CORRESPONDING RESIDUE SYSTEMS IN ALGEBRAIC NUMBER FIELDS

H. S. BUTTS AND H. B. MANN

In this paper we shall consider integral ideals in finite algebraic extensions of the field R of rational numbers. Algebraic number fields will be denoted by \mathfrak{F} with subscripts or superscripts, ideals by German letters, algebraic numbers by lower case Greek letters, and numbers of the rational field R by lower case Latin letters.

Two ideals in the same field are equal if and only if they contain the same numbers.

If a_1 is an ideal in a field \mathfrak{F}_1 and a_2 is an ideal in a field \mathfrak{F}_2 , then we shall write $a_1 = a_2$ provided a_1 and a_2 generate the same ideal in some field containing all the numbers of \mathfrak{F}_1 and of \mathfrak{F}_2 (see [1, § 37]). Two such ideals may therefore be denoted by the same symbol and we shall speak of an ideal a without regard to a particular field. An ideal a is said to be contained in a field \mathfrak{F} if it may be generated by numbers in \mathfrak{F} , that is to say, if it has a basis in \mathfrak{F} .

Let a be an ideal contained in the fields \mathfrak{F}_1 and \mathfrak{F}_2 . We say that \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems modulo a if for every integer α_1 of \mathfrak{F}_1 there exists an integer α_2 of \mathfrak{F}_2 such that $\alpha_1 \equiv \alpha_2$ (mod a), and for every integer α_2 of \mathfrak{F}_2 there exists an integer α_1 of \mathfrak{F}_1 such that $\alpha_1 \equiv \alpha_2$ (mod a).

The problem considered in this paper is the following one: if \mathfrak{F}_1 and \mathfrak{F}_2 are two fields containing an ideal \mathfrak{a} , under what conditions will \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{a} . We shall show that this problem reduces to that in which the ideal \mathfrak{a} is a power of a prime ideal and a necessary and sufficient condition for \mathfrak{F}_1 and \mathfrak{F}_2 to have corresponding residue systems mod \mathfrak{a} is derived in case that \mathfrak{a} is a prime ideal. A necessary (but not sufficient) condition is derived in case \mathfrak{a} is a power of a prime ideal and \mathfrak{F}_1 and \mathfrak{F}_2 are normal over $\mathfrak{F}_1 \cap$ \mathfrak{F}_2 . A special case in which the fields are of the type $\mathfrak{F}(\sqrt[q]{\mu})$ is considered. These fields are of interest in themselves and in view of Corollary 7.1 seem to have a direct connection with the general problem.

THEOREM 1. Let α be an ideal in the number fields \mathfrak{F}_1 and \mathfrak{F}_2 and suppose \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod α . Then α has the same prime ideal decomposition in \mathfrak{F}_1 and in \mathfrak{F}_2 .

Received May 28, 1954.

Proof. Let

$$\mathfrak{a} = \mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{r}^{e_{r}} \text{ in } \mathfrak{F}_{1}$$
$$\mathfrak{a} = \mathfrak{q}_{1}^{f_{1}} \cdot \ldots \cdot \mathfrak{q}_{s}^{f_{s}} \text{ in } \mathfrak{F}_{2}$$

where the \mathfrak{p}_i are prime ideals in \mathfrak{F}_1 and the \mathfrak{q}_i are prime ideals in \mathfrak{F}_2 . Let α be an integer in \mathfrak{F}_1 such that α is exactly divisible by \mathfrak{p}_1 and $(\alpha, \mathfrak{p}_i)=(1)$ for $i=2, \cdots, r$. There exists an integer β in \mathfrak{F}_2 such that $\alpha \equiv \beta \pmod{\alpha}$ and thus in $\mathfrak{F}_1 \cup \mathfrak{F}_2$ we have $(\beta, \alpha)=\mathfrak{p}_1$. Since β is in \mathfrak{F}_2 and $\alpha \subset \mathfrak{F}_2$, it follows that $\mathfrak{p}_1 \subset \mathfrak{F}_2$. In the same manner it follows that $\mathfrak{p}_i \subset \mathfrak{F}_2$ for $i=1, \cdots, r$ and $\mathfrak{q}_i \subset \mathfrak{F}_1$ for $i=1, \cdots, s$. Therefore in \mathfrak{F}_1 and in \mathfrak{F}_2 we have $\mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_r^{e_r} = \mathfrak{q}_1^{e_1} \cdot \ldots \cdot \mathfrak{q}_s^{e_s}$.

In \mathfrak{F}_2 the \mathfrak{q}_i are prime ideals and hence $\mathfrak{q}_1|\mathfrak{p}_j$ in \mathfrak{F}_2 for some j. In \mathfrak{F}_1 the \mathfrak{p}_i are prime ideals and therefore $\mathfrak{p}_k|\mathfrak{q}_1$ in \mathfrak{F}_1 for some k. Thus in $\mathfrak{F}_1 \cup \mathfrak{F}_2$ we have $\mathfrak{p}_k|\mathfrak{p}_j$ which implies that $\mathfrak{p}_k = \mathfrak{p}_j = \mathfrak{q}_1$ in \mathfrak{F}_1 and in \mathfrak{F}_2 . By renumbering and repeated application of the above argument we obtain r=s and $\mathfrak{p}_i=\mathfrak{q}_i$ for $i=1, \dots, r=s$ in \mathfrak{F}_1 and \mathfrak{F}_2 .

THEOREM 2. Let a be an ideal in the number fields \mathfrak{F}_1 and \mathfrak{F}_2 . In order that \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod a it is necessary and sufficient that $\mathfrak{a}=\mathfrak{p}_1^{e_1}\cdot\ldots\cdot\mathfrak{p}_r^{e_r}$ where \mathfrak{p}_i is a prime ideal in \mathfrak{F}_1 and \mathfrak{F}_2 , and \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod $\mathfrak{p}_i^{e_i}$ for $i=1, \dots, r$.

Proof. The necessity follows from Theorem 1. Suppose $\alpha = \mathfrak{p}_{1}^{e_{1}} \cdots$ $\mathfrak{p}_{r}^{e_{r}}$ in \mathfrak{F}_{1} and in \mathfrak{F}_{2} , where \mathfrak{p}_{i} is a prime ideal in \mathfrak{F}_{1} and in \mathfrak{F}_{2} , and that \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod $\mathfrak{p}_{i}^{e_{i}}$ for $i=1, \cdots$, r. Let α be any integer of \mathfrak{F}_{1} . There exist integers β_{i} in \mathfrak{F}_{2} such that $\alpha \equiv \beta_{i} \pmod{\mathfrak{p}_{i}^{e_{i}}}$ for $i=1, \cdots, r$. By the Chinese remainder theorem there exists an integer β in \mathfrak{F}_{2} such that $\beta \equiv \beta_{i} \pmod{\mathfrak{p}_{i}^{e_{i}}}$ for $i=1, \cdots$, r and hence $\alpha \equiv \beta \pmod{\mathfrak{q}}$. It follows that \mathfrak{F}_{1} and \mathfrak{F}_{2} have corresponding residue systems mod α .

