
ASYMPTOTIC RELATIONS BETWEEN SYSTEMS OF

DIFFERENTIAL EQUATIONS

CHOY-TAK TAAM

1. Introduction. A. Wintner [1], N. Levinson [2], H. Weyl [3] and
others have obtained interesting asymptotic relations between the solutions
of a given system of differential equations and those of an approximate
system. In their investigations the solutions of the approximate system
of differential equations are assumed to be bounded. In this paper we
consider the asymptotic problems of the solutions from a more general
point of view, given only certain order relations satisfied by the solutions
of the approximate system. The method we shall use is to study an
associated system of integral equations which yields the asymptotic re-
lations between the solutions of the perturbed and unperturbed equations.
With the aid of the Phragmen-Lindelof Theorems [4], our results can be
easily extended to the complex domain.

2 Asymptotic relations in the real domain. Consider the system
of differential equations written in the vector form

(2.1) f=A(x)y + f(x,y),
ax

where A(x)=\\ai)(x)\\ is a nxn matrix and y and f(x,y) are respectively
column vectors with components y(ί) and f(ί)(x, y), i = l , 2, -, n. Defining
the norms \\y\\, \\A\\ of vectors y and matrices A by

it is easy to verify that

, ίAy\\^\\A\\\\y\\ .

In this section we assume that aυ(x) and f{i\x> y) (for each fixed
complex y) are complex-valued functions of the real variable x belonging
to L(Q,B) for every positive R. Furthermore we assume that for each
^ί>0, f(ί)(xy y) is a continuous function of y for all complex y and f(x, y)
satisfies the Lipschitz condition
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374 CHOY-TAK TΛΛM

(2.2) \\f(x, Vl)-f(x, yJ\\^9(x)bi-vA

for all complex yλ and y,, g{x) being of the class L(0, R) for every positive
R. (If all the functions ai5(x) and f(i)(x, y) are real and only real-valued
solutions are considered, it is enough to assume that f(ί)(x, y) is continuous
for all real y and (2.2) holds for all real yλ and y2.)

By a solution of (2.1) we mean a vector function y(x) which is ab-
solutely continuous and satisfies the equation (2.1) almost everywhere.
For the existence and uniqueness of solutions, see [5, Sections 68.3 and
68.5].

In this section we shall establish two asymptotic relations between
the solutions of (2.1) and those of the approximate equation

(2.3) f =A{x)y m

ax

Equation (2.3) has n linearly independent vector solutions yu i = l ,
2, •••,%. Let Y be the nxn matrix whose columns are the n vector
solutions yit y% being so chosen to satisfy the initial condition F(0)=J.
Y is non-singular and has an inverse Y~[. Since each column of Y is a
solution of (2.3) it is clear that Y satisfies

(2.4) "" =A(x)Y, Y(O)=I .
dx

If tr A denotes the sum of the diagonal elements of A, it is well-known
[6] that

det Y(x)= exp ([* tr A(t)dt) .

For convenience we first establish the following results.

LEMMA 1. Let

(a) y(x) be a solution of (2.1), y(Q) = e,
(b) Y(x) be the matrix solution of (2.4).

Then y(x) satisfies the vector integral equation

(2.5) y(x)=Y(x)c+ [* Y(x)Y-\t)f(t, y(t))dt .

Proof. Set y(x)=Y(x)z(x). Then a substitution into (2.1) gives

(2.6) d^z+ Ydz =
dx ax

Using (2.4), we have
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CLZ __ y - i Ϋ

dx

or

(2.7) z(x) = c+\* Y-\t)f(t, y(t))dt .
Jo

Multiplication of (2.7) by Y(x) gives the result (2.5).

The following lemma is due to R. Bellman.

LEMMA 2. Let u(x) and v(x) be real-valued functions defined for
%^u> both being non-negative. If

(a) v(x) and u(x)v(x) belong to L(a, R) for every

(b) ιι(x)<:M+[Xιι(t)v(t)dt,
Ja

then

Proof. Multiplication of (b) by v(x) gives

(2.8) Φ)V(Z)<SV(X)(M+ [Xu(t)v(t)dt\ .

u(t)v(t)dt and integrate the result
a

from a to x, obtaining

(2.9) lo

Then lemma follows from (b) and (2.9).

