let M^{\prime} denote the closed linear subspace generated by M_{p}. We wish to prove that $M=M^{\prime}$. Take $x \in M$ and $\varepsilon>0$. There is ${ }^{1}$ [2, Lemma 2.1] a projection e, which is a multiple of x, such that $\|x-e x\|<\varepsilon$. Since $e x \in M^{\prime}$ and M^{\prime} is closed, $x \in M^{\prime}$.

Let now A be an $A W^{*}$-algebra of type $I I_{1}, Z$ its center. Then [2, p. 247] A admits a dimension function D defined on A_{P}, with values in $Z . \quad D$ has the following properties:
(1) $0 \leqq D(e) \leqq 1$ for every e,
(2) $D(e)=e$ if $e \in Z$,
(3) $D(e)=D(f)$ if and and only if $e \sim f$,
(4) $D\left(\sum e_{i}\right)=\sum D\left(e_{i}\right)$ if the e_{i} 's are mutually orthogonal [1, Lemma 6.13].

Moreover, D is uniquely determined by these properties. It is an immediate consequence of (4) that given $0<\lambda<1$ there is a projection e with $D(e)=\lambda$.

Let C be a commutative $A W^{*}$-subalgebra [3] of $A . \quad C$ is the closed linear subspace generated by C_{p}. We shall extend D to a linear transformation T_{c} of C into Z. First define T_{c} on the linear combinations of projections by setting

$$
T_{c}\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right)=\sum_{i=1}^{n} \lambda_{i} D\left(e_{i}\right) .
$$

We must show that T_{C} is uniquely defined, i.e., if $x=y$ then $T_{c}(x)=$ $T_{c}(y)$. If $x=\sum_{i=1}^{n} \lambda_{i} e_{i}$, there are orthogonal projections f_{1}, \cdots, f_{m} such that each e_{i} is a sum of the f's:

$$
\begin{gathered}
e_{i}=\sum_{j=1}^{m} \alpha_{i j} f_{j} \quad \text { where } \quad \alpha_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & e_{i} f_{j}=f_{j} \\
0 & \text { if } & e_{i} f_{j}=0 .
\end{array}\right. \\
x=\sum_{i=1}^{n} \lambda_{i} e_{i}=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} \lambda_{i} \alpha_{i j}\right) f_{j} .
\end{gathered}
$$

${ }^{1}$ To use [2, Lemma 2.1| we first imbed $r x^{*}$ in a maximal commutative self-adjoint subalgebta of A. Working in this subalgebra we get a projection e with $\left\|x x^{+}-c \cdot x x^{*}\right\|<e^{2}$. Then $\|x-c x\|=\left\|(x-c x)(x-e x)^{*}\right\|^{1 / 2}=\left\|x x^{*}-c x x^{*}\right\|^{1 / 2}<\varepsilon$.

It follows from $D\left(e_{1}\right)=\sum_{j=1}^{m} \alpha_{1}, D\left(f_{,}\right)$that

$$
T_{C}\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right)=T_{C}\left(\sum_{i, j} \lambda_{i} \alpha_{i, j} f_{j}\right)
$$

Hence to prove the uniqueness of T_{c} we may restrict ourselves to the linear combinations of mutually orthogonal projection, $\sum_{i=1}^{n} \lambda_{i} e_{i}$. Moreover, as D is additive on orthogonal projections, we may assume that all the coefficients λ_{i} are unequal. Suppose therefore

$$
x=\sum_{i=1}^{n} \lambda_{i} e_{i}=\sum_{j=1}^{m} \mu_{i} f_{j},
$$

where the e 's and f 's are mutually orthogonal and the λ 's and μ 's are all different. Then $x f_{j}=\mu_{i} f_{j}=\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right) f_{j}$. Since the λ^{\prime} 's are all different, to each j there is exactly one i such that $e_{i} f_{j}=f_{j}$ and $\lambda_{i}=\mu_{j}$. By symmetry $e_{i} f_{j}=e_{i}$. Hence $\sum_{j=1}^{m} \mu_{j} f_{j}$ is merely a rearrangement of $\sum_{i=1}^{n} \lambda_{i} e_{i}$. This proves the uniqueness of T_{C}. If $x=\sum_{i=1}^{n} \lambda_{i} e_{i}$ where the e 's are mutually orthogonal and $\lambda_{i} \geqslant 0$, then

$$
\begin{aligned}
\left\|T_{o}(x)\right\| & =\left\|\sum_{i=1}^{n} \lambda_{i} D\left(e_{i}\right)\right\| \leqq \max \lambda_{i}\left\|\sum_{i=1}^{n} D\left(e_{i}\right)\right\| \\
& \leqq \max \lambda_{i}=\|x\|
\end{aligned}
$$