THEOREM 3. Let \mathfrak{F}_1 and \mathfrak{F}_2 be two number fields, $\mathfrak{F}=\mathfrak{F}_1 \cap \mathfrak{F}_2$, and let \mathfrak{p} be a prime ideal in both \mathfrak{F}_1 and \mathfrak{F}_2 . Suppose \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{p}^j and let \mathfrak{F}_n be the smallest normal extension over \mathfrak{F} containing \mathfrak{F}_1 and \mathfrak{F}_2 . Then for every automorphism Ain the Galois group $\mathfrak{G}(\mathfrak{F}_n|\mathfrak{F})$ of \mathfrak{F}_n over \mathfrak{F} we have $\alpha_1^A \equiv \alpha_1 \pmod{\mathfrak{p}^j}$ and $\alpha_2^A \equiv \alpha_2 \pmod{\mathfrak{p}^j}$ for every integer α_1 in \mathfrak{F}_1 and α_2 in \mathfrak{F}_2 .

Proof. Let \mathfrak{G}_1 and \mathfrak{G}_2 be the subgroups of $\mathfrak{G}(\mathfrak{F}_n|\mathfrak{F})$ which leave \mathfrak{F}_1 and \mathfrak{F}_2 fixed respectively. Since $\mathfrak{F}=\mathfrak{F}_1 \cap \mathfrak{F}_2$ we have by Galois theory that $\mathfrak{G}_1 \cup \mathfrak{G}_2$ corresponds to \mathfrak{F} under the Galois correspondence between subgroups and subfields. Hence $\mathfrak{G}_1 \cup \mathfrak{G}_2 = \mathfrak{G}(\mathfrak{F}_n|\mathfrak{F})$. Denote by \mathfrak{S}_i (i=1, 2) the set of automorphisms A in $\mathfrak{S}(\mathfrak{F}_n|\mathfrak{F})$ such that $\alpha_i^A \equiv \alpha_i \pmod{\mathfrak{P}^j}$ for all integers α_i in \mathfrak{F}_i for i=1, 2. The sets \mathfrak{S}_i are subgroups of $\mathfrak{S}(\mathfrak{F}_n|\mathfrak{F})$. Furthermore the sets \mathfrak{S}_i contain \mathfrak{S}_i for i=1, 2.

Let A be an automorphism of \mathfrak{S}_2 . For every integer α_1 in \mathfrak{F}_1 there exists an integer α_2 in \mathfrak{F}_2 such that $\alpha_1 \equiv \alpha_2 \pmod{\mathfrak{p}^j}$. Therefore $(\alpha_1 - \alpha_2)^4 \equiv 0 \pmod{\mathfrak{p}^j}$, $\alpha_1^A \equiv \alpha_2^A \pmod{\mathfrak{p}^j}$, $\alpha_1^A \equiv \alpha_2 \pmod{\mathfrak{p}^j}$, and thus $\alpha_1^A \equiv \alpha_1 \pmod{\mathfrak{p}^j}$. Hence the automorphism A is also in \mathfrak{S}_1 and it follows that $\mathfrak{S}_2 \subset \mathfrak{S}_1$. Similarly $\mathfrak{S}_1 \subset \mathfrak{S}_2$ and therefore $\mathfrak{S}_1 = \mathfrak{S}_2$. Hence $\mathfrak{S}_1 = \mathfrak{S}_2 = \mathfrak{S}(\mathfrak{S}_n | \mathfrak{F})$ since $\mathfrak{S}_i \supset \mathfrak{S}_i$ for i=1, 2 and $\mathfrak{S}_1 \cup \mathfrak{S}_2 = \mathfrak{S}(\mathfrak{S}_n | \mathfrak{F})$.

COROLLARY 3.1. Under the conditions of Theorem 3 it follows that $\mathfrak{d}_1 \equiv 0 \pmod{\mathfrak{p}^{n_1 j}}$ and $\mathfrak{d}_2 \equiv 0 \pmod{\mathfrak{p}^{n_2 j}}$, where $n_1 + 1 = (\mathfrak{F}_1 | \mathfrak{F}), n_2 + 1 = (\mathfrak{F}_2 | \mathfrak{F}),$ and \mathfrak{d}_i denotes the relative differente of \mathfrak{F}_i over \mathfrak{F} for i = 1, 2.

THEOREM 4. Let $\mathfrak{F}_1 \supset \mathfrak{F}$ be two number fields and let \mathfrak{F} be a prime ideal in \mathfrak{F}_1 . Suppose that for every integer α in \mathfrak{F}_1 we have $\alpha \equiv \alpha^{(i)}$ (mod \mathfrak{F}) for $i=1, \dots, k=(\mathfrak{F}_1|\mathfrak{F})$, where $\alpha^{(i)}$ is the *i*th conjugate of α in \mathfrak{F}_1 over \mathfrak{F} . Then \mathfrak{F} is of order $k=(\mathfrak{F}_1|\mathfrak{F})$ with respect to \mathfrak{F} .

Proof. It is clear that \mathfrak{P} coincides with its conjugates. Moreover if α is any integer in \mathfrak{F}_1 and $\alpha_2, \dots, \alpha_k$ its conjugates over \mathfrak{F} then

$$f(x) = (x - \alpha)(x - \alpha_2) \cdots (x - \alpha_k) \equiv (x - \alpha)^k \pmod{\mathfrak{P}}.$$

The polynomial f(x) has its coefficients in \mathfrak{F} and since the field of residue classes mod \mathfrak{P} is separable over the field or residue classes mod \mathfrak{p} , it must be of degree one.

THEOREM 5. Let \mathfrak{F}_1 and \mathfrak{F}_2 be two number fields and \mathfrak{p} a prime ideal in both fields. Then \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{p} if and only if \mathfrak{p} is of order $(\mathfrak{F}_1|\mathfrak{F}_1 \cap \mathfrak{F}_2)$ in $\mathfrak{F}_1 \cap \mathfrak{F}_2$ and of order $(\mathfrak{F}_2|\mathfrak{F}_1 \cap \mathfrak{F}_2)$ in \mathfrak{F}_2 over $\mathfrak{F}_1 \cap \mathfrak{F}_2$.

Proof. If \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{p} , it follows immediately from Theorems 3 and 4 that the order of \mathfrak{p} satisfies the conditions of the theorem.

The converse is clear since \mathfrak{p} is of degree one over $\mathfrak{F}_1 \cap \mathfrak{F}_2$ and therefore every residue class mod \mathfrak{p} contains an integer of $\mathfrak{F}_1 \cap \mathfrak{F}_2$.

COROLLARY 5.1. Let a be an ideal in the number fields \mathfrak{F}_1 and \mathfrak{F}_2 . If \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod a, then $(\mathfrak{F}_1|\mathfrak{F}_1 \cap \mathfrak{F}_2) = (\mathfrak{F}_2|\mathfrak{F}_1 \cap \mathfrak{F}_2)$. **THEOREM 6.** Let \mathfrak{F}_1 and \mathfrak{F}_2 be two number fields each normal over $\mathfrak{F} = \mathfrak{F}_1 \cap \mathfrak{F}_2$ and let \mathfrak{p} be a prime ideal in \mathfrak{F}_1 and in \mathfrak{F}_2 . In order that \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{p} it is necessary and sufficient that the inertial group of \mathfrak{p} in \mathfrak{F}_2 over \mathfrak{F} be equal to the Galois group of \mathfrak{F}_1 over \mathfrak{F} for j=1, 2.