We first prove the following asymptotic relation. &a denotes the
real part of a complex number a.

THEOREM 1. Let

(a) \\Y(x)\\=O(h(x)) as #->co, h(x) being measurable on 0<la;<co,

(b) \f(x, 0)\\[h{x)f-1 e^\ - ^ tτ A{t)dt\ and

g(x)[h(x)f exp Γ - & [*tτA(t)dt\ belong to L(0, ™) .

Then, for each solution y(x) of (2.1), \y{x)\ = O(h(x)) as x->cx> and there
is a solution Y(x)c of (2.3) such that
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(2.10) y(x) = Y(x)(c + ε(x))9

ivhere || e(x) || tends to zero as x —> co.

Proof, According to Lemma 1, y(x) satisfies the integral equation

(2.11) y(x) = Y(x)c+ \X Y(x)Y-\t)f{t, y(t))dt .
Jo

It follows that

(2.12) y(x)l<LlY(x)U4+ \X\\Y(x)l\\Y-\t)Uf(t,y(t))\\dt .
Jo

Since (2.2) implies that

(2.13) \\f(x, y)\\^g(x)\\y\\ + [/(*, 0)||

and 1^(^)1 does not vanish, one obtains from (2.12)

(2.14) 11 )̂11 ^ | | c | | + ^\\Y-\t)\\{g{t)\y{t)\\ -i-

Since each component of Y~ι(x) is the cofactor of the corresponding
component in detY(x)t divided by detY(x), Y(x)t being the transpose of
Y(x)f it is clear that as x-^co

(2.15) \\Y-ι(x)\\=θ([h(x)T-1 exp Γ- & Γtr A{t)dt\\ .

From (b), it follows that as x->c&

(2.16)

From (2.14) we then have

(2.17) M*)l

for some constant M. An appeal to Lemma 2 yields

(2.18) lv(p\ <Mexv(\Xg(t)\\Y-<(t)\\ \\Y(t)\\dt) .

Conditions (a), (b) and (2.15) ensure LhaL Lhe integral in (2.18) is bounded
for x'>.0 and consequently as x-*co

(2.19) \\y(x)\\=O(h(z)) .

Since
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and the integral on the right hand side is convergent (by virtue of
conditions (a), (b), (2.15) and (2.19)), the integral

\°Y-\t)f(t,y(t))dt
Jo

exists. Splitting the integral in (2.11) into two, one integrating from
0 to co and the other from x to oo, we have

(2.20) y(x)=Y(x)(c + e(x))

for an appropriate constant c, where

(2.21) ε(x)=-\~γ-\t)f(t,y(ί))dt.
Jx

This completes the proof of Theorem 1.

Given stronger conditions, we can show that || Y(x)ε(x)\\ tends to zero
as x tends to infinity.

THEOREM 2. Let

(a) || Y(x)\=O(h(x)) as x-> OD, k(x) being non-decreasing on 0 < ^ < o o ,

(b) \\f(x, 0)\\[h(x)f exp Γ - & Γ t r A(t) dt\ and

g(x)[h(x)γ+1 exp\ - /β?\X tτ A(t)dt\ belong to L(0, oo).
L Jo J

Then for each solution y(x) of (2.1) there is a solution Y(x)c of (2.3) such
that

(2.22) φ)=Y(x)c + ε(x),

where \e(x)\ tends to zero as x tends to infinity.

Proof. Since the conditions of Theorem 1 are satisfied, we obtain
at once the relation (2.22) with

ε(x)= - Y(x)[°Y'1(t)f(tf y(t))dt.
Jx

Clearly
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for some constant M, the existence of the last integral being guaranteed
by the conditions (b). It follows that ||ε(#)|| tends to zero as x tends to
infinity. This completes the proof.

