CORRESPONDING RESIDUE SYSTEMS IN ALGEBRAIC NUMBER FIELDS

H. S. Butts and H. B. Mann

In this paper we shall consider integral ideals in finite algebraic extensions of the field R of rational numbers. Algebraic number fields will be denoted by \mathfrak{F} with subscripts or superscripts, ideals by German letters, algebraic numbers by lower case Greek letters, and numbers of the rational field R by lower case Latin letters.

Two ideals in the same field are equal if and only if they contain the same numbers.

If \mathfrak{a}_{1} is an ideal in a field \mathfrak{F}_{1} and a_{2} is an ideal in a field \mathfrak{F}_{2}, then we shall write $\mathfrak{a}_{1}=a_{2}$ provided \mathfrak{a}_{1} and \mathfrak{a}_{2} generate the same ideal in some field containing all the numbers of \mathfrak{F}_{1} and of \mathfrak{F}_{2} (see [1, §37]). Two such ideals may therefore be denoted by the same symbol and we shall speak of an ideal a without regard to a particular field. An ideal \mathfrak{a} is said to be contained in a field \mathfrak{F} if it may be generated by numbers in \mathfrak{F}, that is to say, if it has a basis in \mathfrak{F}.

Let \mathfrak{a} be an ideal contained in the fields \mathfrak{F}_{1} and \mathfrak{F}_{2}. We say that \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems modulo \mathfrak{a} if for every integer α_{1} of \mathfrak{F}_{1} there exists an integer α_{2} of \mathfrak{F}_{2} such that $\alpha_{1} \equiv \alpha_{2}(\bmod$ \mathfrak{a}, and for every integer α_{2} of \mathfrak{F}_{2} there exists an integer α_{1} of \mathfrak{F}_{1} such that $\alpha_{1} \equiv \alpha_{2}(\bmod a)$.

The problem considered in this paper is the following one: if \mathfrak{F}_{1} and \mathfrak{F}_{2} are two fields containing an ideal \mathfrak{a}, under what conditions will \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems $\bmod a$. We shall show that this problem reduces to that in which the ideal a is a power of a prime ideal and a necessary and sufficient condition for \mathfrak{F}_{1} and \mathfrak{F}_{2} to have corresponding residue systems mod \mathfrak{a} is derived in case that a is a prime ideal. A necessary (but not sufficient) condition is derived in case \mathfrak{a} is a power of a prime ideal and \mathfrak{F}_{1} and \mathfrak{F}_{2} are normal over $\mathfrak{F}_{1} \cap$ \mathfrak{F}_{2}. A special case in which the fields are of the type $\mathfrak{F}(\sqrt[q]{\mu})$ is considered. These fields are of interest in themselves and in view of Corollary 7.1 seem to have a direct connection with the general problem.

Theorem 1. Let \mathfrak{a} be an ideal in the number fields \mathfrak{F}_{1} and \mathfrak{F}_{2} and suppose \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod a. Then a has the same prime ideal decomposition in \mathfrak{F}_{1} and in \mathfrak{F}_{2}.

Proof. Let

$$
\begin{aligned}
& \mathfrak{a}=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{r}^{e_{r}} \text { in } \mathfrak{F}_{1} \\
& \mathfrak{a}=\mathfrak{q}_{1}^{f_{1}} \cdot \ldots \cdot \mathfrak{q}_{s}^{f_{s}} \text { in } \mathfrak{F}_{2}
\end{aligned}
$$

where the \mathfrak{p}_{i} are prime ideals in \mathfrak{F}_{1} and the \mathfrak{q}_{i} are prime ideals in \mathfrak{F}_{2}. Let α be an integer in \mathfrak{F}_{1} such that α is exactly divisible by \mathfrak{p}_{1} and $\left(\alpha, \mathfrak{p}_{i}\right)=(1)$ for $\mathrm{i}=2, \cdots, r$. There exists an integer β in \mathfrak{F}_{2} such that $\alpha \equiv \beta(\bmod \mathfrak{a})$ and thus in $\mathfrak{F}_{1} \cup \mathfrak{F}_{2}$ we have $(\beta, \mathfrak{a})=\mathfrak{p}_{1}$. Since β is in \mathfrak{F}_{2} and $\mathfrak{a} \subset \mathfrak{F}_{2}$, it follows that $\mathfrak{p}_{1} \subset \mathfrak{F}_{2}$. In the same manner it follows that $\mathfrak{p}_{i} \subset \mathfrak{F}_{2}$ for $i=1, \cdots, r$ and $\mathfrak{q}_{i} \subset \mathfrak{F}_{1}$ for $i=1, \cdots, s$. Therefore in \mathfrak{F}_{1} and in \mathfrak{F}_{2} we have $\mathfrak{p}_{1}^{\ell_{1}} \cdot \ldots \cdot \mathfrak{p}_{r}^{e}{ }^{e}=\mathfrak{q}_{1}^{f_{1}{ }^{3}} \cdot \ldots \cdot \mathfrak{q}_{s}^{f_{s}}$.

In \mathfrak{F}_{2} the \mathfrak{q}_{i} are prime ideals and hence $\mathfrak{q}_{1} \mid \mathfrak{p}_{j}$ in \mathfrak{F}_{2} for some j. In \mathfrak{F}_{1} the \mathfrak{p}_{i} are prime ideals and therefore $\mathfrak{p}_{k} \mid \mathfrak{q}_{1}$ in \mathfrak{F}_{1} for some k. Thus in $\mathfrak{F}_{1} \cup \mathfrak{F}_{2}$ we have $\mathfrak{p}_{k} \mid \mathfrak{p}_{j}$ which implies that $\mathfrak{p}_{k}=\mathfrak{p}_{j}=\mathfrak{q}_{1}$ in \mathfrak{F}_{1} and in \mathfrak{F}_{2}. By renumbering and repeated application of the above argument we obtain $r=s$ and $\mathfrak{p}_{i}=\mathfrak{q}_{i}$ for $i=1, \cdots, r=s$ in \mathfrak{F}_{1} and \mathfrak{F}_{2}.

Theorem 2. Let \mathfrak{a} be an ideal in the number fields \mathfrak{F}_{1} and \mathfrak{F}_{2}. In order that \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod \mathfrak{a} it is necessary and sufficient that $\mathfrak{a}=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{r}^{e_{r}}$ where \mathfrak{p}_{i} is a prime ideal in \mathfrak{F}_{1} and \mathfrak{F}_{2}, and \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod $\mathfrak{p}_{i}^{e_{i}}$ for $i=1, \cdots, r$.

Proof. The necessity follows from Theorem 1. Suppose $\mathfrak{a}=\mathfrak{p}_{1}^{e_{1}} \cdot \ldots$ - $p_{r}^{e} r$ in \mathfrak{F}_{1} and in \mathfrak{F}_{2}, where \mathfrak{p}_{i} is a prime ideal in \mathfrak{F}_{1} and in \mathfrak{F}_{2}, and that \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems $\bmod \mathfrak{p}_{i}^{e_{i}}$ for $i=1, \cdots$, r. Let α be any integer of \mathfrak{F}_{1}. There exist integers β_{i} in \mathfrak{F}_{2} such that $\alpha \equiv \beta_{i}\left(\bmod \mathfrak{p}_{i}^{e}\right)$ for $i=1, \cdots, r$. By the Chinese remainder theorem there exists an integer β in \mathfrak{F}_{2} such that $\beta \equiv \beta_{i}\left(\bmod \mathfrak{p}_{i}^{e}\right)$ for $i=1, \cdots$, r and hence $\alpha \equiv \beta(\bmod a)$. It follows that \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod a.