Proof. The condition is sufficient since \mathfrak{p} is of degree one in \mathfrak{F}_j over \mathfrak{F} if the inertial group of \mathfrak{p} in \mathfrak{F}_j over \mathfrak{F} is equal to the Galois group of \mathfrak{F}_j over \mathfrak{F} for j=1, 2.

Suppose \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{P} and let \mathfrak{F}_i denote the inertial field of \mathfrak{P} in \mathfrak{F}_1 over \mathfrak{F} . The order of \mathfrak{P} in \mathfrak{F}_1 over \mathfrak{F} is equal to $(\mathfrak{F}_1|\mathfrak{F}_i)$ and hence by Theorem 5 we have $(\mathfrak{F}_1|\mathfrak{F}_i)$ $=(\mathfrak{F}_1|\mathfrak{F})$. It follows that $\mathfrak{F}_i = \mathfrak{F}$ and hence the Galois group of \mathfrak{F}_1 over \mathfrak{F} is equal to the inertial group of \mathfrak{P} in \mathfrak{F}_1 over \mathfrak{F} .

THEOREM 7. Let \mathfrak{F}_1 and \mathfrak{F}_2 be two number fields each normal over $\mathfrak{F}=\mathfrak{F}_1 \cap \mathfrak{F}_2$, and let \mathfrak{P} be a prime ideal in \mathfrak{F}_1 and in \mathfrak{F}_2 . If \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{P}^j , then the j^{th} ramification group of \mathfrak{P} in \mathfrak{F}_k over \mathfrak{F} is equal to the Galois group of \mathfrak{F}_k over \mathfrak{F} for k=1, 2.

Proof. Let A be any automorphism of $\mathfrak{S}(\mathfrak{F}_1 \cup \mathfrak{F}_2|\mathfrak{F})$. It follows from Theorem 3 that $\alpha_i^A \equiv \alpha_i \pmod{\mathfrak{P}^i}$ for every integer α_i in \mathfrak{F}_i for i=1, 2. Hence if A_i is an automorphism of $\mathfrak{S}(\mathfrak{F}_i | \mathfrak{F})$, (i=1, 2), it follows that $\alpha_i^{A_i} \equiv \alpha_i \pmod{\mathfrak{P}^i}$ since every automorphism A_i of $\mathfrak{S}(\mathfrak{F}_i | \mathfrak{F})$ can be continued to an automorphism of $\mathfrak{S}(\mathfrak{F}_1 \cup \mathfrak{F}_2 | \mathfrak{F})$. Thus the j^{ih} ramification group of \mathfrak{P} in \mathfrak{F}_i over \mathfrak{F} is equal to the Galois group of \mathfrak{F}_i over \mathfrak{F} for i=1, 2.

COROLLARY 7.1. Let \mathfrak{F}_1 and \mathfrak{F}_2 be two number fields normal over $\mathfrak{F}=\mathfrak{F}_1 \cap \mathfrak{F}_2$ and let \mathfrak{p} be a prime ideal in \mathfrak{F}_1 and in \mathfrak{F}_2 . If \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{p}^j for j > 1, then $(\mathfrak{F}_1|\mathfrak{F})=(\mathfrak{F}_2|\mathfrak{F})$ $=p^r$ where p is the rational prime belonging to p.

Proof. By Theorem 7 we have $\mathfrak{S}(\mathfrak{F}_1|\mathfrak{F})=\mathfrak{S}_1=\cdots=\mathfrak{S}_j$ where \mathfrak{S}_j is the j^{th} ramification group of \mathfrak{P} in \mathfrak{F}_1 over \mathfrak{F} . By Theorem 5 the order e of \mathfrak{P} in \mathfrak{F}_1 over \mathfrak{F} is equal to $(\mathfrak{F}_1|\mathfrak{F})$. But $\mathfrak{S}_1/\mathfrak{S}_2$ is cyclic of order e_0 where $e=p^re_0$, $(e_0, p)=1$, p the rational prime belonging to the ideal \mathfrak{P} . Therefore $(\mathfrak{F}_1|\mathfrak{F})=e_0p^r$. Since $\mathfrak{S}_1=\mathfrak{S}_2$ we have $e_0=1$ and $(\mathfrak{F}_1|\mathfrak{F})=p^r$. Therefore $(\mathfrak{F}_1|\mathfrak{F})=(\mathfrak{F}_2|\mathfrak{F})=p^r$.

COROLLARY 7.2. Let \mathfrak{F}_1 and \mathfrak{F}_2 be two number fields normal over $\mathfrak{F}=\mathfrak{F}_1\cap\mathfrak{F}_2$ and let \mathfrak{p} be a prime ideal in \mathfrak{F}_1 and in \mathfrak{F}_2 . Let v_i denote

the order of ramification of \mathfrak{p} in \mathfrak{F}_i over \mathfrak{F} for i=1, 2 and suppose $v_1 \geq v_2 \geq 2$. If \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod $p^{\mathfrak{v}_2}$, then $\mathfrak{S}(\mathfrak{F}_2|\mathfrak{F})$ is Abelian of type (p, \dots, p) where p is the rational prime belonging to \mathfrak{p} .

Proof. If \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{P}^{v_2} , it follows from Theorem 7 that $\mathfrak{G}(\mathfrak{F}_2/\mathfrak{F}) = \mathfrak{G}_1 = \cdots = \mathfrak{G}_{v_2}$ where \mathfrak{G}_j is the j^{th} ramification group of \mathfrak{p} in \mathfrak{F}_2 over \mathfrak{F} . By the definition of v_2 , \mathfrak{G}_{v_2+1} is the group identity. But $\mathfrak{G}_{v_2}/\mathfrak{G}_{v_2+1}$ is Abelian of type (p, \cdots, p) where p is the rational prime belonging to \mathfrak{p} . It follows that $\mathfrak{G}(\mathfrak{F}_2|\mathfrak{F})$ is Abelian of type (p, \cdots, p) .

The condition of Theorem 7 is not sufficient as the following example shows. Denote by R the field of rational numbers and let $\mathfrak{F}_1 = R$ $(\sqrt{2}), \mathfrak{F}_2 = R(\sqrt{3}), \mathfrak{p} = (\sqrt{2})$. It is clear that the second ramification group of the ideal $(\sqrt{2})$ in \mathfrak{F}_1 over R is equal to the Galois group of \mathfrak{F}_1 over R, and likewise for \mathfrak{F}_2 . However \mathfrak{F}_1 and \mathfrak{F}_2 do not have corresponding residue systems mod $(\sqrt{2})^2$.

In the remainder of this paper we consider fields of the type $\mathfrak{F}(\sqrt[q]{\mu})$ where \mathfrak{F} is a number field containing a q^{th} root of unity $\zeta \neq 1$, q is a rational prime, and μ is an integer of \mathfrak{F} and not the q^{th} power of an integer in \mathfrak{F} .