Remark. Under the conditions of Theorem 2, the singular integral
equation

(2.23) y{x)=Y{x)c-Y(x)[~Y-\t)f(t, y{t))dt

defines actually a one-to-one correspondence between the solutions of
(2.1) and (2.3) such that the corresponding solutions are asymptotically
equivalent in the sense of Theorem 2. The previous statement remains
true if " Theorem 2 " is replaced by " Theorem 1 " provided h(x) is bounded
on 0<ίx<Lx0 for every positive x0. To see this it is sufficient to prove
the existence and uniqueness of the solution of the integral equation
(2.23) for an arbitrary but fixed c, the result then follows from the fact
that a solution of (2.23) is a solution of (2.1).

Define yQ(x) = 0 and

(2.24) yn(x)=Y(x)c-Y(x)\~Y-ι(t)f(t, yn^(t))dt , w=l, 2, 3, • - .

If \\yn-i(x)\\=O(h(x)), the integral in (2.24) exists. It follows that
\\yn(%)\\ = O(h(x)) and the integral in (2.24) exists for all yn-L(x). If

(2.25) H(x)= {~[h(t)Yg(t) exp Γ - .96 Γtr A{u)du\dt ,

it is easy to verify that

(2.26) lyn+1(x)-yn(x)l<:M"n + ]h(x) L ^ W J (n=0, 1, 2, • •)
n\

for an appropriate constant M. It follows that yn(x) converges to a
limit y(x) uniformly on 0<Lx<Lx0 for every positive x0. Clearly ||?/(#)|| =
O(k(x)), \\yn(x)\\=O(h(x)) uniformly in n and y(x) satisfies (2.23). Suppose
that (2.23) has another solution z(x), then \\z(x)\\=O(h(x)) and

(2.27) \\y(x)~

or

(2.28) \\y(x)-z(x)\\^M3h(x)H(x)

for some constant M. Substituting (2.28) into (2.27) and repeating the
process, we have
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(2.29) \\y(x)-z(x)\\^Mh(x)
n\

for every n. (2.29) implies that y(x) and z(x) are equal and hence the
solution of (2.23) is unique.

3. Asymptotic relations in the complex domain* In this section
the results of § 2 are extended to the complex domain for a system of
linear differential equations. In § 2 the success of the method depends
on the Lipschitz condition (2.2). But if f(x, y) is an analytic function
of the complex variables x and y for x in a region R and all y and
satisfies the Lipschitz condition

for all yλ and y2, it is necessary that f(x, y) is a polynomial of degree 1
in y or containing no y. If f(x, y) is not analytic for all y, it is not
clear to the author how this problem may be attacked in the complex
domain.

For convenience we use z as the independent variable and write
z=x + iy=r exp (iθ), where x, y, r and θ and real and r is non-negative.

We need the following Phragmen-Lindelof theorems.
Let JRI be the strip of the complex plane

(3.1)

and R2 the sector

(3.2)

LEMMA 3. Let u(z) be an analytic function in Rγ. If
(a) \u(z)\<LM in R1 for x=Q, y=yλ and y=y2,

(b) u(z) = O(eJ*G ) as x—>OD, uniformly in yι^y^Ly> for some con-
stants b and N, b<Ca,

then \u(x)\<LM in Rlt

LEMMA 4. Let u(z) be analytic in Rx. If
(a) u(x-\-iyk) tends to a limit a]c as X->CΌ, k=l,2,
(b) u(z) is bounded in Ru

then as z->co u(z) tends to a limit a uniformly in R1 and a=aι=a2.

LEMMA 5. Let u(z) be analytic in R,. If
(a) \u(z)\<LM in R2 for θ=θτ and θ=θ,,
(b) u(z) = O(eNr)) as r-> co , uniformly in θλ^_θ^_θ>i for some constants

b and N,
then \u(z)\<LM in R >.
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LEMMA 6. Let u{z) be analytic in Rz. If
(a) u(reίθk) tends to a limit ak as ? ->oo, k=l, 2,
(b) ιι(z) is bounded in RZy

then as z-+c° u{z) tends to a limit a uniformly in R2 and a=a1=az.