Theorem 3. Let \mathfrak{F}_{1} and \mathfrak{F}_{2} be two number fields, $\mathfrak{F}=\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$, and let \mathfrak{p} be a prime ideal in both \mathfrak{F}_{1} and \mathfrak{F}_{2}. Suppose \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod \mathfrak{p}^{j} and let \mathfrak{F}_{n} be the smallest normal extension over \mathfrak{F} containing \mathfrak{F}_{1} and \mathfrak{F}_{2}. Then for every automorphism A in the Galois group $\mathfrak{(S}\left(\mathfrak{F}_{n} \mid \mathfrak{F}\right)$ of \mathfrak{F}_{n} over \mathfrak{F} we have $\alpha_{1}^{A} \equiv \alpha_{1}\left(\bmod \mathfrak{p}^{j}\right)$ and $\alpha_{2}^{A} \equiv \alpha_{2}\left(\bmod \mathfrak{p}^{\mathfrak{j}}\right)$ for every integer α_{1} in \mathfrak{F}_{1} and α_{2} in \mathfrak{F}_{2}.

Proof. Let \mathfrak{S}_{1} and \mathscr{S}_{2} be the subgroups of $\left(\mathscr{S}\left(\mathfrak{F}_{n} \mid \mathfrak{F}\right)\right.$ which leave \mathfrak{F}_{1} and \mathfrak{F}_{2} fixed respectively. Since $\mathfrak{F}=\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$ we have by Galois theory that $\mathscr{S}_{1} \cup \mathbb{F S}_{2}$, corresponds to \mathfrak{F} under the Galois correspondence between subgroups and subfields. Hence $\mathfrak{G}_{1} \cup \mathscr{S}_{2}=\mathfrak{G}\left(\mathfrak{F}_{n} \mid \mathfrak{F}\right)$.

Denote by $\mathfrak{S}_{i}(i=1,2)$ the set of automorphisms A in $\mathscr{(G}\left(\mathfrak{F}_{n} \mid \mathfrak{F}\right)$ such that $\alpha_{i}^{A} \equiv \alpha_{i}\left(\bmod \mathfrak{p}^{j}\right)$ for all integers α_{i} in \mathfrak{F}_{i} for $i=1,2$. The sets \mathfrak{S}_{i} are subgroups of $\mathfrak{G}\left(\mathfrak{F}_{n} \mid \mathfrak{F}\right)$. Furthermore the sets \mathfrak{S}_{i} contain \mathfrak{G}_{i} for $i=1,2$.

Let A be an automorphism of \mathfrak{S}_{2}. For every integer α_{1} in \mathfrak{F}_{1} there exists an integer α_{2} in \mathfrak{F}_{2} such that $\alpha_{1} \equiv \alpha_{2}\left(\bmod \mathfrak{p}^{j}\right)$. Therefore $\left(\alpha_{1}-\right.$ $\left.\alpha_{2}\right)^{A} \equiv 0\left(\bmod \mathfrak{p}^{j}\right), \alpha_{1}^{A} \equiv \alpha_{2}^{A}\left(\bmod \mathfrak{p}^{j}\right), \alpha_{1}^{A} \equiv \alpha_{2}\left(\bmod \mathfrak{p}^{j}\right), \quad$ and thus $\alpha_{1}^{A} \equiv \alpha_{1}$ $\left(\bmod \mathfrak{p}^{j}\right)$. Hence the automorphism A is also in \mathfrak{S}_{1} and it follows that $\mathfrak{S}_{2} \subset \mathfrak{S}_{1}$. Similarly $\mathfrak{S}_{1} \subset \mathfrak{S}_{2}$ and therefore $\mathfrak{S}_{1}=\mathfrak{S}_{2}$. Hence $\mathfrak{S}_{1}=\mathfrak{S}_{2}=\mathfrak{G}\left(\mathfrak{F}_{n}\right)$ $\mathfrak{F})$ since $\mathfrak{S}_{i} \supset\left(\mathscr{S}_{i}\right.$ for $i=1,2$ and $\mathscr{S}_{1} \cup \mathfrak{S}_{2}=\left(\mathfrak{G}\left(\mathfrak{F}_{n} \mid \mathfrak{F}\right)\right.$.

Corollary 3.1. Under the conditions of Theorem 3 it follows that $\mathfrak{D}_{1} \equiv 0\left(\bmod \mathfrak{p}^{n_{1} j}\right)$ and $\mathfrak{D}_{2} \equiv 0\left(\bmod \mathfrak{p}^{n_{2} j}\right)$, where $n_{1}+1=\left(\mathfrak{F} \mathfrak{F}_{1} \mid \mathfrak{F}\right), n_{2}+1=\left(\mathfrak{F}_{2} \mid \mathfrak{F}\right)$, and \mathfrak{D}_{i} denotes the relative differente of \mathfrak{F}_{i} over \mathfrak{F} for $i=1,2$.

Theorem 4. Let $\mathfrak{F}_{1} \supset \mathfrak{F}$ be two number fields and let \mathfrak{F} be a prime ideal in \mathfrak{F}_{1}. Suppose that for every integer α in \mathfrak{F}_{1} we have $\alpha \equiv \alpha^{(i)}$ ($\bmod \mathfrak{F}$) for $i=1, \cdots, k=\left(\mathfrak{F}_{1} \mid \mathfrak{F}\right)$, where $\alpha^{(i)}$ is the $i^{\text {th }}$ conjugate of α in \mathfrak{F}_{1} over \mathfrak{F}. Then \mathfrak{F} is of order $k=\left(\mathfrak{F}_{1} \mid \mathfrak{F}\right)$ with respect to \mathfrak{F}.

Proof. It is clear that \mathfrak{P} coincides with its conjugates. Moreover if α is any integer in \mathfrak{F}_{1} and $\alpha_{2}, \cdots, \alpha_{k}$ its conjugates over \mathfrak{F} then

$$
f(x)=(x-\alpha)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{k}\right) \equiv(x-\alpha)^{k} \quad(\bmod \mathfrak{P}) .
$$

The polynomial $f(x)$ has its coefficients in \mathfrak{F} and since the field of residue classes mod \mathfrak{F} is separable over the field or residue classes mod \mathfrak{p}, it must be of degree one.

THEOREM 5. Let \mathfrak{F}_{1} and \mathfrak{F}_{2} be two number fields and \mathfrak{p} a prime ideal in both fields. Then \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod \mathfrak{p} if and only if \mathfrak{p} is of order $\left(\mathfrak{F}_{1} \mid \mathfrak{F}_{1} \cap \mathfrak{F}_{2}\right)$ in \mathfrak{F}_{1} over $\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$ and of order $\left(\mathfrak{F}_{2} \mid \mathfrak{F}_{1} \cap \mathfrak{F}_{3}\right)$ in \mathfrak{F}_{2} over $\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$.

Proof. If \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems $\bmod \mathfrak{p}$, it follows immediately from Theorems 3 and 4 that the order of p satisfies the conditions of the theorem.

The converse is clear since \mathfrak{p} is of degree one over $\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$ and therefore every residue class mod \mathfrak{p} contains an integer of $\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$.

Corollary 5.1. Let \mathfrak{a} be an ideal in the number fields \mathfrak{F}_{1} and \mathfrak{F}_{2}. If \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems $\bmod \mathfrak{a}$, then $\left(\mathfrak{F}_{1} \mid \mathfrak{F}_{1} \cap \mathfrak{F}_{2}\right)$ $=\left(\mathfrak{F}_{2} \mid \mathfrak{F}_{1} \cap \mathfrak{F}_{2}\right)$.

Theorem 6. Let \mathfrak{F}_{1} and \mathfrak{F}_{2} be two number fields each normal over $\mathfrak{F}=\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$ and let \mathfrak{p} be a prime ideal in \mathfrak{F}_{1} and in \mathfrak{F}_{2}. In order that \mathfrak{F}_{1} and \mathfrak{F}_{3} have corresponding residue systems mod \mathfrak{p} it is necessary and sufficient that the inertial group of \mathfrak{p} in \mathfrak{F}_{j} over \mathfrak{F} be equal to the Galois group of \mathfrak{F}_{j} over \mathfrak{F} for $j=1,2$.