Let \mathfrak{P} be a prime ideal in $\mathfrak{F}(\sqrt[q]{\mu_1})$ and in $\mathfrak{F}(\sqrt[q]{\mu_2})$. We may suppose that $\mathfrak{F}(\sqrt[q]{\mu_1}) \neq \mathfrak{F}(\sqrt[q]{\mu_2})$ since the problem of corresponding residue systems is trivial in case equality holds. By Theorem 5, in order that $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{P} it is necessary and sufficient that \mathfrak{P} be of order q in $\mathfrak{F}(\sqrt[q]{\mu_1})$ over \mathfrak{F} and in $\mathfrak{F}(\sqrt[q]{\mu_2})$ over \mathfrak{F} . Therefore it is necessary and sufficient that \mathfrak{P} divide the relative differente \mathfrak{d}_i of $\mathfrak{F}(\sqrt[q]{\mu_i})$ over \mathfrak{F} for i=1, 2. If \mathfrak{c}_i denotes the relative conductor of $\sqrt[q]{\mu_i}$ for i=1, 2 then

$$(\sqrt[q]{\mu_i})^{q-1}q = c_i \mathfrak{d}_i$$

for i=1, 2 since $(\sqrt[q]{\mu_i})^{q-1}q$ is the relative number differente of $\sqrt[q]{\mu_i}$ over \mathfrak{F} . It follows that \mathfrak{P} must divide $(\sqrt[q]{\mu_i})^{q-1}q$ for i=1, 2 if $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{P} .

Denote by \mathfrak{p} the prime ideal corresponding to \mathfrak{P} in \mathfrak{F} . If \mathfrak{p} divides μ_i but not q then $\mathfrak{p}=\mathfrak{P}^q$ in $F(\sqrt[q]{\mu_i})$ if and only if $(\mu_i)=\mathfrak{p}^{a_i}\mathfrak{a}_i$ for i=1, 2 where $(a_i, q)=1$ and $(\mathfrak{a}_i, \mathfrak{p})=(1)$. (See [1, p. 150]). Thus we have the following theorem.

THEOREM 8. If $(\mathfrak{P}, q) = (1)$, then $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{P} if and only if $(\mu_i) = \mathfrak{p}^{a_i}\mathfrak{a}_i$ with $(a_i, q) = 1$ and $(\mathfrak{a}_i, \mathfrak{p}) = (1)$ for i = 1, 2.

From Corollary 7.1 it follows that $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ do not have corresponding residue systems mod \mathfrak{P}^j for j > 1 in case $(\mathfrak{P}, q) = (1)$.

We now consider prime ideals in fields $\mathfrak{F}(\sqrt[q]{\mu})$ which divide q, that is, prime ideals which divide the ideal $(1-\zeta)$ where $\zeta \neq 1$ is a q^{th} root of unity. Let $(1-\zeta)=\mathfrak{D}^{a}\mathfrak{a}$ in \mathfrak{F} where $(\mathfrak{D},\mathfrak{a})=(1)$ and \mathfrak{D} is a prime ideal in \mathfrak{F} , and let \mathfrak{q} be a prime ideal of $F(\sqrt[q]{\mu})$ which divides \mathfrak{D} . By Theorem 5 we are concerned only with the case in which \mathfrak{q} is of order q in $\mathfrak{F}(\sqrt[q]{\mu})$ over \mathfrak{F} , that is $\mathfrak{D}=\mathfrak{q}^{q}$ in $\mathfrak{F}(\sqrt[q]{\mu})$. We may suppose without loss of generality that either $(\mu, \mathfrak{D})=(1)$ or $(\mu, \mathfrak{D}^{2})=\mathfrak{D}$. The ideal \mathfrak{D} becomes the q^{th} power of a prime ideal in $\mathfrak{F}(\sqrt[q]{\mu})$ in case $(\mu, \mathfrak{D}^{2})=\mathfrak{D}$. In case $(\mu, \mathfrak{D})=(1)$, \mathfrak{D} becomes a q^{th} power of a prime ideal in $\mathfrak{F}(\sqrt[q]{\mu})$ if the congruence $\mu \equiv \xi^{q} \pmod{\mathfrak{D}^{aq}}$ is not solvable for ξ in \mathfrak{F} .

The main result of this paper for fields of the type $\mathfrak{F}(\sqrt[q]{\mu})$ is the following one: if μ_1 , μ_2 are two integers of \mathfrak{F} such that $\mathfrak{Q}=\mathfrak{q}^a$ in $\mathfrak{F}(\sqrt[q]{\mu_1})$ and in $\mathfrak{F}(\sqrt[q]{\mu_2})$, and \mathfrak{q} has ramification orders $\geq v > a$ in $\mathfrak{F}(\sqrt[q]{\mu_1})$ and in $\mathfrak{F}(\sqrt[q]{\mu_2})$ over \mathfrak{F} then $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^{v-a} .

We first consider the case in which $(\mu, \mathfrak{Q}^2) = \mathfrak{Q}$

THEOREM 9. If $(\mu, \Omega^2) = \Omega$ and n is a positive integer, then $\Omega = \mathfrak{q}^a$ in $\mathfrak{F}(\sqrt[q]{\mu})$ and every integer α in $\mathfrak{F}(\sqrt[q]{\mu})$ satisfies a congruence

$$\alpha \equiv \alpha_{\mathfrak{g}} + \alpha_{\mathfrak{g}} \sqrt{\mu} + \cdots + \alpha_{n-1} \sqrt{\mu^{n-1}} \pmod{\mathfrak{q}^n}$$

where the α_i are integers in F. Furthermore the order of ramification v of q in $\mathcal{F}(\sqrt[q]{\mu})$ over F is equal to aq+1.

Proof. Since $(\mu, \Omega^2) = \Omega$, we have $\Omega = q^q$ in $\mathfrak{F}(\sqrt[q]{\mu})$ where q is a prime ideal. It follows that $\sqrt[q]{\mu}$ is exactly divisible by q. Let n be any positive integer. If α is any integer of \mathfrak{F} we have

$$\alpha \equiv \alpha_{\mathfrak{q}} + \alpha_{\mathfrak{q}} \sqrt{\mu} + \cdots + \alpha_{n-1} \sqrt{\mu^{n-1}} \pmod{\mathfrak{q}^n}$$

where the α_i are residues mod q and may be chosen in \mathfrak{F} since q is of degree 1 with respect to \mathfrak{F} .

The order of ramification of q is equal to v if and only if

$$\sqrt[q]{\mu} \equiv \zeta \sqrt[q]{\mu} \pmod{q^v}$$
 and $\sqrt[q]{\mu} \not\equiv \zeta \sqrt[q]{\mu} \pmod{q^{v+1}}$.

Hence v=aq+1 since $(1-\zeta)=\mathfrak{Q}^{a}\mathfrak{a}$, $\mathfrak{Q}=\mathfrak{q}^{q}$, and $(\mathfrak{Q},\mathfrak{a})=(1)$.

THEOREM 10. If μ_1 , μ_2 are two integers of F each exactly divisible by \mathfrak{O} , then $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^{a_q+1-a} .

Proof. Choose a fixed residue system mod \mathfrak{Q} in \mathfrak{F} consisting of q^{th} powers, which is possible since \mathfrak{Q} is a prime ideal in \mathfrak{F} . Represent the residue class 0 by 0 and let n=a(q-1). Since μ_1 is exactly divisible by \mathfrak{Q} we have

$$\mu_2 \equiv \alpha_1^q \mu_1 + \cdots + \alpha_n^q \mu_1^n \pmod{\mathbb{Q}^{n+1}}$$

where the α_i^q belong to the fixed residue system mod \mathfrak{Q} chosen above. Hence

$$(\sqrt[q]{\mu_2} - \alpha_1 \sqrt[q]{\mu_1} - \dots - \alpha_n \sqrt[q]{\mu_1})^q \equiv \mu_2 - \alpha_1^q \mu_1 - \dots - \alpha_n^q \mu_1^n \pmod{\mathbb{Q}^{n+1}} \equiv 0 \pmod{\mathbb{Q}^{n+1}}.$$

It follows that

$$q^{q}/\mu_{2} \equiv \alpha_{1}\sqrt{\mu_{1}} + \cdots + \alpha_{n}\sqrt{\mu_{1}}$$
 (mod q^{n+1})

and by Theorem 9, $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^{aq+1-a} .