For proof of these theorems, see [4].
Consider the system of linear diffential equations written in the

vector form

(3.3) d™ = (A(z) + B(z))w + f(z) ,
dz

where A(2)==||α^(£)jj and B{z)=^\bij{z)\ are nxn matrices and w and f(z)
column vectors with components ιo(i) and f(i)(z) respectively, i = l , 2, n.
We assume that aυ(z), bυ(z) and f{i){z) are single-valued analytic functions
in the regions with which we shall be concerned in this section.

Let W(z) be a matrix solution of

(3.4) df=A(z)W, W(zo)=I.
dz

We shall establish asymptotic relations between the solutions of (3.3)
and those of the approximate system

(3.5) d w =A{z)w .
dz

Write

(3.6) H(x, y)=H(x, y, a?0)= [ \h(x, y)]niB(z)\\ exp Γ - ύp [ tr A(u)du \dx ,

(3.7) K(x, y)=K(x, y, »„)= [X[h{x,y)Y-L\\f(z)\\exp\- 32[' tΐA(u)du]dx ,
Jxj L Jzo J

where z=x + iy, zύ^=xύ-hiyQt z0 being in RL.

THEOREM 3. Let

(a) \\W(z)\\=-O(h(x,y)) as α->oo for y=y1 and y=y2, \W(z)\\ =

O(h(x,y)ee x) as x~>oo, uniformly in yi^Ly^Lyz, where b<Ca,

y2 — yι=cι-ιπ9 h(x, y) = \h(z)\ and h(z) is analytic in Ru

(b) H(x,y)=O(l) as .τ->αo for y=yx and y=y2, H(x, y)=O(ebx) as
α;->co, uniformly in yι<^y<Ly2,

(c) K(x,y) = O(ϊ) as #->co for y=yλ and y=y2, K(x, y) = O(ee x) as

x->oo, uniformly in yι^Ly<Ly>
Then, for each solution w(z) of (3.3), lw(z)\\ = O(h(x,y)) as #->oo,
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uniformly in yx<Ly<Ly>ι9 and there is a solution W(z)c of (3.5) such that

(3.8) ιo(z)=W(z)(c + e(z))

in RXJ where \e(z)\ tends to zero uniformly in Rλ as z-+oo.

Proof. First we observe that W{z)lh(z) is of 0(1) on the lines y=yl9

y=yi9 of 0{eehx) uniformly in Rlm According to Lemma 3, W(z)lh{z) is
of 0(1) in Rx. It follows that

\\W(z)\\=0(h(x,y)) as

uniformly in yi^Ly^y?.-

For a solution, w(z)9 of (3.3), w(zό)=c9 we have

(3.9) w(z)=W(z)c-\- Y W(z)W-ι(t)[B(t)w(t) + f(t)]dt ,

where z and zύ are in Rλ. Multiplication of (3.9) by W~\z) yields

(3.10) W-\zyw(z)=c+ Γ W-\t){B{t)w(t) + f{t)]dt .

Since

for a suitable constant M, it follows that

W-\t)f{t)dt,

being analytic in Ru is bounded in Ru by virtue of the conditions in
(c) and Lemma 3. Also the integral

\*0+lV W-\t)B(t)w(t)dt

is bounded in Rτ. From (3.10), we then have

(3.11) W-\z)ίv(z)=E(z)+ \X+*V W-\t)B(t)w(t)dt
i

for some function E(z), E(z) being bounded in R19 and the integral taken
along a straight line. Write w(t)=W(t)W-\t)w(t). Then

(3.12) || W-\z)w{z)\\^MΛ- \X+ίy || W~\t)B(t)\ \\ W'\t)w(t)\\dt
Jx^iy

for some constant M9 and x^xQ. An appeal to Lemma 2 yields
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(3.13) [^-'(^φJH^.Λf expΓΓ+ 4 ί f | W~\t)B{t)W{t)\\dt\ ,
LJx-o + i.y J

In view of the definition of H(x,y), (3.13) gives

(3.14) || W-\z)ιv(z)\\

for some constant N. It follows that W~\z)ιυ(z), being analytic in Ru

is bounded in Rlf by virtue of the conditions in (b) and Lemma 3. Since

\\ιv(z)\\^\\W(z)\\\\W~\z)w(z)\\ ,

we have also

(3.15) \\w(z)\\ = ()(h(x,y))

as a?->oo, uniformly in yι<Ly^y*. From (3.10), the analytic function

(3.16) Γ W~\t)[B(t)

