
ON A CLASS OF POLYNOMIALS ORTHOGONAL

OVER A DENUMERABLE SET

D. J. DICKINSON, H. 0. POLLAK AND G. H. WANNIER

1 Introduction and Summary* This study proceeds from a theorem
of Favard that states that polynomial sets obeying a certain type of
three-term recursion formula are, with respect to some weight function,
orthogonal over some set on the real axis. For a rather wide subclass
of these polynomial sets, it is shown that the orthogonality set consists
of a discrete but infinite set of points of the real axis. The orthogonality
set and the weight function are given by certain entire functions that
can be constructed from the polynomials by a limiting process. A set
of modified Lommel polynomials is given as an explicit example of the
general theory. They are orthogonal over the reciprocals of the roots
of certain Bessel functions.

2. General theory and existence of orthogonality* In 1935, Favard
[2] sketched the proof of the following theorem:

If there is a sequence of real polynomials {φn(x)} possessing a recursion
relation of the form

with

(2) φQ(x)=l, φι(

and

( 3 )

then the polynomials are orthogonal.
This powerful theorem seems to have escaped attention it suggests

that whenever a relation of the form (1) exists, a weight function and
orthogonality domain could probably be found by detailed study. We
want to accomplish this for a wide class of polynomials for which the
orthogonality range comes out to be a denumerable set of points.

The class of polynomials mentioned is obtained by imposing upon (2)
and (3) the restrictions that

(4) an

and that the limit B exists where
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(5) Σ 4 = S .
n = l

The restriction (4) implies that the polynomials are alternately even and
odd and that we may take our weight function dμ{x) such that

for positive integral n. We may take infinite limits of integration since,
by defining some factor of the integrand as zero at suitable points, all
real integrals may be written with infinite limits. We also take μ(x) to
be a nondecreasing function such that

( 6 )

From (1) and (2), the leading coefficients of our polynomials are unity
and thus

ί +OO |» +OO

χφn..1(χ)φn(χ)dμ(x)= \ ψ2

n(x)dμ{x) .
J-oo

Hence after multiplying (1) by φn-i(χ)dμ(x) and integrating we have

S °° f°° 2

-ββ U ™J-oo

The solution of this recursion relation subject to the condition (6) is

( 7 )

where for n=0, the product on the right is to be taken as unity.
We now introduce a second set of polynomials Fn(z) by the substi-

tutions

(8) z=Hxy

( 9 ) F«(z)=*?φJLV*) -

Because of (1), these polynomials obey the recursion relation

(10) Fn+1(*)-Fn(z)= -λ^Fn-.iz) , (n^O).

We deduce from this relation the following

THEOREM 1. There exists an entire function F(z) such that \Fn(z)\<LF(z)
for all n and real z.

Proof. We define Gn(z) as the larger of the absolute values of Fn(z)
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and Fn-i(z). This, with (10), yields

\Fn

and hence

Prom this and the easily verified identities

FQ(z)=F1(z)=G1(z)=

we have, for all n,

Here the convergence of the infinite product is assured by (5). If we
define an entire function F(z) by

then we have, for real z and all ny that

(11) \

THEOREM 2. The polynomials Fn(z) converge toward an entire func-
tion E(z) whose zeros form a denumerable set on the real axis. For all
z in any bounded setf the convergence is uniform.

Proof. We first derive the Cauchy criterion for the set using
equations (10) and (5) and Theorem 1.

where

Skice S(n) is a convergent series, the analytic functions Fn(z) converge
uniformly toward a function E(z) if z is bounded. Hence E(z) is an
analytic entire function of z. It cannot vanish identically because from
(2), (9), and (10), we have that

(12) £7(0)=1 .
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From a theorem of Hurwitz (see [4], p. 119 and [3], Theorem 1.91.3)
it follows that if zd is a zero of E(z) of multiplicity q and N(zQ) some
neighborhood of z0, then for n sufficiently large, N(zQ) contains precisely
q zeros of Fn(z). Now for any positive integer p, there exists a circle
Cp centered on the origin that has in its exterior at least p zeros of
φp+ι(x). From the Sturmian properties of the φn(x), it follows that for
n^>p-h 1, ψn(x) also has at least p zeros in the exterior of Cp. That is,
there exists a circle C'p (the reciprocal circle of Cp) that contains in its
interior at least p zeros of each of the polynomials FJz) for n^>p + l.
Hence for this arbitrary integer p, E(z) contains at least p zeros in or
on C'p. (A zero of multiplicity q we count as q zeros.) Thus E(z) has
an infinite number of zeros.

The reality of the zeros of the Fn(z) can be seen from the Sturmian
properties of the ψn{x) and, using the Hurwitz theorem again, it quickly
follows that the zeros of E(z) are real.

THEOREM 3. The derivative of μ{x) is everywhere zero except at the
reciprocals of the zeros of E(z).

A theorem of this type appears in the literature. (See [3], Theorem
6.1.1.) In the following a proof applicable to the present situation is
given.