By Theorem 7 the fields $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ do not have corresponding residue systems mod \mathfrak{q}^{v+1} where v is the order of ramification of \mathfrak{q} . The following theorem gives a sufficient condition for $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ to have corresponding residue systems mod \mathfrak{q}^v .

THEOREM 11. Let μ_1 , μ_2 be two integers of \mathfrak{F} each exactly divisible by \mathfrak{Q} . If $\mu_1 \equiv \mu_2 \pmod{\mathfrak{Q}^{aq+1}}$ then $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^{aq+1} , that is, mod \mathfrak{q}^v where v is the order of ramification of \mathfrak{q} .

Proof. Since $\mu_1 \equiv \mu_2 \pmod{\mathfrak{Q}^{aq+1}}$ and $(\sqrt[q]{\mu_1} - \sqrt[q]{\mu_2})^q \equiv \mu_1 - \mu_2 \pmod{q}$ it follows that $\sqrt[q]{\mu_1} \equiv \sqrt[q]{\mu_2} \pmod{q^{a(q-1)}}$. Suppose

1.)
$$\sqrt[q]{\mu_1} \equiv \sqrt[q]{\mu_2} \pmod{\mathfrak{q}^m}$$
 and $\sqrt[q]{\mu_1} \not\equiv \sqrt[q]{\mu_2} \pmod{\mathfrak{q}^{m+1}}$.

For any polynomial p(x, y) with integral coefficients such that y occurs in every term we have $qp(\sqrt[q]{\mu_1}, \sqrt[q]{\mu_2}) \equiv qp(\sqrt[q]{\mu_2}, \sqrt[q]{\mu_2}) \pmod{q^{m+1}q}$.

Thus $(\sqrt[q]{\mu_1} - \sqrt[q]{\mu_2})^q \equiv \mu_1 - \mu_2 \pmod{qq^m q}$.

2.)
$$(\sqrt[q]{\mu_1} - \sqrt[q]{\mu_2})^q \equiv \mu_1 - \mu_2 \pmod{\mathbb{Q}^{a(q-1)}\mathfrak{q}^m \mathfrak{q}}.$$

If $\mu_1 - \mu_2 \not\equiv 0 \pmod{\mathbb{Q}^{a(q-1)}q^m q}$ then

q(aq+1) < aq(q-1) + m + 1 since $\mu_1 \equiv \mu_2 \pmod{\mathbb{Q}^{aq+1}}$.

Therefore q < -aq+m+1 and $m \ge aq+1$. On the other hand if $\mu_1 - \mu_2 \equiv 0 \pmod{\mathbb{Q}^{a(q-1)}\mathfrak{q}^m \mathfrak{q}}$ then

$$(\sqrt[q]{\mu_1} - \sqrt[q]{\mu_2})^q \equiv 0 \pmod{\mathbb{Q}^{a(q-1)}\mathfrak{q}^m \mathfrak{q}}$$

from 2.). Thus by 1.) we have $mq \ge aq(q-1)+m+1$, m > aq, and hence $m \ge aq+1$. Therefore in either case $m \ge aq+1$ and we have by 1.)

$$\sqrt[q]{\mu_1 - \sqrt[q]{\mu_2}} \equiv 0 \pmod{\mathfrak{q}^{aq+1}}.$$

Let α be any integer of $\mathfrak{F}(\sqrt[q]{\mu_1})$ and v the order of ramification of \mathfrak{q} , that is, v=aq+1. By Theorem 9

$$\alpha \equiv \alpha_0 + \alpha_1 \sqrt[q]{\mu_1} + \dots + \alpha_{v-1} \sqrt[q]{\mu_1^{v-1}} \pmod{q^v}$$

where the α_i are integers in \mathfrak{F} . Let

$$\beta = \alpha_0 + \alpha_1 \sqrt[q]{\mu_2} + \cdots + \alpha_{v-1} \sqrt[q]{\mu_2^{v-1}}.$$

Then $\alpha \equiv \beta \pmod{q^v}$ and $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^v .

The condition $\mu_1 \equiv \mu_2 \pmod{\mathbb{Q}^{aq+1}}$ in Theorem 11 may be replaced by $\mu_1 \equiv \mu_2 \sigma^q \pmod{\mathbb{Q}^{aq+1}}$ where σ is in \mathfrak{F} .

We now consider the case in which $(\mu, \mathfrak{Q})=(1)$ and the congruence $\mu \equiv \xi^q \pmod{\mathfrak{Q}^{aq}}$ is not solvable for ξ in \mathfrak{F} , that is, $(\mu, \mathfrak{Q})=(1)$ and $\mathfrak{Q}=\mathfrak{q}^q$ in $\mathfrak{F}(\sqrt[q]{\mu})$. Let k be the largest integer such that the congruence $\mu \equiv \xi^q \pmod{\mathfrak{Q}^k}$ is solvable for ξ in \mathfrak{F} . Clearly 0 < k < aq and k is the largest integer such that the congruence $q \neq \mu \equiv \xi \pmod{\mathfrak{Q}^k}$ is solvable for ξ in \mathfrak{F} .

THEOREM 12. Let μ be an integer of \mathfrak{F} such that $(\mu, \mathfrak{Q})=(1)$ and $\mathfrak{Q}=\mathfrak{q}^{\mathfrak{q}}$ in $\mathfrak{F}(\sqrt[\mathfrak{q}]{\mu})$. Let k be the largest integer such that $\mu \equiv \xi^{\mathfrak{q}} \pmod{\mathfrak{Q}^k}$ is solvable for ξ in \mathfrak{F} . Then the order of ramification v of \mathfrak{q} with respect to \mathfrak{F} is equal to $\mathfrak{aq}+1-k$.

Proof. Let α in \mathfrak{F} be a solution of the congruence $\mu = \xi^{\mathfrak{q}} \pmod{\mathfrak{Q}^k}$ with k maximal. Since $\mu - \alpha^{\mathfrak{q}}$ is exactly divisible by \mathfrak{Q}^k , it follows that $\sqrt[q]{\mu - \alpha}$ is exactly divisible by \mathfrak{q}^k . Furthermore we have (k, q) = 1 (see [1, p. 153]). Thus there exist positive integers x and y such that kx = 1 + qy.

Let π be an integer of \mathfrak{F} such that $(\pi) = \mathfrak{a}\mathfrak{O}$ where $(\mathfrak{a}, \mathfrak{O}) = (1)$ and \mathfrak{a} is an ideal of \mathfrak{F} . There exists an ideal \mathfrak{c} in \mathfrak{F} such that $\mathfrak{a}\mathfrak{c} = (\omega)$ is principal and \mathfrak{c} is prime to \mathfrak{O} .