ιυ

is bounded in Rλ. By virtue of (3.6), (3.7), (b) and (c), the integral
(3.16) tends to a limit cλ as £->oo along y=y] and to a limit c2 along
y=y2, and hence, by Lemma 4, it tends to a limit c{) uniformly in Rλ and
cϋ=cι==c2. Now (3.10) can be written as

(3.17) W-ι(z}u)(z)=c- Γ W-\t)lB(t)

for some c, the integral being convergent to zero uniformly in R^. (3.17)
is equivalent to (3.8). This proves the theorem.

THEOREM 4. Let the conditions of Theorem 3 be satisfied. Further-

more let

(a) h(x, y)=O(ee x) as #->oo, uniformly in Rλ,
(b) h{x9 yi)H(co, yi9 x) and h(x, yt)K(co, yif x) tend to zero x-+ oo,

i=l,2.
Then, for each solution w(z) of (3.3), there is a solution W(z)c of (3.5)
such that

(3.18)

in Rlf ivhere \ε{z)\ tends to zero uniformly in Rλ as 2->oo.

Proof. Using (a) and (b), clearly the analytic function

e(z)= W(z) \°° W-ι(t)[B(t)w(t) + f(t)]dt

converges to zero as z->™ along the lines y=yu y=y> and

\\ε(z)\\ = O(eβbx), uniformly in Rx.
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According to Lemma 3, ||ε(£)|| is bounded in Ru and by Lemma 4, ||e(^)||
converges to zero uniformly in R{ as £->co. From (3.17), we have

(3.19) w(z)= W(z)c~ W(z) Γ W-\t)[B(t)ιv(t) 4- f(t)~\dt

which is equivalent to (3.18). This completes the proof.

We shall state two similar theorems for the region R2. Set

L(r, θ)=L(r, 0, ro)= [ [h(r, ^)]"j|^(^)||expΓ — &\ tr A(u)du~\dr ,

J(r, β)=J(r, θ, ?•„)= Γ \h(r, θ)γ-'\f(z)\ exp Γ - . ^ [" tr A(n)du\dr ,

where z=r exp (i^), zo=?*o exp (iθ0), z0 being in R2.

THEOREM 5. Let

(a) \\W(z)\\ = O(h(r,θ)) as r->oo for θ = θ1 and θ=θ2,
\\W(z)\\ = O(h(r,θ)erh) as r->oo, uniformly in θτ<LΘSΛ,
ivhere b<Ca, Θ2 — Θ1=a~ιπy h(r, θ)=\h(z)\ and h(z) is analytic in R,,

(b) L(r, Θ)=O(1) as r-^oo for θ=θx and θ=θ2y

L(r, θ) = O(rb) as r->co, uniformly in Θ^Θ^LΘ,,
(c) J(r,θ)=O(ΐ) as r->oo for θ = θ1 and θ=θ,,

J(rJθ)=O{eγh) as r->™, uniformly in θτ<LΘ<^θ,.
Then, for each solution w(z) of (3.3), \\w(z)l = O(h(r, θ)) as ?*->co, uni-
formly in θι<L,θ<LΘ>z, and there is a solution W(z)c of (3.5) such that

in R2, ivhere ||e(z)|| tends to zero uniformly in R.> as z—>c®.

The proof is similar to that of Theorem 3.

THEOREM 6. Let the conditions of Theorem 5 be satisfied. Further-
more let

(a) h(r, θ) = O(e>J)) as r->oo, uniformly in R2,

(b) h(r, θi)L(oof θu r) and h(rf θi)J(cof θu r) tend to zero as r->oo,
i=l,2.

Then for each solution w(z) of (3.3) there is a solution W(z)c of (3.5)
such that

in R2, ivhere \\ε(z)\\ tends to zero uniformly in R, as z->oo.