Proof. The condition is sufficient since \mathfrak{p} is of degree one in \mathfrak{F}_{j} over \mathfrak{F} if the inertial group of \mathfrak{p} in \mathfrak{F}_{j} over \mathfrak{F} is equal to the Galois group of \mathfrak{F}_{j} over \mathfrak{F} for $j=1,2$.

Suppose \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems $\bmod \mathfrak{p}$ and let \mathfrak{F}_{i} denote the inertial field of \mathfrak{p} in \mathfrak{F}_{1} over \mathfrak{F}. The order of \mathfrak{p} in \mathfrak{F}_{1} over \mathfrak{F} is equal to $\left(\mathfrak{F}_{1} \mid \mathfrak{F}_{i}\right)$ and hence by Theorem 5 we have ($\mathfrak{F}_{1} \mid \mathfrak{F}_{i}$) $=\left(\mathfrak{F}_{1} \mid \mathfrak{F}\right)$. It follows that $\mathfrak{F}_{i}=\mathfrak{F}$ and hence the Galois group of \mathfrak{F}_{1} over \mathfrak{F} is equal to the inertial group of \mathfrak{p} in \mathfrak{F}_{1} over \mathfrak{F}.

Theorem 7. Let \mathfrak{F}_{1} and \mathfrak{F}_{2} be two number fields each normal over $\mathfrak{F}=\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$, and let \mathfrak{p} be a prime ideal in \mathfrak{F}_{1} and in \mathfrak{F}_{2}. If \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod \mathfrak{p}^{j}, then the $j^{\text {th }}$ ramification group of \mathfrak{p} in \mathfrak{F}_{k} over \mathfrak{F} is equal to the Galois group of \mathfrak{F}_{k} over \mathfrak{F} for $k=1,2$.

Proof. Let A be any automorphism of $\mathfrak{F s}\left(\mathfrak{F}_{1} \cup \mathfrak{F}_{2} \mid \mathfrak{F}\right)$. It follows from Theorem 3 that $\alpha_{i}^{A} \equiv \alpha_{i}\left(\bmod \mathfrak{p}^{j}\right)$ for every integer α_{i} in \mathfrak{F}_{i} for $i=1,2$. Hence if A_{i} is an automorphism of (Sf($\left.\mathfrak{F}_{i} \mid \mathfrak{F}\right),(i=1,2)$, it follows that $\alpha_{i}^{A_{i}} \equiv \alpha_{i}\left(\bmod \mathfrak{p}^{j}\right)$ since every automorphism A_{i} of $\mathfrak{F}_{(}\left(\mathfrak{F}_{i} \mid \mathfrak{F}\right)$ can be continued to an automorphism of $\left(\mathscr{G}\left(\mathfrak{F}_{1} \cup \mathfrak{F}_{2} \mid \mathfrak{F}\right)\right.$. Thus the $j^{\text {th }}$ ramification group of \mathfrak{p} in \mathfrak{F}_{i} over \mathfrak{F} is equal to the Galois group of \mathfrak{F}_{i} over \mathfrak{F} for $i=1,2$.

Corollary 7.1. Let \mathfrak{F}_{1} and \mathfrak{F}_{2} be two number fields normal over $\mathfrak{F}=\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$ and let \mathfrak{p} be a prime ideal in \mathfrak{F}_{1} and in \mathfrak{F}_{2}. If \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod \mathfrak{p}^{j} for $j>1$, then $\left(\mathfrak{F}_{1} \mid \mathfrak{F}\right)=\left(\mathfrak{F}_{2} \mid \mathfrak{F}\right)$ $=p^{r}$ where p is the rational prime belonging to p.

Proof. By Theorem 7 we have $\mathfrak{G}\left(\mathfrak{F}_{1} \mid \mathfrak{F}\right)=\mathfrak{S H}_{1}=\cdots=\mathfrak{G}_{j}$ where \mathscr{G}_{j} is the $j^{\text {th }}$ ramification group of \mathfrak{p} in \mathfrak{F}_{1} over \mathfrak{F}. By Theorem 5 the order e of \mathfrak{p} in \mathfrak{F}_{1} over \mathfrak{F} is equal to $\left(\mathfrak{F}_{1} \mid \mathfrak{F}\right)$. But $\left(\mathfrak{F}_{1} / \mathfrak{F}_{2}\right.$ is cyclic of order e_{0} where $e=p^{r} e_{0},\left(e_{0}, p\right)=1, p$ the rational prime belonging to the ideal \mathfrak{p}. Therefore $\left(\mathfrak{F}_{1} \mid \mathfrak{F}\right)=e_{0} \mathfrak{p}^{r}$. Since $\left(\mathfrak{S}_{1}=\left(\mathfrak{S}_{2}\right.\right.$, we have $e_{0}=1$ and $\left(\mathfrak{F}_{1} \mid \mathfrak{F}\right)=p^{r}$. Therefore $\left(\mathfrak{F}_{1} \mid \mathfrak{F}\right)=\left(\mathfrak{F}_{2} \mid \mathfrak{F}\right)=p^{r}$.

Corollary 7.2. Let \mathfrak{F}_{1} and \mathfrak{F}_{2} be two number fields normal over $\mathfrak{F}=\mathfrak{F}_{1} \cap \mathfrak{F}_{2}$ and let \mathfrak{p} be a prime ideal in \mathfrak{F}_{1} and in \mathfrak{F}_{2}. Let v_{i} denote
the order of ramification of \mathfrak{p} in \mathfrak{F}_{i} over \mathfrak{F} for $i=1,2$ and suppose $v_{1} \geqq v_{2} \geqq 2$. If \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod $p^{v_{2}}$, then $\left(\mathfrak{F}\left(\mathfrak{F}_{2} \mid \mathfrak{F}\right)\right.$ is Abelian of type (p, \cdots, p) where p is the rational prime belonging to \mathfrak{p}.

Proof. If \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod $\mathfrak{p}^{v_{2}}$, it follows from Theorem 7 that $\left(\mathfrak{S}\left(\mathfrak{F}_{2} / \mathfrak{F}\right)=\mathfrak{G}_{1}=\cdots=\mathfrak{G b}_{v_{2}}\right.$ where $\left(\mathfrak{S}_{j}\right.$ is the $j^{\text {th }}$ ramification group of \mathfrak{p} in \mathfrak{F}_{2} over \mathfrak{F}. By the definition of v_{2}, $\mathfrak{S}_{v_{2}+1}$ is the group identity. But $\mathscr{G}_{v_{2}} / \mathscr{F}_{v_{2}+1}$ is Abelian of type (p, \cdots, p) where p is the rational prime belonging to \mathfrak{p}. It follows that $\mathfrak{G}\left(\mathfrak{F}_{2} \mid \mathfrak{F}\right)$ is Abelian of type (p, \cdots, p).

The condition of Theorem 7 is not sufficient as the following example shows. Denote by R the field of rational numbers and let $\mathfrak{F}_{1}=R$ ($\sqrt{2}$), $\mathfrak{F}_{2}=R(\sqrt{3}), \mathfrak{p}=(\sqrt{2})$. It is clear that the second ramification group of the ideal $(\sqrt{ } 2)$ in \mathfrak{F}_{1} over R is equal to the Galois group of \mathfrak{F}_{1} over R, and likewise for \mathfrak{F}_{2}. However \mathfrak{F}_{1} and \mathfrak{F}_{2} do not have corresponding residue systems $\bmod (\sqrt{2})^{2}$.

In the remainder of this paper we consider fields of the type $\mathfrak{F}(\sqrt[q]{\mu})$ where \mathfrak{F} is a number field containing a $q^{t h}$ root of unity $\zeta \neq 1$, q is a rational prime, and μ is an integer of \mathfrak{F} and not the $q^{t h}$ power of an integer in \mathfrak{F}.