Now, let

$$\rho = \frac{(\sqrt[q]{\mu - \alpha})^x}{\pi^y}$$

Then

$$(\rho) = \frac{(\sqrt[q]{\mu} - \alpha)^x}{\alpha^y \mathfrak{D}^y} = \frac{(\sqrt[q]{\mu} - \alpha)^x \mathfrak{c}^y}{\alpha^y \mathfrak{c}^y \mathfrak{D}^y} = \frac{(\sqrt[q]{\mu} - \alpha)^x \mathfrak{c}^y}{(\omega^y) \mathfrak{D}^y}$$

and

$$(\omega^{y}\rho) = \frac{(\sqrt[q]{\mu} - \alpha)^{z} \varepsilon^{y}}{\sum^{y}}$$

The ideal fraction on the right in the last equation is an integral ideal exactly divisible by q, and therefore $\omega^{v}\rho$ is an integer of \mathfrak{F} exactly divisible by q. It follows that the order of ramification of q is equal to v if and only if $\omega^{v}\rho - (\omega^{v}\rho)^{A}$ is exactly divisible by q^{v} where A is the automorphism $\sqrt[q]{\mu} \to \zeta \sqrt[q]{\mu}$, that is, if and only if

$$\frac{\omega^{y}(\sqrt[q]{\mu-\alpha})^{x}}{\pi^{y}} - \frac{\omega^{y}(\zeta^{q}_{\nu}\mu-\alpha)^{x}}{\pi^{y}}$$

is exactly divisible by q^v . Since $(\omega, \mathfrak{Q})=(1)$ this is true if and only if $(\sqrt[q]{\mu}-\alpha)^x - (\zeta\sqrt[q]{\mu}-\alpha)^x$ is exactly divisible by $\mathfrak{Q}^y q^v = q^{kx-1}q^v$. Now

$$(\zeta^{q}_{\sqrt{\mu}} - \alpha)^{x} = [(\zeta^{q}_{\sqrt{\mu}} - q^{\prime}_{\sqrt{\mu}}) + (q^{\prime}_{\sqrt{\mu}} - \alpha)]^{x}$$
$$= (q^{\prime}_{\sqrt{\mu}} - \alpha)^{x} + x(q^{\prime}_{\sqrt{\mu}} - \alpha)^{x-1}(\zeta^{q}_{\sqrt{\mu}} - q^{\prime}_{\sqrt{\mu}}) + \cdots$$

Therefore

$$(\zeta \sqrt[q]{\mu} - \alpha)^{x} \equiv (\sqrt[q]{\mu} - \alpha)^{x} \pmod{\mathfrak{q}^{k(x-1)}(1-\zeta)}$$
$$\equiv (\sqrt[q]{\mu} - \alpha)^{x} \pmod{\mathfrak{q}^{k(x-1)}\mathfrak{q}^{aq}}$$

since 0 < k < aq and $(1-\zeta) = \mathfrak{Q}^{a}\mathfrak{q}$ with $(\mathfrak{Q}, \mathfrak{q}) = (1)$. Furthermore this congruence holds exactly mod $\mathfrak{q}^{k(x-1)}\mathfrak{q}^{aq}$. It follows that kx-1+v=k(x-1)+aq and v=aq+1-k.

THEOREM 13. Let μ_1 , μ_2 be two integers of \mathfrak{F} each prime to \mathfrak{Q} and such that $\mathfrak{Q}=\mathfrak{q}^q$ in $\mathfrak{F}(\sqrt[q]{\mu_1})$ (and $\mathfrak{F}(\sqrt[q]{\mu_2})$). Let k_i be the largest integer such that the congruence $\mu_i \equiv \alpha_i^q$ (mod \mathfrak{Q}^{k_i}) is solvable for α_i , an integer of \mathfrak{F} (i=1, 2). Let $v_i = aq + 1 - k_i$ for i=1, 2, and suppose $v_1 \geq v_2 > a$. Then $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^{v_2-a} . **Proof.** Since $\mu_i - \alpha_i^q$ is exactly divisible by \mathfrak{Q}^{k_i} it follows that $\sqrt[q]{\mu_i} - \alpha_i$ is exactly divisible by \mathfrak{q}^{k_i} for i=1, 2. Since $(k_i, q)=1$ we have positive integers x_i and y_i such that $k_i x_i = 1 + q y_i$ for i=1, 2. Let π be an integer of \mathfrak{F} exactly divisible by \mathfrak{Q} . Using the method of Theorem 12 we obtain an integer

$$\theta_i = \frac{\omega^{y_i} (\sqrt[q]{\mu_i} - \alpha_i)^{x_i}}{\pi^{y_i}}$$

of $\mathfrak{F}(\sqrt[q]{\mu_i})$ which is exactly divisible by q for i=1, 2.

We now show that θ_i^q is congruent to an integer of $\mathfrak{F} \mod \mathfrak{D}^{v_i^{-a}}$ for i=1, 2. We have

$$\theta^{q}_{i} = \frac{\omega^{y_{l}q} (\sqrt[q]{\mu_{i} - \alpha_{i}})^{x_{l}q}}{\pi^{y_{l}q}} = \frac{\omega^{y_{l}q} (\lambda_{i} - \rho_{i}q)^{x_{l}}}{\pi^{y_{l}q}}$$

where λ_i is an integer of \mathfrak{F} and $\lambda_i \equiv 0 \pmod{\mathfrak{Q}^{k_i}}$. Hence since ρ_i is divisible by \mathfrak{q}^{k_i}

$$\theta_i^{q} = \frac{\omega^{y_l q} (\lambda_i^{x_l} - x_i \lambda_i^{x_l-1} \rho_i q + \cdots)}{\pi^{y_l q}}$$

$$= \frac{\omega^{y_l q} \lambda_i^{x_l}}{\pi^{y_l q}} - \frac{(\omega^{y_l q} x_i \lambda_i^{x_l-1} \rho_i q + \cdots)}{\pi^{y_l q}}$$

$$\equiv \frac{\omega^{y_l q} \lambda_i^{x_l}}{\pi^{y_l q}} \pmod{\mathbb{Q}^{a_{q+1-k_l-a}}}$$

$$\equiv \frac{\omega^{y_l q} \lambda_i^{x_l}}{\pi^{y_l q}} \pmod{\mathbb{Q}^{v_l-a}}$$

But the expression on the right of the last congruence is an integer of \mathfrak{F} , so that θ_i^a is congruent to an integer of $\mathfrak{F} \mod \mathfrak{Q}^{v_i - a}$.

We now show that the q^{th} power of every integer of $\mathfrak{F}(\sqrt[q]{\mu_i})$ is congruent to an integer of $\mathfrak{F} \mod \mathfrak{D}^{v_i-a}$ for i=1, 2.