The proof of this theorem is similar to that of Theorem 4.
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4- Second order differential equation. When the theorems in §§ 2
and 3 apply to a given second order differential equation, it is necessary
to know the order relation of both the solutions and their derivatives of
the approximate equation. Of course we obtain an asymptotic relation
between the solutions, and their derivative of each equation. However,
for second order differential equations, we are able to establish asymp-
totic relations just for the solutions when the order relation of the
solution of the approximate equation is given. In view of the interest
in second order differential equations, we state some similar results and
briefly indicate the proofs.

Consider the second order differential equations

(4.1)

(4.2)

where ljr(x)f p(x) and f(x, y) (for each fixed complex y) are complex-
valued functions of the real variable x, defined for all #2>:0 and be-
longing to L(0,R) for every positive R; furthermore for each x^>0
f(x, y) is a continuous function of y for all complex y satisfying

(4.3) \f(x, yi)-f(x, y^\<,g{χ)\y^yλ

for all complex yΎ and y29 g(x) being of the class L(0, R) for every
positive R.

Let Vι(x) and y>{x) be two linearly independent solutions of (4.2) with

(4.4) r(x)[yx(x)y2(x) - ιj[(x)y,(x)] = 1

almost everywhere.

THEOREM 7. Let

(a) \yi(x)\ + \yz(x)\=O(h(x)) as x-+<χ>, h{x) being measurable on

(b) [h(x)fg(x) and h(x)f(x, 0) belong to L(0, oo).

Then, for each solution y(x) of (4.1), y(x)=O(h(x)) as x—> oo and there
exist constants A and B such that

y(x) - (A + e(aθ)2/i(α) + (B + el
(4.5)

y\x) = (A + φ))y[(x)

where ε^x) and ez(x) tend to zero as x->co. (The second equation holds
only almost everywhere,)

Proof. Let y{x) be a solution of (4.1). Then, by the method of
variation of parameters, y(x) satisfies
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(4.6)

for some constants A and B. Set u=\y\ί(\yλ\-{-\y,\). Using (a), (b) and
(4.3) one can verify that

[X g(t)K\t)u{t)dt

for some positive constants M and N and x^>0. By Lemma 2 and (b),
ιι(x) is bounded on 0 ^ ^ < c o . It follows that y(x)=O(h(x)) as #->oo.
Write

(4.7) 6,(0?)= j " / ( ί , y{t))yit)dt , φ θ =

the existence of the integrals being guaranteed by (b). The first part
of (4.5) follows from (4.6) by splitting the integral, the second part
from differentiation of the first.

THEOREM 8. Let

(a) |i/i(#)|-f- \y2(x)\ = O(h(x)) as a?->oo, h(x) being non-decreasing on

(b) h\x)g(x) and h\x)f(x, 0) belong to L(0, oo).
for each solution y(x) of (4.1) there exist constants A and B such

that

(4.8)

where ε(x) tends to zero as x -> oo.

Proof. Under conditions (a) and (b), εi(x)yι(x) and e2(x)yz(x) tend to
zero as ^->oo. (4.8) then follows from the first equation of (4.5).

Remark. In some cases, with properly chosen yλ and y2, condition
(b) of Theorem 8 may be weakened. For instance let r(x)=l, p(x)=0
and take y1(x)=l, y2(x)=xf h(x)=x; it is true that y{x)=Ax-\-BJ

re(x)y

e(x)->0 as ^->oo if h\x)g{x) and h(x)f(x,Q) belong to L(0, oo). The
discrepancy is due to the fact that in the general case we consider

), while in this example yι{x)yλ{x)=O{h(x)).

Consider the differential equations

(4.9) (r(zWY + (V{z)-f q(z))ιv^f(z) ,

(4.10) (r(z)ιυ')'±p(z)ιυ=O ,

where r(z)^0, p(z), q(z) and f{z) are single-valued analytic functions
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in Rι or R, (see (3.1) and (3.2)), as whichever is concerned. Let u\{z)

and w2(z) be two linearly independent solutions of (4.10) with

Set

H(x, y) = H(x, y, xo) = \ H\x, y)\q(z)\dx ,

K(x, y)=K(x, y, a?0)= I h(x, y)\f{z)\dx ,

where z=x-hiy, zo^=xΰ-hiyQ, z0 being in R{.