Proof. From Theorem 2 and (9), it follows that

(13) f

uniformly in every bounded domain.
Suppose we fix our attention on the interval between two successive

positive zeros, pv and pv + 1 of E(Hx). Let us consider an interval slightly
smaller than this, [α, 6], so that E2(ljx) will have a positive lower bound
over the interval. We may then use the two preceding theorems to
develop the following estimate:

x2nE\Hx)dμ{x)

= \"φl(x)dμ(x)+
Ja

^\bφl(x)dμ(x)+\''x™\E(llx)-Fn(llx)\ \E(llx)+F(llx)\dμ{x)
Ja Ja

^\"φl(x)dμ(x)+ 2S(n)
Ja

This may be written in the form
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[ V \E\llx)-2S($-F\llx)\dμ(x) < Ϋφl

Now we can choose n sufficiently large to make the term in the bracket
on the left positive for the interval was chosen so as to give E\ljx)
a lower bound and the negative term contains the convergent factor S(n).
The inequality is then preserved if we replace the factor xln by a2n. On
the right-hand side, we may replace the limits by — <χ> and -f co and
use (5) and (7) to estimate the normalization integral. This yields

ΓE\llx)dμ(x)<^2S(n) Γ -1 F\llx)dμ(x) + l fl h -
U }a X2 aln i = ι

Both the right-hand terms tend to zero as n increases while the left-hand
side is independent of n. Hence, the integral must vanish identically.
This reasoning can be repeated for every interval between the roots of

E(ljx). Hence, the contribution to μ arises entirely from the zeros
dx

as stated by the theorem.

THEOREM 4. The polynomials ψn(x) are orthogonal over a denumerable
set of points of the real axis.

This is a trivial consequence of Theorem 3 and the properties of
E(z) enumerated in Theorem 2.

3, Construction of the weight function* We first need to generalize
some of the previous definitions.

We will consider the polynomials that satisfy

(14) φZUχ)=χ<p?(χ)-i«+,vEi(χ), fa^O)

where s is a nonnegative integer, where λn is restricted as in (3) and
(5), and where

(15) ¥>ίβ)(α)=α, ψP(x)=l, ψc°i(x)=0 .

From (9) and (10) we have

(16) F&M-FPW-λ^έFΪUz) , (n>0),

where

(17) F2\z)=*rφP(llz) .

Let us obtain a contiguous function recurrence relation for the F%}(z).
From (16), we may write
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Now if we define ψ%\z) by

where A(«, s), B(z, s), and C(z, s) are arbitrary functions independent of
n, we have that

Let us set

A(z,s)=l ,

It follows, using (15) and (17), that ψ[s\z) = O and fi2

8\z)=0. Thus
we must have that ^β)(«)=0 for w ^ l . That is, we have the contiguous
function recurrence relation

(18) F2Xz)-

Now we have that

(19)

where E(s)(z) is an entire function of the sort described in Theorem 2.
The recurrence relation for these entire functions

(20) E(s)(z)-E(s+1){z) + λs+1z
2E<s+2)(z)=0

follows from (18) and (19).
Now (18) and (20) look very similar. We may exploit this similarity

to obtain a relation between the polynomials and the entire functions.
If we multiply (18) by E(s+1\z), multiply (20) by FH*i\z)9 and subtract
the resulting expressions, we obtain an expression that may be written

Here, the similarity of the bracketed terms suggests iteration.
Iterating it (n — 1) times, we obtain
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ztn Π

From this we may form the expression

(21)

V E{s\z) J ί-i\z)

Let us consider the residues at the origin of the right member of (21).
The residue of the first term of this right member is zero for £>I>0, (p in-
tegral). The quotient of the entire functions that appears in the second
term is unity at the origin. Hence, the residue of this second term is
zero for n — p^>0 and is not zero for p=n. Thus we have

(22) l

2πi)o for p<n,

where again the product on the right is taken to be unity when n=0,
and where the integration is taken counterclockwise around a circle &
that includes the origin but does not include any other singularities of
the integrand.

If now in (22) we set x~^z~x and use (17), we have

n
i TT ) f o r Ί> = w,

2πiJc \χE{s){ljx)/ ( o for p<in,

where the integration now is taken counterclockwise around a curve c
that includes all of the singularities of the integrand.

It follows from the Sturmian properties of the polynomials of (18)
and from the limit (19) that the weight function in the brackets of (23)
has positive residues at all its poles. When (23) is now expressed as
the sum of the residues of the integrand, we have

(24) y f { ) { ) \
J-a(s) ( o for

where a(s)(x) is a monotonic, nondecreasing function whose increase at
the point x is equal to the residue of
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at the point x. The limits of integration are the bounds of an interval
large enough to contain the zeros of Eis)(ljx). Since (12) is bounded
away from zero, these integration limits may be taken as finite. Again,
when n=0, we define the product on the right to be unity.

We have thus proved the following

THEOREM 5. Let

(25) φiUz)=χψίsXχ)-tn+sφ
cnUz),

where 4 > 0 , ΣΛ n =2?<oo and

(26) Ψ[s\x)=x, φi'\x)=l, β * r ) = 0.

Let, in addition,

(27) limiίM-

Then

n

S +a(s) f Π ^i+s f ° r n==P>

' xYf(x)da{s\x)== i = 1

~a(s) [ 0 for p<Cn,
where (XCs)(x) is a monotonic non-decreasing function whose increase at the
point x is equal to the residue of

at the point x. The limits of integration are the bounds of an interval
large enough to contain the zeros of EQs)(llx).

COROLLARY. Under the same conditions as Theorem 5,

rαc) ( Π ^ i + β for w=m,
(29) <P$(x)<p2Xx)da«>(x)= *=1

J " α ( s ) I 0 for nφm.

4* An example* An illustration of our theory is given by a set of

modified Lommel polynomials. They may be defined by the recurrence

relation
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), s > 0

together with

In terms of Watson's [5] definition of the Lommel polynomial Rn>v{x),
we have

7" ̂ Y T ^ = — ί - w *s + ' ' *

The special case of the limit (19),

for p=n,

0 for

may be found in Watson [5], § 9.65.
The residue of

at ^ , a zero of Js(l/x) is
Thus we have that

(25)

where the summation is taken over all x that are finite zeros of Js(Hx).
The result (25) has also been obtained using a somewhat different

approach [1].
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