Let β be any integer of $\mathfrak{F}(\sqrt[q]{\mu_1})$ and let $n=v_1-a$. Since θ_1 is exactly divisible by \mathfrak{q} we have $\beta \equiv \beta_0 + \beta_1 \theta_1 + \cdots + \beta_{n-1} \theta_1^{n-1} \pmod{\mathfrak{q}^n}$, where the β_i are residues mod \mathfrak{q} and may be chosen in \mathfrak{F} since \mathfrak{q} is of degree 1 over \mathfrak{F} . Hence

$$\begin{split} & [\beta - (\beta_0 + \dots + \beta_{n-1}\theta_1^{n-1})]^q \\ & \equiv \beta^q - (\beta_0 + \dots + \beta_{n-1}\theta_1^{n-1})^q \pmod{q} \\ & \equiv \beta^q - (\beta_0^q + \dots + \beta_{n-1}^q \theta_1^{q(n-1)}) \pmod{q} \\ & \equiv \beta^q - \sigma \mod{(\mathfrak{Q}^{v_1-a})}, \end{split}$$

where σ is an integer of \mathfrak{F} . It follows that $\beta^{q} \equiv \sigma \pmod{\mathfrak{Q}^{v_{1}-a}}$.

If β and β' are two integers of $\mathfrak{F}(\sqrt[q]{\mu_1})$ such that $\beta^q \equiv \sigma \pmod{\mathfrak{Q}^{v_1-a}}$ and $\beta'^q \equiv \sigma \pmod{\mathfrak{Q}^{v_1-a}}$, then $\beta \equiv \beta' \pmod{\mathfrak{q}^{v_1-a}}$. Also if $\beta^q \equiv \sigma \pmod{\mathfrak{Q}^{v_1-a}}$ and $\beta'^q \equiv \sigma' \pmod{\mathfrak{Q}^{v_1-a}}$ where σ , σ' are integers of \mathfrak{F} , then $\sigma \equiv \sigma' \pmod{\mathfrak{Q}^{v_1-a}}$. The number of residue classes mod \mathfrak{q}^{v_1-a} in $\mathfrak{F}(\sqrt[q]{\mu_1})$ is equal to the number of residue classes mod \mathfrak{Q}^{v_1-a} in \mathfrak{F} . It follows that if σ is any integer of \mathfrak{F} there exists an integer β of $\mathfrak{F}(\sqrt[q]{\mu_1})$ such that ${}^{q}\beta \equiv \sigma \pmod{\mathfrak{Q}^{v_1-a}}$.

Similarly, if γ is any integer of $\mathfrak{F}(\sqrt[q]{\mu_2})$ there exists an integer τ of \mathfrak{F} such that $\gamma^a \equiv \tau \pmod{\mathfrak{Q}^{v_2-a}}$. There exists an integer β of $\mathfrak{F}(\sqrt[q]{\mu_1})$ such that $\beta^a \equiv \tau \pmod{\mathfrak{q}^{v_1-a}}$. Since $v_1 \geq v_2$ we have $\beta^a \equiv \gamma^a \pmod{\mathfrak{Q}^{v_2-a}}$ and therefore $\beta \equiv \gamma \pmod{\mathfrak{q}^{v_2-a}}$.

THEOREM 14. If μ_1 , μ_2 are two integers of \mathfrak{F} such that $\mathfrak{Q}=\mathfrak{q}^q$ in $\mathfrak{F}(\sqrt[q]{\mu_1})$ and in $\mathfrak{F}(\sqrt[q]{\mu_2})$, and \mathfrak{q} has ramification orders $\geq v > a$ in $\mathfrak{F}(\sqrt[q]{\mu_1})$, $\mathfrak{F}(\sqrt[q]{\mu_2})$ over \mathfrak{F} , then $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^{v-a} .

Proof. We need only to consider the case in which μ_1 is exactly divisible by \mathfrak{D} and μ_2 is prime to \mathfrak{D} , the other two cases following from Theorems 10 and 13.

Let $v_1 = aq + 1$ be the order of ramification of q in $\mathfrak{F}(\sqrt[q]{\mu_1})$ over \mathfrak{F} , and let v_2 be the order of ramification of q in $F(\sqrt[q]{\mu_2})$ over \mathfrak{F} . From Theorem 12 it follows that $v_1 - 1 = aq \ge v_2$.

Let α be any integer of $\mathfrak{F}(\sqrt[q]{\mu_1})$ and let n=aq-a. Since $\sqrt[q]{\mu_1}$ is exactly divisible by \mathfrak{q} , it follows that

$$\alpha \equiv \alpha_0 + \alpha_1 \sqrt[q]{\mu_1} + \cdots + \alpha_{n-1} \sqrt[q]{\mu_1^{n-1}} \pmod{\mathfrak{q}^n},$$

where the α_i are integers in \mathfrak{F} . Hence

$$\alpha^{q} \equiv \alpha_{0}^{q} + \alpha_{1}^{q} \mu_{1} + \dots + \alpha_{n-1}^{q} \mu_{1}^{n-1} \pmod{\mathfrak{Q}^{n}}$$
$$\equiv \sigma \pmod{\mathfrak{Q}^{aq-a}}$$

where σ is an integer of \mathfrak{F} . Using the method of Theorem 13, there exists an integer β of $\mathfrak{F}(\sqrt[q]{\mu_2})$ such that $\beta^q \equiv \sigma \pmod{\mathfrak{Q}^{v_2-a}}$. Therefore $\alpha^q \equiv \beta^q \pmod{\mathfrak{Q}^{v_2-a}}$ and $\alpha \equiv \beta \pmod{\mathfrak{q}^{v_2-a}}$. Thus $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^{v-a} where $v_2 \geq v > a$.

THEOREM 15. Let μ_1 , μ_2 be two integers of \mathfrak{F} , each prime to \mathfrak{Q} , such that $\mathfrak{Q}=\mathfrak{q}^a$ in $\mathfrak{F}(\sqrt[q]{\mu_1})$ and in $\mathfrak{F}(\sqrt[q]{\mu_2})$. Suppose $\mu_1\equiv\mu_2 \pmod{\mathfrak{Q}^{aq}}$ and let k be the largest integer such that the congruences $\mu_1\equiv\alpha^q \pmod{\mathfrak{Q}^k}$ and \mathfrak{Q}^k and $\mu_2\equiv\alpha^q \pmod{\mathfrak{Q}^k}$ are solvable for α an integer of \mathfrak{F} . Then $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod q^v where v = aq + 1 - k.

Proof. Since $\mu_1 \equiv \mu_2 \pmod{\mathfrak{Q}^{aq}}$ it follows that $\sqrt[q]{\mu_1} \equiv \sqrt[q]{\mu_2} \pmod{\mathfrak{Q}^a}$ using the method of Theorem 11. We have kx = 1 + qy and following Theorem 12 it is sufficient to show that

$$(\sqrt[q]{\mu_1} - \alpha)^x \equiv (\sqrt[q]{\mu_2} - \alpha)^x \pmod{q^{v+qy}}$$
.

We have

$$(\sqrt[q]{\mu_2} - \alpha)^x = [(\sqrt[q]{\mu_1} - \alpha) + (\sqrt[q]{\mu_2} - \sqrt[q]{\mu_1})]^x$$
$$= (\sqrt[q]{\mu_1} - \alpha)^x + x(\sqrt[q]{\mu_1} - \alpha)^{x-1}(\sqrt[q]{\mu_2} - \sqrt[q]{\mu_1}) + \cdots$$
$$= (\sqrt[q]{\mu_1} - \alpha)^x \pmod{q^{k(x-1)}q^{aq}}$$
$$\equiv (\sqrt[q]{\mu_1} - \alpha)^x \pmod{q^{v+qy}}.$$

Thus $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^v where v = aq + 1 - k is the order of ramification of \mathfrak{q} in $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ over \mathfrak{F} .