Hence T_{C} is a bounded linear operator defined on a dense subset of C, therefore can be extended to all of $C . T_{C}$ is positive because D is. If $x \in A$ is normal, x can be imbedded in a maximal commutative selfadjoint subalgebra C^{\prime} of A. Let C be the intersection of all such C^{\prime}, C and C^{\prime} are $A W^{*}$-subalgebras of A. As x can be approximated within both C and $C^{\prime}, T_{0^{\prime}}(x)=T_{c}(x)$. Let $T(x)$ denote their common value. T is unitarily invariant (i.e. $T\left(u x u^{-1}\right)=T(x)$ for every unitary u), because if $\sum \lambda_{i} e_{i}$ is an approximation of x then $\sum \lambda_{i} u e_{i} u^{-1}$ is one of $u x u u^{-1}$ and D is unitarily invariant. T is also linear on each commutative $A W^{*}$ subalgebra of A. We shall use this T to play the role of trace.

Theorem 1. Let A be an $A W^{*}$-algebra of type $I I_{1}, Z$ its center. Let N be a maximal ideal of Z. Then the unique maximal ideal M of A containing N is that generated by the p-ideal P consisting of all projections e with $T(e) \in N$. Or, equivalently, M is the set of elements x with $T\left(x^{*} x\right) \in N$.

Proof. Consider Z as functions on its structure space of maximal ideals. Then N contains $b \geqq 0$ whenever it contains $a \geqq b$; therefore P
satisfies (2) of a p-ideal. (1) follows from $T^{T}\left(e \vee f^{\circ}\right)=T(e)+T\left(f^{\circ}\right)-T^{\prime}\left(e \wedge f^{\prime}\right)$ because 12, Theorem 5.4| $e \backslash f-\rho \sim f-e \backslash f$. Thus M is an ideal by Lemma 1. Moreover $M \neq A$ as $1 \notin P$. Let M^{\prime} be a maximal ideal containing M. Then M is maximal if and only if $M_{p}=M_{p}^{\prime}$. Take an $e \in M_{p}^{\prime}$. If $e \notin P$ then $T(e) \equiv \lambda(\bmod N)$ with $\lambda>0$. Choose an integer n and a projection f such that $T(f)=1 / n<\lambda . \quad f$ is a simple projection with central carrier 1, that is, there exist mutually orthogonal projections $f=f_{1}, \cdots, f_{n}$ with $f_{1}+\cdots+f_{n}=1$. Compare e and f; there exists [2, Theorem 5.6] a central projection g with $g e>g f$ and $(1-g) e<(1-g) f$. Then $g f$ and, therefore, g are in M^{\prime}. As

$$
0 \leq T((1-g) f)-T((1-g) e) \equiv(1 / n-\lambda)(1-g)(\bmod N)
$$

and $1 / n-\lambda<0,1-g$ is also in M^{\prime}. Hence $1 \in M^{\prime}$, contradicting the choice of M^{\prime}. Hence $e \in P$ and $M=M^{\prime}$ is maximal. The uniqueness follows from [5, Theorem 2.5].

Finally we assert that $x \in M$ if and only if $T\left(x^{*} x\right) \in N$. It is well known that $x \in M$ if and only if $x^{*} x \in M$. Thus we need only to prove that $0<x \in M$ if and only if $T(x) \in N$. Suppose $0<x \in M$. Given $\varepsilon>0$ there is a projection e, which is a multiple of x, such that $\|x-e x\|<\varepsilon$. $T(e) \in N$ because $e \in M$. Then $T(e x) \leqq\|x\| T(e)$ is also in N. Therefore $T(x) \in N$. Conversely, assume $T(x) \in N, x>0$. Imbed x in a maximal communtative subalgebra C. Given $\varepsilon>0$ there are projections e_{1}, \cdots, e_{n} in C and positive real numbers $\lambda_{1}, \cdots, \lambda_{n}$ such that

$$
0 \leq x-\sum_{i=1}^{n} \lambda_{i} e_{i}<\varepsilon .
$$

$T\left(e_{i}\right) \in N(i=1, \cdots, n)$ for $\lambda_{i} T\left(e_{i}\right) \leq T(x)$. Hence $e_{i} \in M(i=1, \cdots, n)$, and $x \in M$.

3. The quotient algebra A / M.

Lemma 2. Let $\bar{e}_{1}, \bar{e}_{2}, \cdots$ be a countable set of mutually orthogonal projections in A / M. There exist mutually orthogonal projections e_{1}, e_{2}, \ldots in A such that $\bar{e}_{n}=e_{n}+M,(n=1,2, \cdots)$.

Proof. By [5, Theorem 3.2] we can find a projection e_{1} representing \bar{e}_{1}. If x is a representative of \bar{e}_{2}, so is $\left(1-e_{1}\right) x\left(1-e_{1}\right)$. Hence the proof of [5, Theorem 3.2] shows that \bar{e}_{2} admits a projection representative e_{2} orthogonal to e_{1}. A straight forward induction yields Lemma 2.

