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1. Introduction and notation* This paper is mainly concerned with
the distribution with respect to characteristic polynomial and factors of
the characteristic polynomial, of square matrices with elements in a finite
field GF(q). The method employed is to investigate the properties of
the polynomials in question, that is, the matric problems are reduced
to problems concerning polynomials. In this connection see a recent
paper by Walker [5] on Fermat's theorem for algebras; incidentally
Walker's Theorem 3 had been proved earlier in [1; §7].

The properties of matrices assumed here may be found in [4],
German capitals 21, 33, S, will denote square matrices with elements
in GF(q). Polynomials in an indeterminate x with coefficients in GF(q)
will be denoted by F(x)f M(x), in § 2 and simply by F, M, else-
where.

The number of partitions of the positive integer m into at most r
parts will be denoted by πr(m), with πm(m)=π(m), the number of un-
restricted partitions of m. The symbol π'r(m) will denote the weighted
partition into at most r parts:

(1.1) πr(m) = Σ g*i+*2+ +*, ,
fc1+2fc2+ +rkr~m

with πm{m) = π\m), the unrestricted weighted partition.
In Theorem 1 below the number of non-derogatory matrices of order

m is given in terms of the Euler φ-function for GF[q, x].
If F=F(x) is a polynomial of degree m and JF7==PΪ1 PJ«, where

the Pt are distinct irreducible polynomials, we find (Theorem 2) that the
number of classes of similar matrices of order m with characteristic
polynomial F(x) is

(1.2) Cm(F)=π(n) ..τr(r s).

Theorem 3 determines the total number N(m) of distinct classes of
similar matrices of order m as

(1.3) N(m)=π\m) ,

where π\m) is defined in (1.1) with r=m.
We also find (Theorem 4) the number of distinct classes of similar

matrices of order ra with minimum polynomial of degree r, where r is
a fixed integer <^m. Finally in §4 we consider a polynomial problem
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which is suggested by the problem of determining the number of ad-
missible minimum polynomials of fixed degree r for matrices of order m.

2. Non-derogatory matrices over GF{q). Let A be a non-derogatory
matrix of order m with elements in GF(g), that is a matrix for which the
characteristic and minimum polynomials are identical. Then it is well
known that 2ί<S = S2I if and only if &=F(Ά), where F(x) is a scalar
polynomial of degree <Lm — l. Moreover if M{x) denotes the character-
istic polynomial of 21, then © is non-singular if and only if (F(x),
M(x)) = l. Clearly, corresponding to every such polynomial F(x), there
is a unique primary polynomial G(x) of degree m such that (F(x), M(x))=lf

if and only if (G(x), M(x)) = l. Thus, the number of distinct non-singular
matrices © which commute with 21 is the number of primary (sometimes
called monic) polynomials G(x) of degree m such that (G(x), M(x)) = l.
This number, which is the Euler function for GF[q, α?], the polynomial
domain in x over GF(q), is given in [2 21] by the formula

(2.i) m(χ))=<r_M_Λ- | p ( a ; ) 1

where P(x) runs through all primary prime divisors of M(x) and \P(x)\=qβ,
where άegP(x)=e.

We recall that similar matrices have the same characteristic poly-
nomial and that if two non-derogatory matrices have the same charac-
teristic polynomial they are similar. Thus, as @ runs through all the
non-singular matrices of order m, the form Θ^SIΘ runs through the set
of all non-derogatory matrices of order m having characteristic polynomial
M(x), each one appearing as many times as 31 appears, namely φ(M(x)).
If we let gm denote the number of non-singular matrices of order m,
we have

THEOREM 1. The number of non-derogatory matrices of order m in
GF(q) is

(2.2)

where the sum is over primary M(x) only, φ{M(x)) is the Etcler function
and gm=ΐ[?=o(qm--qr) is the number of non-singular matrices of order m.

3* Distribution of classes of similar matrices in GF(q). If 21 and
95 are matrices of order m with the elements in GF{q), we will say that
§ί and S3 are in the same class if and only if they are similar. If F(x)
is the characteristic polynomial of a matrix 31 of order m, then
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(3.1)

where Hi+^\Hiy and the HL are the invariant factors of α$ί--9ϊ. In
particular we call Hτ the first invariant factor. (In the remainder of
this paper a polynomial F(x) will simply be denoted by the letter F.)
If we put

(3.2) H^EiH^ and Hm=Em ,

then we also have

/ Q Q \ ΈΠ Ί7* Ί712 Έp 3 Ί7i in

\*j**jj J- 1 2 3 in

Let Cm(F) denote the number of distinct classes of order m having
characteristic polynomial F. Then it is clear that Cm(F) is the number
of distinct representations of F in the form of (3.3). If we also have

(3.4) F=PϊP£ --Pζs ,

where the P% are distinct prime polynomials, it follows that

(3.5) C

For any prime polynomial P and positive integer r, Cm(Pr) is seen to be
the number of unrestricted partitions of r, or π(r). Thus in view of
(3.5) we have proved the following.