Let \mathfrak{F} be a prime ideal in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and in $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$. We may suppose that $\mathfrak{F}\left(\sqrt[q]{ } \mu_{1}\right) \neq \mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ since the problem of corresponding residue systems is trivial in case equality holds. By Theorem 5, in order that $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems $\bmod \mathfrak{F}$ it is necessary and sufficient that \mathfrak{B} be of order q in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ over \mathfrak{F} and in $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ over \mathfrak{F}. Therefore it is necessary and sufficient that \mathfrak{B} divide the relative differente D_{i} of $\mathfrak{F}\left(\sqrt[q]{\mu_{i}}\right)$ over \mathfrak{F} for $i=1,2$. If c_{i} denotes the relative conductor of $\sqrt[q]{\mu_{i}}$ for $i=1,2$ then

$$
\left(\sqrt[q]{\mu_{i}}\right)^{q-1} q=c_{i} \mathrm{D}_{i}
$$

for $i=1,2$ since $\left(\sqrt[q]{\mu_{i}}\right)^{q-1} q$ is the relative number differente of $\sqrt[q]{\mu_{i}}$ over \mathfrak{F}. It follows that \mathfrak{P} must divide $\left(\sqrt[q]{\mu_{i}}\right)^{q-1} q$ for $i=1,2$ if $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{ } \mu_{2}\right)$ have corresponding residue systems mod \mathfrak{P}.

Denote by \mathfrak{p} the prime ideal corresponding to \mathfrak{P} in \mathfrak{F}. If \mathfrak{p} divides μ_{i} but not q then $\mathfrak{p}=\mathfrak{P}^{q}$ in $F\left(\sqrt[q]{\mu_{i}}\right)$ if and only if $\left(\mu_{i}\right)=\mathfrak{p}^{a_{i}} \mathfrak{a}_{i}$ for $i=1,2$ where $\left(a_{i}, q\right)=1$ and $\left(\mathfrak{a}_{i}, \mathfrak{p}\right)=(1)$. (See [1, p. 150]). Thus we have the following theorem.

Theorem 8. If $(\mathfrak{P}, q)=(1)$, then $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems mod \mathfrak{F} if and only if $\left(\mu_{i}\right)=\mathfrak{p}^{a_{i} a_{i}}$ with $\left(a_{i}, q\right)$ $=1$ and $\left(\mathfrak{a}_{i}, \mathfrak{p}\right)=(1)$ for $i=1,2$.

From Corollary 7.1 it follows that $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ do not have corresponding residue systems mod \mathfrak{F}^{j} for $j>1$ in case $(\mathfrak{F}, q)=(1)$.

We now consider prime ideals in fields $\mathfrak{F}(\sqrt[q]{\mu})$ which divide q, that is, prime ideals which divide the ideal $(1-\zeta)$ where $\zeta \neq 1$ is a $q^{\text {th }}$ root of unity. Let $(1-\zeta)=\mathfrak{D}^{a} \mathfrak{a}$ in \mathfrak{F} where $(\mathfrak{Q}, \mathfrak{a})=(1)$ and $\mathfrak{\Omega}$ is a prime ideal in \mathfrak{F}, and let \mathfrak{q} be a prime ideal of $F(\sqrt[q]{\mu})$ which divides $\mathfrak{\unrhd}$. By Theorem 5 we are concerned only with the case in which \mathfrak{q} is of order q in $\mathfrak{F}(\sqrt[q]{\mu})$ over \mathfrak{F}, that is $\mathfrak{Q}=\mathfrak{q}^{q}$ in $\mathfrak{F}(\sqrt[q]{\mu})$. We may suppose without loss of generality that either $(\mu, \mathfrak{\Omega})=(1)$ or $\left(\mu, \bigcap^{2}\right)=\mathfrak{\Omega}$. The ideal Ω becomes the $q^{\text {th }}$ power of a prime ideal in $\mathfrak{F}(\sqrt[q]{\mu})$ in
 ideal in $\mathfrak{F}(\sqrt[q]{\mu})$ if the congruence $\mu \equiv \xi^{q}\left(\bmod \mathfrak{\unrhd}^{a q}\right)$ is not solvable for ξ in \mathfrak{F}.

The main result of this paper for fields of the type $\mathfrak{F}(\sqrt[q]{\mu})$ is the following one: if μ_{1}, μ_{2} are two integers of \mathfrak{F} such that $\mathfrak{Q}=q^{q}$ in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and in $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$, and \mathfrak{q} has ramification orders $\geq v>a$ in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and in $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ over \mathfrak{F} then $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems $\bmod \mathfrak{q}^{v-a}$.

We first consider the case in which $\left(\mu, \mathfrak{\Omega}^{2}\right)=\mathfrak{\Omega}$
Theorem 9. If $\left(\mu, \Omega^{2}\right)=\Omega$ and n is a positive integer, then $\rrbracket=q^{q}$ in $\mathfrak{F}(\sqrt[q]{\mu})$ and every integer α in $\mathfrak{F}(\sqrt[q]{\mu})$ satisfies a congruence

$$
\alpha \equiv \alpha_{0}+\alpha_{1} \sqrt[q]{\mu}+\cdots+\alpha_{n-1} \sqrt[q]{\mu^{n-1}}\left(\bmod \mathfrak{q}^{n}\right)
$$

where the α_{i} are integers in \mathfrak{F}. Furthermore the order of ramification v of \mathfrak{q} in $\mathfrak{F}(\sqrt[q]{\mu})$ over \mathfrak{F} is equal to $a q+1$.

Proof. Since $\left(\mu, \unrhd^{2}\right)=\mathfrak{Q}$, we have $\Omega=q^{q}$ in $\mathfrak{F}(\sqrt[q]{\mu})$ where \mathfrak{q} is a prime ideal. It follows that $\sqrt[q]{\mu}$ is exactly divisible by \mathfrak{q}. Let n be any positive integer. If α is any integer of \mathfrak{F} we have

$$
\alpha \equiv \alpha_{0}+\alpha_{1} \sqrt[q]{\mu}+\cdots+\alpha_{n-1} \sqrt[q]{\mu^{n-1}} \quad\left(\bmod \mathfrak{q}^{n}\right)
$$

where the α_{i} are residues $\bmod \mathfrak{q}$ and may be chosen in \mathfrak{F} since \mathfrak{q} is of degree 1 with respect to \mathfrak{F}.

The order of ramification of \mathfrak{q} is equal to v if and only if

$$
\sqrt[q]{\mu} \equiv \zeta \sqrt[q]{\mu}\left(\bmod \mathfrak{q}^{v}\right) \text { and } \sqrt[q]{\mu} \equiv \zeta \sqrt[q]{\mu}\left(\bmod \mathfrak{q}^{v+1}\right)
$$

Hence $v=a q+1$ since $(1-\zeta)=\mathfrak{\Re}^{a} \mathfrak{a}, \mathfrak{\Omega}=\mathfrak{q}^{q}$, and $(\mathfrak{Q}, \mathfrak{a})=(1)$.

Theorem 10. If μ_{1}, μ_{2} are two integers of \mathfrak{F} each exactly divisible by $\mathfrak{\Omega}$, then $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems $\bmod \mathfrak{q}^{a q+1-a}$.

Proof. Choose a fixed residue system mod $\mathfrak{\mathfrak { V }}$ in \mathfrak{F} consisting of $q^{\text {th }}$ powers, which is possible since \mathfrak{Q} is a prime ideal in \mathfrak{F}. Represent the residue class 0 by 0 and let $n=a(q-1)$. Since μ_{1} is exactly divisible by $\mathfrak{\imath}$ we have

$$
\mu_{2} \equiv \alpha_{1}^{\eta} \mu_{1}+\cdots+\alpha_{n}^{q} \mu_{1}^{n} \quad\left(\bmod \Im_{n}^{n+1}\right)
$$

where the α_{i}^{q} belong to the fixed residue system $\bmod \mathfrak{\mathfrak { c }}$ chosen above. Hence

$$
\begin{aligned}
& \left(\sqrt[q]{\mu_{2}}-\alpha_{1} \sqrt[q]{\mu_{1}}-\cdots-\alpha_{n} \sqrt[q]{ } \mu_{1}^{n}\right)^{q} \\
& \equiv \mu_{2}-\alpha_{1}^{q} \mu_{1}-\cdots-\alpha_{n}^{q} \mu_{1}^{n} \quad\left(\bmod \mathfrak{\Omega}^{n+1}\right) \\
& \equiv 0 \quad\left(\bmod \mathfrak{\Omega}^{n+1}\right)
\end{aligned}
$$

It follows that

$$
\sqrt[q]{\mu_{2}} \equiv \alpha_{1} \sqrt[q]{\mu_{1}}+\cdots+\alpha_{n} \sqrt[q]{\mu_{1}^{n}} \quad\left(\bmod \mathfrak{q}^{n+1}\right)
$$

and by Theorem $9, \mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems $\bmod q^{a q+1-a}$.