THEOREM 9. Let

(a) \wι{z)\-\-\ιυ.lz)\ = O{h{x1y)) as #->oo for y^y, and y=y,,

\w1(z)\ + \w2(z)\=O(h(x,y)eebx) as x~> co y uniformly in y^y^y*,

where b<^a, yz—yi^cc^π, h(x, y)=\h{z)\ and h(z) is analytic in R{,

(b) H(x,y) = O(l) as x->oo for y=yx and y=y.,,

H(x,y) = O(e?)X) as #->oo, uniformly in Ru

(c) K(x,y)=O(l) as x-+co for y=yλ and y=y2,

K{x,y)=O{eeX) as #->oo, uniformly in Rλ.

Then, for each solution w(z) o/(4.9), w(z) = O(h(x, y)) as ^->oo, uniformly

in yλ<L%j<Lyι, and there exist constants A and B such that

w{z) = (A-\r

IΌ\Z) = (A -f ελ(z))iΌ\{z) 4- (B 4- φ))w',{z) ,

in Ru ivhere eτ(z) and e2(z) tend to zero uniformly in R{ as 2->oo.

THEOREM 10. Let the conditions of Theorem 9 be satisfied. Further-

more let

(a) h(x, y) = O(eebx) as #->oo, uniformly in Rlf

(b) h(xtyi)H(cofyifχ) and h(xfyi)K{coJyuχ) tend to zero as #->oo,

i = l , 2.

Then for each solution w(z) of (4.9) there exist constants A and B such

that

w(z) = Awx(z) + Bw.z(z) -f e(z)

in Ru where ε(z) tends to zero uniformly in Rλ as z—>co.

Set

L(r, 0) = Ur, β, r o )= [ h\r, θ)\q{z)\dr ,
J
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J(r, θ)=J(r, θ, ro)= [ h(r, θ)\f(z)\dr .

where z=r exp(^), 3 o =nexp(ΐ0 o ), zQ being in i£,.

THEOREM 11. Let

(a) 1 (̂3)1 + \w*(z)\=O(h(r, θ)) as ? ->co /or 0=0 t

|Wi(«)|4-|M;2(ί2)| = O(Λ<r, <?)er&) as r->oo, uniformly in θ^θ^β^
where b<Ca, Θ2 — Θ1=a~1π, h(r, θ)=\h(z)\ and h(z) is analytic in R,,

(b) L(r,θ)=O(l) as r->oo for θ=θ, and θ=02f

L(r, θ)=O(rb) as ? ->oo, uniformly in R2,
(c) J{r,θ)=O(l) as r->oo for θ=θ1 and θ=θ2,

J(r,0)=O(erb) as ? ~>oo, uniformly in iϋ2.
ΓAen /o? eac/z, solution w(z) of (4.9) ίAerβ exist constants A and B such
that

w{z) =={A + φ)yu)λ{z) 4- (B + e2(z))w2(z) ,

w\z) = (A± ε^w'iz) 4- (B -f e2(^))^(^) ,

m i?2, where ε^z) and ε,(z) tend to zero uniformly in R2 as z->oo.

THEOREM 12. Let the conditions of Theorem 11 be satisfied. Further-
more let

(a) h(r, θ) = O(er ) as ? ->co, uniformly in R,,
(b) h(ry θi)L(ooy 0ίyr) and h(r, Θ^J{co} 0ίy r) tend to zero as r->oo,

for each solution w(z) of (4.9) there exist constants A and B such
that

ιv(z) = AwL(z) 4- Bίv2(z) 4- e(z)

in Ii2, where ε(z) tends to zero uniformly in Rz as z->cv.

Combining the methods of §3 and the first part of this section,
one can prove these theorems by using the integral equation

w(z)=Aw1(z) 4- Bιv,(z) 4- \ [/(£) — Q(t)w(t)][w<,(z)wι(t) — Wι(z)w2(t)]dt

which is satisfied by the solutions of (4.9). The details will be omitted.
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