THEOREM 2. If F is a polynomial of order m with coefficients in
GF(q) and F has the factorization (3.4), then the number of distinct classes
of order m having characteristic polynomial F is

(3.6) Cm(F)=π(rMr*)- -π(rs) .

Let N(m) denote the number of distinct classes of matrices of order

m. Then it is clear that

N(m)= Σ Cm(F) ,
deg F = m

where the sum is over primary F only. In view of the definition of
CΊn(F) and the factorization (3.3) we may write

{ } ΊF\'~ Λtivkw k\E
where the sums are over all primary F,El} •• ,Em. Since we have

(3.8) C ( S ) = Σ 1 = π ( i τ ^ 7 ) Σ
F \F\ p \ \P\ ' *-o q
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which converges absolutely for real s > l , (3.7) becomes

(3 9) yc»(Fl= y ^ yJ?L...y JίϋL.
F \F\S Jcf^oqkls fcf^xf*^ k^qmkms

It therefore follows that N{m) is the coefficient of q~ms in the right
member of (3.9). Calculating this coefficient we get the following
theorem.

THEOREM 3. The number of distinct classes of similar matrices of
order m in GF{q) is

(3.10) N(m)= Σ g*i+*2+ + * m = 7 Γ ' ( m ) .

Let N(m, r) denote the number of distinct classes of matrices of
order m for which degH1=r9 where i?i is the first invariant factor as
defined in (3.1). Then N{m,r) will be the coefficient of q~rsq-mt in the
series

(3'n) £ Jm
where the Ht are all primary.

In view of the definition of the polynomials Eu the series in (3.11)
is equal to

^ - i -L >r-i -L "S~Λ J.
/ j ~' " ^ • > . -. .

Then with s-f £ > 1 , this product may be written as

1

(3.12) ζ(s -f t)ζ(s + 2b) ζ(s + mt)= .

In view of (3.8) it is clear that the coefficient of q-rsq~mt in the right
member of (3.12) is the same as in the product

By means of a well-known identity [3 278], this second product is equal
to the series

(3.13) \

By choosing k=r in (3.13) the coefficient of q-rs-ml may be easily ob-
tained. We get the following theorem.



DISTRIBUTION OF MATRICES 229

THEOREM 4. The number of distinct classes of similar matrices of
order m in GF{q) for which degiϊx^r, where Hλ is the first invariant
factor as defined in (3.1), is given by

N(m ,r)=qr Σ 1 = qrπr(
m ~ r)

2 i

4. Another problem* Let us consider the product

( 4 1 } π

taken over all primary prime polynomials P in GF(q). In order to
determine an interval of convergence for this product, we consider the
associated series

( 4 ' 2 )

The series may be written more simply as

(4.3) V \p\~s'1 _ m

For t real and positive, the denominators of the terms in (4.3) approach
1 as deg P grows large, so that we need only consider the numerators.
Comparing with (3.8) we see that the series and consequently the product
(4.1) converge absolutely for real s, t such that t^>0 and s + t^>l.

It is clear that the product (4.1) is equal to the series

where the sum is over all pairs H, F of primary polynomials over GF(q)
such that H\F and every distinct prime factor of F is a factor of H.
Thus F and H may be thought of as characteristic and minimum poly-
nomial, respectively, of some matrix. Letting T(m, r) denote the number
of such pairs for which degi^=m and degH=r, it is clear that T(m, r)
is the coefficient of q-rs~mt in the series (4.4). Unfortunately, however,
it does not seem possible to get a simple explicit formula for T(m, r).1

If we take s=0, then (4.1) and (4.4) converge for real £ > 1 , and
denoting by T(nί) the coefficient of q~mt in the series (4.4), we have

(4.5) Γ(m)=ΣΓ(m, r) .

1 We note that, were it not for possible repetions of H in (4.4), the number T(m, r)
would be the number of admissible minimum polynomials of degree r~m for matrices of
order m.
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With s=0, (4.1) simplifies to

. IJPI-* + \P\~" + . .π ί 1 . IJP

VI i-|

Using (3.8) this is seen to be equal to

Computing the coefficient of <rm t in the product series on the right side
of (4.7) gives the following theorem.

THEOREM 5. // T(m, r) is the number of pairs H, F of polynomials
over GF(q) such that H\F, every distinct prime factor of F is a factor
of H, degF==m and άegH=r, then

m

(4.8) T{m) = Σ T(m, r) = π'3(m) - qπ'3(m - 6) ,

where π'r(m) is the weighted partition defined by (1.1).
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