By Theorem 7 the fields $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ do not have corresponding residue systems mod \mathfrak{q}^{v+1} where v is the order of ramification of \mathfrak{q}. The following theorem gives a sufficient condition for $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{ } \mu_{2}\right)$ to have corresponding residue systems $\bmod \mathfrak{q}^{v}$.

Theorem 11. Let μ_{1}, μ_{2} be two integers of \mathfrak{F} each exactly divisible by ミ. If $\mu_{1} \equiv \mu_{2}\left(\bmod \mathfrak{\Re}^{a q+1}\right)$ then $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{\cdot 2}}\right)$ have corresponding residue systems mod $\mathfrak{q}^{a q+1}$, that is, mod \mathfrak{q}^{v} where v is the order of ramification of \mathfrak{q}.

Proof. Since $\mu_{1} \equiv \mu_{2}\left(\bmod \Im^{a q+1}\right)$ and $\left(\sqrt[q]{\mu_{1}}-\sqrt[q]{\mu_{2}}\right)^{q} \equiv \mu_{1}-\mu_{2}(\bmod q)$ it follows that $\sqrt[q]{\mu_{1}} \equiv \sqrt[q]{\mu_{2}}\left(\bmod q^{a(q-1)}\right)$. Suppose
1.) $\sqrt[q]{\mu_{1}} \equiv \sqrt[q]{\mu_{2}}\left(\bmod \mathfrak{q}^{m}\right)$ and $\sqrt[q]{\mu_{1}} \equiv \equiv \sqrt[q]{\mu_{2}}\left(\bmod \mathfrak{q}^{m+1}\right)$.

For any polynomial $p(x, y)$ with integral coefficients such that y occurs in every term we have $q p\left(\sqrt[q]{\mu_{1}}, \sqrt[q]{\mu_{2}}\right) \equiv q p\left(\sqrt[q]{\mu_{2}}, \sqrt[q]{\mu_{2}}\right)\left(\bmod \mathfrak{q}^{m+1} q\right)$.
Thus $\quad\left(\sqrt[q]{\mu_{1}}-\sqrt[q]{\mu_{2}}\right)^{q} \equiv \mu_{1}-\mu_{2}\left(\bmod q q^{m} \mathfrak{q}\right)$.
2.) $\quad\left(\sqrt[q]{\mu_{1}}-\sqrt[q]{\mu_{2}}\right)^{q} \equiv \mu_{1}-\mu_{2}\left(\bmod \mathfrak{\Omega}^{a(q-1)} \mathfrak{q}^{m} \mathfrak{q}\right)$.

If $\mu_{1}-\mu_{2} \neq 0\left(\bmod \mathfrak{ఇ}^{a(q-1)} \mathfrak{q}^{m} \mathfrak{q}\right)$ then

$$
q(a q+1)<a q(q-1)+m+1 \quad \text { since } \quad \mu_{1} \equiv \mu_{2}\left(\bmod \mathfrak{\Omega}^{a q+1}\right) .
$$

Therefore $q<-a q+m+1$ and $m \geqq a q+1$. On the other hand if $\mu_{1}-\mu_{2} \equiv 0\left(\bmod \Im_{1}^{a(q-1)} \mathfrak{q}^{m} \mathfrak{q}\right)$ then

$$
\left(\sqrt[q]{\mu_{1}}-\sqrt[q]{\mu_{2}}\right)^{q} \equiv \equiv \quad\left(\bmod \mathfrak{ఇ}^{a(q-1)} \mathfrak{q}^{m} \mathfrak{q}\right)
$$

from 2.). Thus by 1.) we have $m q \geqq a q(q-1)+m+1, m>a q$, and hence $m \geqq a q+1$. Therefore in either case $m \geqq a q+1$ and we have by 1.)

$$
\sqrt[q]{\mu_{1}}-\sqrt[q]{\mu_{2}} \equiv 0 \quad\left(\bmod \mathfrak{q}^{\alpha q+1}\right)
$$

Let α be any integer of $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and v the order of ramification of \mathfrak{q}, that is, $v=a q+1$. By Theorem 9

$$
\alpha \equiv \alpha_{0}+\alpha_{1} \sqrt[q]{\mu_{1}}+\cdots+\alpha_{v-1} \sqrt[q]{\mu_{1}^{v-1}} \quad\left(\bmod \mathfrak{q}^{v}\right)
$$

where the α_{i} are integers in \mathfrak{F}. Let

$$
\beta=\alpha_{0}+\alpha_{1} \sqrt[q]{\mu_{2}}+\cdots+\alpha_{v-1} \sqrt[q]{\mu_{2}^{v-1}} .
$$

Then $\alpha \equiv \beta\left(\bmod \mathfrak{q}^{v}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems $\bmod \mathfrak{q}^{v}$.

The condition $\mu_{1} \equiv \mu_{2}\left(\bmod \Im^{a q+1}\right)$ in Theorem 11 may be replaced by $\mu_{1} \equiv \mu_{2} \sigma^{q}\left(\bmod \mathfrak{\complement}^{a q+1}\right)$ where σ is in \mathfrak{F}.

We now consider the case in which $(\mu, \mathfrak{Q})=(1)$ and the congruence $\mu \equiv \xi^{q}\left(\bmod \mathfrak{ఇ}^{a q}\right)$ is not solvable for ξ in \mathfrak{F}, that is, $(\mu, \mathfrak{\imath})=(1)$ and $\mathfrak{Q}=\mathfrak{q}^{q}$ in $\mathfrak{F}(\sqrt[q]{\mu})$. Let k be the largest integer such that the congruence $\mu \equiv \xi^{q}\left(\bmod \Im^{k}\right)$ is solvable for ξ in \mathfrak{F}. Clearly $0<k<\alpha q$ and k is the largest integer such that the congruence $\sqrt[q]{\mu \equiv \xi\left(\bmod q^{k}\right) \text { is }}$ solvable for ξ in \mathfrak{F}.

Theorem 12. Let μ be an integer of \mathfrak{F} such that $(\mu, \mathfrak{Q})=(1)$ and $\mathfrak{Q}=\mathfrak{q}^{q}$ in $\mathfrak{F}(\sqrt[q]{\mu})$. Let k be the largest integer such that $\mu \equiv \xi^{q}$ (mod \mathfrak{Q}^{k}) is solvable for ξ in \mathfrak{F}. Then the order of ramification v of \mathfrak{q} with respect to \mathfrak{F} is equal to $a q+1-k$.

Proof. Let α in \mathfrak{F} be a solution of the congruence $\mu \equiv \xi^{q}\left(\bmod \mathfrak{Q}^{k}\right)$ with k maximal. Since $\mu-\alpha^{q}$ is exactly divisible by $\mathfrak{\Omega}^{k}$, it follows that $\sqrt[q]{ } \mu-\alpha$ is exactly divisible by \mathfrak{q}^{k}. Furthermore we have $(k, q)=1$ (see [1, p. 153]). Thus there exist positive integers x and y such that $k x=1+q y$.