Lemma 3. $e \equiv f(\bmod M)$ if and only if $T(e) \equiv T(f) \equiv T(e f e) \equiv T($ fef $)$ $(\bmod N=M \cap Z)$. Consequently A / M satisfies the countable chain condition.

Proof. If $e \equiv f(\bmod M)$ then $0 \leqq e-e f e \in M$. Hence $T(e) \equiv T(e f e)$
$(\bmod N)$. Similarly $T(f) \equiv T(f e f)(\bmod N)$. But $[6$, Corollary to Lemma 2.1] efe $=u\left(f^{\circ} e f\right) u^{*}$ for some unitary u. Hence $T^{\prime}(e) \equiv T\left(f^{*}\right) \equiv T\left(e f^{\prime} e\right) \equiv$ $T^{\prime}\left(f e f^{\prime}\right)(\bmod N)$. Conversely, if $T^{\prime}(e)=T\left(f^{\prime}\right)=T^{\prime}(e f e)=T(f e f)$, then $=$ $e f e$ and $f=f e f(\bmod M)$. As $(e-f e)^{*}(e-f e)=e-e f e=0(\bmod M)$ we have, $e \equiv f e$ and $e \equiv f(\bmod M)$. The above result permits us to define an "additive" function \bar{D} on the projections of A / M by setting $\bar{D}(\bar{e})$ to be the common value of $T(e)$ at N where $e+M=\bar{e} . \quad D(\bar{e}) \neq 0$ if $\bar{e} \neq 0$. Hence A / M satisfies the countable chain condition.

Lemma 4. Any set of mutually orthogonal projections in A / M hus a least upper bound.

Proof. By Lemma 3 such a set is countable. Let $\bar{e}_{1}, \bar{e}_{2}, \cdots$ be mutually orthogonal projections. We first prove a sharpened version of Lemma 2:
(*) there exist mutually orthogonal projections e_{1}, e_{2}, \cdots representing $\bar{e}_{1}, \bar{e}_{2}, \cdots$, respectively, such that $T\left(e_{n}\right)=\bar{D}\left(\bar{e}_{n}\right)$ for $n=1,2, \cdots$.

Let f_{1} be a projection representing \bar{e}_{1} and g_{1} a projection with $T\left(g_{1}\right)$ $=\bar{D}\left(\bar{e}_{1}\right)$. Compare f_{1} and g_{1}; there is a central projection h_{1} such that $h_{1} g_{1}>h_{1} f_{1}$ and $\left(1-h_{1}\right) g_{1}<\left(1-h_{1}\right) f_{1}$. There are projections e_{1}^{\prime} and $e_{1}^{\prime \prime}$ such that $h_{1} g_{1} \sim e_{1}^{\prime} \geqq h_{1} f_{1}$ and $\left(1-h_{1}\right) g_{1} \sim e_{1}^{\prime \prime} \leqslant\left(1-h_{1}\right) f_{1}$. From

$$
0 \leqq T\left(e_{1}^{\prime}-h_{1} f_{1}\right)=T\left(e_{1}^{\prime}\right)-T\left(h_{1} f_{1}\right)=h_{1}\left(T\left(g_{1}\right)-T\left(f_{1}\right)\right) \equiv 0(\bmod M \cap Z)
$$

it follows that $e_{1}^{\prime} \equiv h_{1} f_{1}(\bmod M)$. Similarly $e_{1}^{\prime \prime} \equiv\left(1-h_{1}\right) f_{1}(\bmod M)$. Hence $e_{1}=e_{1}^{\prime}+e_{1}^{\prime \prime} \equiv f_{1}(\bmod M)$ and $T\left(e_{1}\right)=\bar{D}\left(\bar{e}_{1}\right)$. Next let f_{2}, g_{2} be projections $<1-e_{1}$ and be such that $\bar{e}_{2}=f_{3}+M$ and $T\left(g_{2}\right)=\bar{D}\left(\bar{e}_{2}\right)$. Repeat the argument applied to f_{1} and g_{1} we can find the desired $e_{2}=e_{2}^{\prime}+e_{2}^{\prime \prime}$; (Since $1-e_{1}>h_{2} g_{2}$ and $h_{2} g_{2}$, e_{2}^{\prime} can be taken inside $1-e_{1}$. So is $e_{2}^{\prime \prime}$, therefore $e_{1} e_{2}=0$). A simple induction yields (${ }^{*}$).