We remark that if $\mathfrak{F}(\sqrt[q]{\mu_1}) \neq \mathfrak{F}(\sqrt[q]{\mu_2})$ then $\sqrt[q]{\mu_1} \not\equiv \sqrt[q]{\mu_2} \pmod{\mathfrak{q}^{aq+1}}$ for otherwise we would have corresponding residue systems mod \mathfrak{q}^{v+1} contrary to Theorem 7.

In Theorem 15 we may replace the condition $\mu_1 \equiv \mu_2 \pmod{\mathfrak{Q}^{aq}}$ by $\mu_1 \equiv \mu_2 \beta^q \pmod{\mathfrak{Q}^{aq}}$ with β in \mathfrak{F} .

THEOREM 16. Let μ_1 , μ_2 be two integers of \mathfrak{F} such that $\mathfrak{Q}=\mathfrak{q}^q$ in $\mathfrak{F}(\sqrt[q]{\mu_1})$ and in $\mathfrak{F}(\sqrt[q]{\mu_2})$ and the orders of ramification of \mathfrak{q} in $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ over \mathfrak{F} are $\geq aq$. In order that $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_1})$ have corresponding residue systems mod $\mathfrak{q}^{aq}=\mathfrak{Q}^a$ it is necessary and sufficient that the following congruences be solvable in \mathfrak{F} :

$$\sum_{\substack{e_0+e_1+\cdots+e_{q-1}=q\\e_1+2e_2+\cdots+(q-1)e_{q-1}=mq+i}} \frac{q!}{e_0!e_1!\cdots e_{q-1}!} \alpha_0^{e_0} \alpha_1^{e_1}\cdots \alpha_{q-1}^{e_{q-1}} \mu_2^m \equiv 0 \pmod{\mathbb{Q}^{a_q}}$$

$$\sum_{\substack{e_0+\cdots+e_{q-1}=q\\e_1+2e_2+\cdots+(q-1)e_{q-1}=mq}} \frac{q!}{e_0!\cdots e_{q-1}!} \alpha_0^{e_0}\cdots \alpha_{q-1}^{e_{q-1}} \mu_2^m \equiv \mu_1 \pmod{\mathbb{Q}^{a_q}},$$

where $\alpha_0, \dots, \alpha_{q-1}$ are integers of \mathfrak{F} and e_0, e_1, \dots, e_{q-1} , *m* are nonnegative

integers, and $i=1, \dots, q-1$; and the same congruences with μ_1 and μ_2 interchanged.

Proof. Since the orders of ramification of \mathfrak{q} in $\mathfrak{F}(\sqrt[q]{\mu_j})$ over \mathfrak{F} are $\geq aq$ for j=1, 2, then either $\sqrt[q]{\mu_j}$ is exactly divisible by \mathfrak{q} or $\sqrt[q]{\mu_j}$ is prime to \mathfrak{q} and there exists an integer ξ_j of \mathfrak{F} such that $\sqrt[q]{\mu_j} - \xi_j$ is exactly divisible by \mathfrak{q} . In either case 1, $\sqrt[q]{\mu_j}, \dots, \sqrt[q]{\mu_j^{n-1}}$ form a basis for the residue system mod \mathfrak{q}^n , n a given positive integer.

If $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod \mathfrak{q}^{aq} we have

1.)
$$\sqrt[q]{\mu_1} \equiv \alpha_0 + \alpha_1 \sqrt[q]{\mu_2} + \dots + \alpha_{q-1} \sqrt[q]{\mu_2^{q-1}} \pmod{\mathfrak{Q}^a}$$

2.)
$$\mu_1 \equiv (\alpha_1 + \alpha_1 \sqrt[q]{\mu_1} + \dots + \alpha_{q-1} \sqrt[q]{\mu_2^{q-1}})^q \pmod{\mathfrak{Q}^{aq}}$$

and the congruences of the theorem follow.

Conversely if the congruences of the theorem are valid then 2.) is valid and 1.) follows. Interchanging the roles of μ_1 and μ_2 , the converse follows.

THEOREM 17. If $\mathfrak{F}=R(\zeta)$, q=3, and $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod $(1-\zeta)$, then either $\mu_1 \equiv \alpha^3 \mu_2^{\mathfrak{e}} \pmod{3(1-\zeta)}$ where α is in $R(\zeta)$ and $\varepsilon=1$ or 2, or $\mu_1 \equiv \mu_2 \equiv 0 \pmod{(1-\zeta)}$.

Proof. In $R(\zeta)$ the ideal $(1-\zeta)$ is a prime ideal, that is, $(1-\zeta)=\mathfrak{O}$. Since $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod $(1-\zeta)$ we have $(1-\zeta)=\mathfrak{q}^3$, and the orders of ramification of \mathfrak{q} in $\mathfrak{F}(\sqrt[q]{\mu_1})$, $\mathfrak{F}(\sqrt[q]{\mu_2})$ over \mathfrak{F} are ≥ 3 , and hence either 3 or 4. In either case 1, $\sqrt[q]{\mu_j}$, $\sqrt[q]{\mu_j}$ form a basis for the residue system mod $(1-\zeta)$ in $\mathfrak{F}(\sqrt[q]{\mu_j})$ for j=1, 2.

Since $\mathfrak{F}(\sqrt[q]{\mu_1})$ and $\mathfrak{F}(\sqrt[q]{\mu_2})$ have corresponding residue systems mod $(1-\zeta)$, we have

$$\nu^{3} \overline{\mu_{1}} \equiv \alpha_{0} + \alpha_{1} \nu^{3} \overline{\mu_{2}} + \alpha_{2} \nu^{3} \overline{\mu_{2}^{2}} \pmod{(1-\zeta)}$$
$$\mu_{1} \equiv \alpha_{0}^{3} + \alpha_{1}^{3} \mu_{2} + \alpha_{2}^{3} \mu_{2}^{2} + 3P(\nu^{3} \overline{\mu_{2}}) \pmod{3(1-\zeta)}$$

where P(x) is a polynomial with coefficients in $R(\zeta)$. It follows that $P(\sqrt[3]{\mu_2})$ is congruent to a number in $R(\zeta) \mod (1-\zeta)$, and the coefficients of $\sqrt[3]{\mu_2}$ and $\sqrt[3]{\mu_2^2}$ in $P(\sqrt[3]{\mu_2})$ must vanish mod $(1-\zeta)$. Thus

$$\alpha_0^2 \alpha_1 + \alpha_0 \alpha_2^2 \mu_2 + \alpha_1^2 \alpha_2 \mu_2 \equiv 0 \pmod{(1-\zeta)}$$

H. S. BUTTS AND H. B. MANN

$\alpha_0\alpha_1^2 + \alpha_1\alpha_2^2\mu_2 + \alpha_0^2\alpha_2 \equiv 0 \pmod{(1-\zeta)}.$

By considering two cases, $\mu_2 \equiv 0 \pmod{(1-\zeta)}$ and $\mu_2 \not\equiv 0 \pmod{(1-\zeta)}$, the conclusion of the theorem follows from the last two congruences.

Reference

1. E. Hecke, Theorie der Algebraischen Zahlen, Leipzig, 1923.

LOUISIANA STATE UNIVERSITY AND OHIO STATE UNIVERSITY