Let π be an integer of \mathfrak{F} such that $(\pi)=\mathfrak{a} \mathfrak{Q}$ where $(\mathfrak{a}, \mathfrak{\mathfrak { Q }})=(1)$ and \mathfrak{a} is an ideal of \mathfrak{F}. There exists an ideal \mathfrak{c} in \mathfrak{F} such that $\mathfrak{a c}=(\omega)$ is principal and c is prime to $\mathfrak{\Omega}$.

Now, let

$$
\rho=\frac{(\sqrt[q]{\mu}-\alpha)^{x}}{\pi^{y}}
$$

Then

$$
(\rho)=\frac{(\sqrt[q]{\mu}-\alpha)^{x}}{\mathfrak{a}^{y} \Sigma_{\mathfrak{a}}^{y}}=\frac{(\sqrt[q]{\mu}-\alpha)^{x} c^{y}}{\mathfrak{a}^{y} c^{y} \mathfrak{l}^{y}}=\frac{(\sqrt[q]{\mu}-\alpha)^{x} c^{y}}{\left(\omega^{y}\right) \Sigma^{y}}
$$

and

$$
\left(\omega^{y} \rho\right)=\frac{(\sqrt[q]{\mu}-\alpha)^{x} \mathrm{c}^{y}}{\Sigma^{y}} .
$$

The ideal fraction on the right in the last equation is an integral ideal exactly divisible by \mathfrak{q}, and therefore $\omega^{y} \rho$ is an integer of \mathfrak{F} exactly divisible by \mathfrak{q}. It follows that the order of ramification of q is equal to v if and only if $\omega^{y} \rho-\left(\omega^{y} \rho\right)^{A}$ is exactly divisible by q^{v} where A is the automorphism $\sqrt[q]{\mu} \rightarrow \zeta \sqrt[q]{\mu}$, that is, if and only if

$$
\frac{\omega^{y}(\sqrt[q]{\mu}-\alpha)^{x}}{\pi^{y}}-\frac{\omega^{y}(\zeta \sqrt[q]{\mu}-\alpha)^{x}}{\pi^{y}}
$$

is exactly divisible by \mathfrak{q}^{v}. Since $(\omega, \curvearrowleft)=(1)$ this is true if and only if $(\sqrt[q]{\mu}-\alpha)^{x}-\left(\zeta^{q} \mu-\alpha\right)^{x}$ is exactly divisible by $\Im^{y} q^{v}=q^{k x-1} q^{v}$. Now

$$
\begin{aligned}
(\zeta \sqrt[q]{\mu}-\alpha)^{x} & =[(\zeta \sqrt[q]{\mu}-\sqrt[q]{\mu})+(\sqrt[q]{\mu}-\alpha)]^{x} \\
& =(\sqrt[q]{\mu}-\alpha)^{x}+x(\sqrt[q]{\mu}-\alpha)^{x-1}(\zeta \sqrt[q]{\mu}-\sqrt[q]{\mu})+\cdots
\end{aligned}
$$

Therefore

$$
\begin{aligned}
(\zeta \sqrt[q]{\mu}-\alpha)^{x} & \equiv(\sqrt[q]{\mu}-\alpha)^{x} \quad\left(\bmod \mathfrak{q}^{k(x-1)}(1-\zeta)\right) \\
& \equiv(\sqrt[q]{\mu}-\alpha)^{x} \quad\left(\bmod \mathfrak{q}^{k(x-1)} \mathfrak{q}^{a q}\right)
\end{aligned}
$$

since $0<k<a q$ and $(1-\zeta)=\mathfrak{\Omega}^{a} a$ with $(\Omega, \mathfrak{a})=(1)$. Furthermore this congruence holds exactly $\bmod \mathfrak{q}^{k(x-1)} \mathfrak{q}^{a q}$. It follows that $k x-1+v=k(x$ $-1)+a q$ and $v=a q+1-k$.

Theorem 13. Let μ_{1}, μ_{2} be two integers of \mathfrak{F} each prime to $\mathfrak{\Omega}$ and such that $\mathfrak{\Omega}=\mathfrak{q}^{q}$ in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ (and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$. Let k_{i} be the largest inteyer. such that the congruence $\mu_{i} \equiv \alpha_{i}^{q}\left(\bmod \Im^{k_{i}}\right)$ is solvable for α_{i}, an integer of $\mathfrak{F}(i=1,2)$. Let $v_{i}=a q+1-k_{i}$ for $i=1,2$, and suppose $v_{1} \geqq v_{2}>\alpha$. Then $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{ } \mu_{2}\right)$ have corresponding residue systems mod $\mathfrak{q}^{v_{2}-a}$.

Proof. Since $\mu_{i}-\alpha_{i}^{q}$ is exactly divisible by $\mathfrak{Q}^{k_{i}}$ it follows that $\sqrt[q]{\mu_{i}}-\alpha_{i}$ is exactly divisible by $q^{k_{i}}$ for $i=1,2$. Since $\left(k_{i}, q\right)=1$ we have positive integers x_{i} and y_{i} such that $k_{i} x_{i}=1+q y_{i}$ for $i=1,2$. Let π be an integer of \mathfrak{F} exactly divisible by $\mathfrak{\Omega}$. Using the method of Theorem 12 we obtain an integer

$$
\theta_{i}=\frac{\omega^{y_{i}}\left(\sqrt[q]{\mu_{i}}-\alpha_{i}\right)^{x_{i}}}{\pi^{y_{i}}}
$$

of $\mathfrak{F}\left(\sqrt[q]{\mu_{i}}\right)$ which is exactly divisible by \mathfrak{q} for $i=1,2$.
We now show that θ_{i}^{a} is congruent to an integer of $\mathfrak{F} \bmod \mathfrak{Q}^{v_{i}-a}$ for $i=1,2$. We have

$$
\theta_{i}^{q}=-\frac{\omega^{y_{i} q}\left(\sqrt[q]{\mu_{i}}-\alpha_{i}\right)^{x_{i} q}}{\pi^{y_{i} q}}=\frac{\omega^{y_{i} q}\left(\lambda_{i}-\rho_{i} q\right)^{x_{i}}}{\pi^{y_{i} q}}
$$

where λ_{i} is an integer of \mathfrak{F} and $\lambda_{i} \equiv 0\left(\bmod \Im^{k_{i}}\right)$. Hence since ρ_{i} is divisible by $\mathfrak{q}^{k_{i}}$

$$
\begin{aligned}
\theta_{i}^{q} & =\frac{\omega^{y_{i} q}\left(\lambda_{i}^{x_{i}}-x_{i} \lambda_{i}^{x_{i}-1} \rho_{i} q+\cdots\right)}{\pi^{y_{i} q}} \\
& =\frac{\omega^{y_{i} q} \lambda_{i}^{x_{i}}}{\pi^{y_{i} q}}-\frac{\left(\omega^{y_{i} q} \lambda_{i} \lambda_{i}^{x_{i}-1} \rho_{i} q+\cdots\right)}{\pi^{y_{i} q}} \\
& \equiv \frac{\omega^{y_{i}} \lambda_{i}^{x_{i}}}{\pi^{y_{i} q}} \quad\left(\bmod \mathfrak{\Re}^{a^{q+1-k_{i}-a}}\right) \\
& \equiv \frac{\omega^{y_{i} q} \lambda_{i}^{x_{i}}}{\pi^{y_{i} q}} \quad\left(\bmod \mathfrak{ఇ}^{v_{i}-a}\right)
\end{aligned}
$$

But the expression on the right of the last congruence is an integer of \mathfrak{F}, so that θ_{i}^{q} is congruent to an integer of $\mathfrak{F} \bmod \mathfrak{\Omega}^{v_{i}-a}$.

We now show that the $q^{\text {th }}$ power of every integer of $\mathfrak{F}\left(\sqrt[q]{\mu_{i}}\right)$ is congruent to an integer of $\mathfrak{F} \bmod \mathfrak{Q}^{v_{i}-a}$ for $i=1,2$.