Let $e=\mathrm{LUB}_{n} e_{n}$. We wish to prove that $\bar{e}=e+M$ is the LUB of \bar{e}_{n}. Or, equivalently, $\bar{f} \bar{e}=0$ if $\bar{f} \bar{e}_{n}=0$ for all n. Choose representatives f, f_{1}, f_{2}, \cdots of \bar{f} so that $f_{n} e_{m}=0$ for all $m \leqq n$. Consider efe. We have

$$
e f e \equiv e f_{n} f e \equiv g_{n} f_{n} f e \equiv g_{n} f e \equiv g_{n} e f e(\bmod M)
$$

where $g_{n}=e-e_{1}-\cdots-e_{n}$. Imbed efe in a maximal commutative selfadjoint subalgebra C and apply [2, Lemma 2.1] which states (in C): given $\varepsilon>0$ there exists a projection h, which is a multiple of efe, such that $\|e f e-h e f e\|<\varepsilon$. efe is in M if all such h 's are.

$$
h=e \text { fey } \equiv g_{n} \text { ef } e y \equiv \equiv g_{n} h(\bmod M) .
$$

Hence $h \equiv h y_{n} h(\bmod M)$ and $T(h) \equiv T\left(h g_{n} h\right)(\bmod M \cap Z)$. But $T\left(h g_{n} h\right)$ $=T\left(g_{n} h g_{n}\right) \leqq T\left(g_{n}\right)$ and $T\left(g_{n}\right)$ can be made arbitrarily small when n is
large enough. Hence $T(h)=0(\bmod M \cap Z)$ and $h \in M$. This completes the proof.

Theorem 2. $A \mid M$ is a finite $A W^{*}$-factor.

Proof. To show that A / M is an $A W^{*}$-algebra we need to verify two things: (1) every set of mutually orthogonal projections has a LUB and (2) any maximal commutative self-adjoint subalgebra is generated by its projections. (1) is the context of Lemma 4. (2) is equivalent to that every element of A / M has a left and a right projection, or the left (right) annihilator of every element is a principal left (right) ideal generated by a projection. This last can be easily verified following the argument used in [2, Lemmas 2.1, 2.2, and Theorem 2.3]. As $A_{i} M$ is simple it must be factorial. It remains to prove the finitness. This will be the case if we show that $\bar{D}(\bar{e})=\bar{D}(\bar{f})$ if $\bar{e} \sim \bar{f}$, since \bar{D} is nonzero on non-zero projections. This is a consequence of the following lemma, a special case of [4, Proposition 2] if A is a W^{*}-algebra.

Lemma 5. Suppose $\bar{e} \sim \bar{f}$. Then there exists equivalent projections e, f representing \bar{e}, \bar{f} respectively.

Proof. Let $\bar{x}^{*} \bar{x}=\bar{e}$ and $\bar{x} \bar{x}^{*}=\bar{f}$. Let x, e_{1} and f_{1} respectively be the representative of \bar{x}, \bar{e} and \bar{f}. Then

$$
e_{1} \equiv x^{*} x \equiv e_{1} x^{*} x e_{1} \equiv e_{1} x^{*}\left(x x^{*}\right) x e_{1} \equiv e_{1} x^{*} f_{1} x e_{1} \equiv\left(e_{1} x^{*} f_{1}\right)\left(f_{1} x e_{1}\right),
$$

and

$$
f_{1} \equiv x x^{*} \equiv f_{1} x x^{*} f_{1} \equiv\left(f_{1} x e_{1}\right)\left(e x^{*} f_{1}\right) .
$$

Let e be the left projection of $e_{1} x^{*} f_{1}$ and f the right projection of $e_{1} x^{*} f_{1}$. e and f are the desired projections, for

$$
e=e e_{1} \equiv e\left(e_{1} x^{*} f_{1}\right)\left(f_{1} x e_{1}\right) \equiv\left(e_{1} x^{*} f_{1}\right)\left(f_{1} x e_{1}\right) \equiv e_{1}
$$

and, similarly, $f \equiv f_{1}$.
Remark. If an $A W^{*}$-factor always possesses a trace, then any $A W^{*}$-algebra of type $I I_{1}$ will admit a trace, for $T(x+y)-T(x)-T(y)$ takes the value 0 at every maximal ideal of Z.

References

1. J. Dixmier, Les anneaux d'opérateurs de classe finie, Ann. Sci. École Norm. Sup., 66 (1949), 209-261.
2. I. Kaplansky, Projections in Banach algebras, Ann. of Math., 53 (1951), 235-249.
3. -, Algebras of type I, Ann. of Math., 56 (1952), 460-472.
4. Y. Misonou, On a weakly central operator algehra, Tôhoku Math. J., 4 (1952), 194-202.
5. F. B. Wright, A reduction for algetras of finite type, Ann. of Math., 60 (1954), 560-570.
6. T. Yen, Trace on finite $A W^{*}$-algebras, Duke Math. J., 22 (1955), 207-222.

Lehigh University