Let β be any integer of $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and let $n=v_{1}-a$. Since θ_{1} is exactly divisible by \mathfrak{q} we have $\beta \equiv \beta_{0}+\beta_{1} \theta_{1}+\cdots+\beta_{n-1} \theta_{1}^{n-1}\left(\bmod \mathfrak{q}^{n}\right)$, where the β_{i} are residues $\bmod \mathfrak{q}$ and may be chosen in \mathfrak{F} since \mathfrak{q} is of degree 1 over \mathfrak{F}. Hence

$$
\begin{aligned}
& {\left[\beta-\left(\beta_{0}+\cdots+\beta_{n-1} \theta_{1}^{n-1}\right)\right]^{q} } \\
\equiv & \beta^{q}-\left(\beta_{0}+\cdots+\beta_{n-1} \theta_{1}^{n-1}\right)^{q} \quad(\bmod q) \\
\equiv & \beta^{q}-\left(\beta_{0}^{q}+\cdots+\beta_{n-1}^{q} \theta_{1}^{q(n-1)}\right) \quad(\bmod q) \\
\equiv & \beta^{q}-\sigma \bmod \left(\mathfrak{N}^{v_{1}-a}\right),
\end{aligned}
$$

where σ is an integer of \mathfrak{F}. It follows that $\beta^{q} \equiv \sigma\left(\bmod \mathfrak{\Im}^{v_{1}-a}\right)$.

If β and β^{\prime} are two integers of $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ such that $\beta^{q} \equiv \sigma(\bmod$ $\left.\mathfrak{Q}^{v_{1}-a}\right)$ and $\beta^{\prime q} \equiv \sigma\left(\bmod \mathfrak{Q}^{v_{1}-a}\right)$, then $\beta \equiv \beta^{\prime}\left(\bmod q^{v_{1}-a}\right)$. Also if $\beta^{q} \equiv \sigma$ $\left(\bmod \mathfrak{N}^{v_{1}-a}\right)$ and $\beta^{q} \equiv \sigma^{\prime}\left(\bmod \mathfrak{V}^{v_{1}-a}\right)$ where σ, σ^{\prime} are integers of \mathfrak{F}, then $\sigma \equiv \sigma^{\prime}\left(\bmod \mathfrak{Q}^{v_{1}-a}\right)$. The number of residue classes $\bmod \mathfrak{q}^{v_{1}-a}$ in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ is equal to the number of residue classes $\bmod \mathfrak{N}^{v_{1}-a}$ in \mathfrak{F}. It follows that if σ is any integer of \mathfrak{F} there exists an integer β of $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ such that ${ }^{q} \beta \equiv \sigma\left(\bmod \mathfrak{\Omega}^{v_{1}-a}\right)$.

Similarly, if γ is any integer of $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ there exists an integer τ of \mathfrak{F} such that $\gamma^{q} \equiv \tau\left(\bmod \mathfrak{V}^{v_{2}-a}\right)$. There exists an integer β of $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ such that $\beta^{q} \equiv \tau\left(\bmod q^{v_{1}-a}\right)$. Since $v_{1} \geqq v_{2}$ we have $\beta^{q} \equiv \gamma^{q}$ $\left(\bmod \mathfrak{Q}^{v_{2}-a}\right)$ and therefore $\beta \equiv \gamma\left(\bmod \mathfrak{q}^{v_{2}-a}\right)$.

Theorem 14. If μ_{1}, μ_{2} are two integers of \mathfrak{F} such that $\mathfrak{Q}=\mathfrak{q}^{q}$ in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and in $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$, and \mathfrak{q} has ramification orders $\geq v>a$ in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right), \mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ over \mathfrak{F}, then $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems mod \mathfrak{q}^{v-a}.

Proof. We need only to consider the case in which μ_{1} is exactly divisible by \mathfrak{Q} and μ_{2} is prime to \mathfrak{Q}, the other two cases following from Theorems 10 and 13.

Let $v_{1}=a q+1$ be the order of ramification of \mathfrak{q} in $\mathfrak{F}\left(\sqrt[q]{ } \mu_{1}\right)$ over \mathfrak{F}, and let v_{2} be the order of ramification of \mathfrak{q} in $F\left(\sqrt[q]{\mu_{2}}\right)$ over \mathfrak{F}. From Theorem 12 it follows that $v_{1}-1=a q \geqq v_{2}$.

Let α be any integer of $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and let $n=a q-a$. Since $\sqrt[q]{\mu_{1}}$ is exactly divisible by \mathfrak{q}, it follows that

$$
\alpha \equiv \alpha_{0}+\alpha_{1} \sqrt[q]{\mu_{1}}+\cdots+\alpha_{n-1} \sqrt[q]{\mu_{1}^{n-1}} \quad\left(\bmod \mathfrak{q}^{n}\right)
$$

where the α_{i} are integers in \mathfrak{F}. Hence

$$
\begin{aligned}
\alpha^{q} & \equiv \alpha_{0}^{q}+\alpha_{1}^{q} \mu_{1}+\cdots+\alpha_{n-1}^{q} \mu_{1}^{n-1} \quad\left(\bmod \mathfrak{Q}^{n}\right) \\
& \equiv \sigma \quad\left(\bmod \mathfrak{Q}^{a q-a}\right)
\end{aligned}
$$

where σ is an integer of \mathfrak{F}. Using the method of Theorem 13, there exists an integer β of $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ such that $\beta^{q} \equiv \sigma\left(\bmod \mathfrak{Q}^{v_{2}-a}\right)$. Therefore $\alpha^{q} \equiv \beta^{q}\left(\bmod \mathfrak{Q}^{v_{2}-a}\right)$ and $\alpha \equiv \beta\left(\bmod \mathfrak{q}^{v_{2}-a}\right)$. Thus $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems $\bmod \mathfrak{q}^{v-a}$ where $v_{z} \geq v>a$.

Theorem 15. Let μ_{1}, μ_{2} be two integers of \mathfrak{F}, each prime to $\mathfrak{\imath}$, such that $\mathfrak{Q}=\mathfrak{q}^{q}$ in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and in $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$. Suppose $\mu_{1} \equiv \mu_{2}(\bmod$ $\Im^{a q}$) and let k be the largest integer such that the congruences $\mu_{1} \equiv \alpha^{q}$ $\left(\bmod \mathfrak{\Im}^{k}\right)$ and $\mu_{2} \equiv \alpha^{q}\left(\bmod \mathfrak{\Im}^{k}\right)$ are solvable for α an integer of \mathfrak{F}.

Then $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems $\bmod q^{v}$ where $v=a q+1-k$.

Proof. Since $\mu_{1} \equiv \mu_{2}\left(\bmod \mathfrak{\Upsilon}^{a q}\right)$ it follows that $\sqrt[q]{\mu_{1}} \equiv \sqrt[q]{\mu_{2}}(\bmod$ $\mathfrak{ఇ}^{a}$) using the method of Theorem 11. We have $k x=1+q y$ and following Theorem 12 it is sufficient to show that

$$
\left(\sqrt[q]{\mu_{1}}-\alpha\right)^{x} \equiv\left(\sqrt[q]{\mu_{2}}-\alpha\right)^{x} \quad\left(\bmod \mathfrak{q}^{v+q y}\right) .
$$

We have

$$
\begin{aligned}
\left(\sqrt[q]{\mu_{2}}-\alpha\right)^{x} & =\left[\left(\sqrt[q]{\mu_{1}}-\alpha\right)+\left(\sqrt[q]{\mu_{2}}-\sqrt[q]{\mu_{1}}\right)\right]^{x} \\
& =\left(\sqrt[q]{\mu_{1}}-\alpha\right)^{x}+x\left(\sqrt[q]{\mu_{1}}-\alpha\right)^{x-1}\left(\sqrt[q]{\mu_{2}}-\sqrt[q]{\mu_{1}}\right)+\cdots \\
& =\left(\sqrt[q]{\mu_{1}}-\alpha\right)^{x} \quad\left(\bmod q^{k(x-1)} q^{a q}\right) \\
& \equiv\left(\sqrt[q]{\mu_{1}}-\alpha\right)^{x} \quad\left(\bmod \mathfrak{q}^{v+q y}\right)
\end{aligned}
$$

Thus $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems mod q^{v} where $v=a q+1-k$ is the order of ramification of q in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ over \mathfrak{F}.

We remark that if $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right) \neq \mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right.$ then $\sqrt[q]{\mu_{1}} \not \equiv \sqrt[q]{\mu_{2}}\left(\bmod q^{a q+1}\right)$ for otherwise we would have corresponding residue systems mod \mathfrak{q}^{v+1} contrary to Theorem 7.

In Theorem 15 we may replace the condition $\mu_{1} \equiv \mu_{1}\left(\bmod \mathfrak{\Omega}^{a q}\right)$ by $\mu_{1} \equiv \mu_{2} \beta^{q}\left(\bmod \mathfrak{a}^{a q}\right)$ with β in \mathfrak{F}.

Theorem 16. Let μ_{1}, μ_{2} be two integers of \mathfrak{F} such that $\mathfrak{Q}=q^{q}$ in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and in $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ and the orders of ramification of \mathfrak{q} in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ over \mathfrak{F} are $\geqq a q$. In order that $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems $\bmod \mathfrak{q}^{a q}=\mathfrak{Q}^{a}$ it is necessary and sufficient that the following congruences be solvable in \mathfrak{F} :

$$
\begin{aligned}
& \sum_{\begin{array}{l}
e_{0}+e_{1}+\cdots+e_{q-1}=q \\
e_{1}+2 e_{2}+\cdots+(q-1) e_{q-1}=m q+i
\end{array}} \frac{q!}{e_{0}!e_{1}!\cdots e_{q-1}!} \alpha_{0}^{e_{0}} \alpha_{1}^{e_{1}} \cdots \alpha_{q-1}^{e_{q-1}} \mu_{2}^{m} \equiv 0 \quad\left(\bmod \mathfrak{\Omega}^{a q}\right) \\
& \sum_{\begin{array}{l}
e_{0}+\cdots+e_{q-1}=q \\
e_{1}+2 e_{2}+\cdots+(q-1) e_{q-1}=m q
\end{array}} \frac{q!}{e_{0}!\cdots e_{q-1}!} \alpha_{0}^{e_{0}} \cdots \alpha_{q-1}^{e_{q-1}} \mu_{2}^{m} \equiv \mu_{1} \quad\left(\bmod \mathfrak{\Omega}^{a q}\right),
\end{aligned}
$$

where $\alpha_{0}, \cdots, \alpha_{q-1}$ are integers of \mathfrak{F} and $e_{0}, e_{1}, \cdots, e_{q-1}, m$ are nonnegative
integers, and $i=1, \cdots, q-1$; and the same congruences with μ_{1} and μ_{2} interchanged.

Proof. Since the orders of ramification of \mathfrak{q} in $\mathfrak{F}\left(\sqrt[q]{\mu_{j}}\right)$ over \mathfrak{F} are $\geqq \alpha q$ for $j=1,2$, then either $\sqrt[q]{ } \mu_{j}$ is exactly divisible by q or $\sqrt[q]{\mu_{j}}$ is prime to \mathfrak{q} and there exists an integer $\xi_{;}$of \mathfrak{F} such that $\sqrt[q]{\mu_{j}}-\xi_{j}$ is exactly divisible by q. In either case $1, \sqrt[q]{ } \mu_{j}, \cdots, \sqrt[q]{ } \mu_{j}^{n-1}$ form a basis for the residue system $\bmod \mathfrak{q}^{n}, n$ a given positive integer.

If $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems mod $q^{a q}$ we have
1.) $\quad \sqrt[q]{\mu_{1}} \equiv \alpha_{3}+\alpha_{1} \sqrt[q]{\mu_{2}}+\cdots+\alpha_{q-1} \sqrt[q]{\mu_{2}^{q-1}}\left(\bmod \mathfrak{ఇ}^{a}\right)$
2.) $\quad \mu_{1} \equiv\left(\alpha_{\jmath}+\alpha_{1} \sqrt[q]{\mu_{2}}+\cdots+\alpha_{q-1} \sqrt[q]{\left.\mu_{2}^{q-1}\right)^{q} \quad\left(\bmod \mathfrak{Q}^{a q}\right), ~(1)}\right.$
and the congruences of the theorem follow.
Conversely if the congruences of the theorem are valid then 2.) is valid and 1.) follows. Interchanging the roles of μ_{1} and μ_{2}, the converse follows.

Theorem 17. If $\mathfrak{F}=R(\zeta), q=3$, and $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems $\bmod (1-\zeta)$, then either $\mu_{1} \equiv \alpha^{3} \mu_{2}^{\in}(\bmod 3(1-\zeta))$ where α is in $R(\zeta)$ and $\varepsilon=1$ or 2 , or $\mu_{1} \equiv \mu_{2} \equiv 0(\bmod (1-\zeta))$.

Proof. In $R(\zeta)$ the ideal $(1-\zeta)$ is a prime ideal, that is, $(1-\zeta)=\mathfrak{\Omega}$. Since $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems \bmod ($1-\zeta$) we have $(1-\zeta)=q^{3}$, and the orders of ramification of \mathfrak{q} in $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$, $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ over \mathfrak{F} are $\geqq 3$, and hence either 3 or 4 . In either case $1, \sqrt[3]{\mu_{j}}, \sqrt[3]{\mu_{j}^{2}}$ form a basis for the residue system $\bmod (1-\zeta)$ in $\mathfrak{F}\left(\sqrt[q]{\mu_{j}}\right)$ for $j=1$, 2 .

Since $\mathfrak{F}\left(\sqrt[q]{\mu_{1}}\right)$ and $\mathfrak{F}\left(\sqrt[q]{\mu_{2}}\right)$ have corresponding residue systems mod $(1-\zeta)$, we have

$$
\begin{aligned}
\sqrt[3]{\mu_{1}} & \equiv \alpha_{0}+\alpha_{1} \sqrt[3]{\mu_{2}}+\alpha_{21} \sqrt[3]{ }_{\mu_{2}^{2}} \quad(\bmod (1-\zeta)) \\
\mu_{1} & \equiv \alpha_{0}^{3}+\alpha_{1}^{3} \mu_{2}+\alpha_{2}^{3} \mu_{2}^{2}+3 P\left(\sqrt[3]{\mu_{2}}\right) \quad(\bmod 3(1-\zeta))
\end{aligned}
$$

where $P(x)$ is a polynomial with coefficients in $R(\zeta)$. It follows that $P\left(\sqrt[3]{\mu_{2}}\right)$ is congruent to a number in $\mathrm{R}(\zeta) \bmod (1-\zeta)$, and the coefficients of $\sqrt[3]{\mu_{2}}$ and $\sqrt[3]{\mu_{2}^{2}}$ in $P\left(\sqrt[3]{\mu_{2}}\right)$ must vanish $\bmod (1-\zeta)$. Thus

$$
\alpha_{0}^{2} \alpha_{1}+\alpha_{0} \alpha_{2}^{2} \mu_{2}+\alpha_{1}^{2} \alpha_{2} \mu_{2} \equiv 0 \quad(\bmod (1-\zeta))
$$

$$
\alpha_{0} \alpha_{1}^{2}+\alpha_{1} \alpha_{2}^{2} \mu_{2}+\alpha_{0}^{2} \alpha_{2} \equiv 0 \quad(\bmod (1-\zeta)) .
$$

By considering two cases, $\mu_{2} \equiv 0(\bmod (1-\zeta))$ and $\mu_{2} \neq 0(\bmod (1-\zeta))$, the conclusion of the theorem follows from the last two congruences.

Reference

1. E. Hecke, Theorie der Algebraischen Zahlen, Leipzig, 1923.

Louisiana State University and Ohio State University

