FUNCTIONALS ASSOCIATED WITH A CONTINUOUS TRANSFOMATION

Wm. M. Myers, Jr.

1. Let $T: z=t(w), w \in R_{0}$, be a continuous transformation from a simply connected polygonal region R_{0}, in the Euclidean plane π, into Euclidean three-space. The transformation T is a representation for an F-surface of the type of the 2 -cell in Euclidean three-space, which will be called, in brief, a surface S. [4, II. 3.7, II. 3.44].

In connection with transformation T, T. Radó defines a non-negative (possibly infinite) functional $a(T)$, which he shows is independent of the representation T for the surface S. [4, V. 1.6]. Radó calls $a(T)$ the lower area of the surface, and it plays an important role in the study of surface area.
P. V. Reichelderfer has also defined a non-negative (possibly infinite) functional $e A(S)$, which he calls the essential area of the surface S. [5, p. 274]. It too is an important concept in surface area theory.

The question arises as to what relationship exists between the lower area $a(T)$ and the essential area $e A(S)$. In this paper, we show that $e A(S)$ $=a(T)$. In addition, we introduce certain other functionals, which we show yield the same value as that of $e A(S)$ and $a(T)$. These functionals, as well as $e A(S)$ and $a(T)$, will be defined in $\S 3$, after a discussion in § 2 of necessary topological concepts.
2. Let M be a metric space. If $A \subset M$, then $M-A, \mathrm{c}(A), \mathrm{i}(A)$, and $\operatorname{fr}(A)$ denote respectively, the complement, closure, interior, and frontier of A. If $A \subset M, B \subset M$, then $A \cup B, A \cap B$, and $A-B$ denote the union, intersection, and difference of A and $B . \quad \phi$ denotes the empty set. If $\left\{A_{n}\right\}$ is a sequence of subsets of M , then $\bigcup_{n=1}^{\infty} A_{n}$ and $\bigcap_{n=1}^{\infty} A_{n}$ denote respectively the union and intersection of these sets.

Let $F: z=f(w), w \in M$, be a continuous transformation from a metric space M into a metric space N. If $P \subset M$, the symbol $F \mid P$ denotes the transformation F with its domain restricted to P.

If $z \in N$, let $(F \mid P)^{-1} z$ denote the set of points w such that $w \in P$, $f(w)=z$. If $(F \mid P)^{-1} z \neq \phi$, then the components of $(F \mid P)^{-1} z$ are called maximal model components for z under $F \mid P$. If a maximal model component for z under $F \mid P$ is a continuum, then it is called a maximal model continuum (henceforth abbreviated m.m.c.) for z under $F \mid P$.

Now let $F: \bar{z}=f(w), w \in R_{0}$, be a continuous transformation from a

Received May 31, 1955.
simply connected polygonal region R_{0} in the Euclidean plane π into the Euclidean plane $\bar{\pi}$.

If R is a Jordan region, $R \subset R_{0}$, let C_{1}, \cdots, C_{n-1} denote the interior boundary curves, if any, of R, oriented in the negative sense, and let C_{n} denote the exterior boundary curve of R, oriented the positive sense. If $\bar{z} \in F\left(\bigcup_{i=1}^{n} C_{i}\right)$, let $\mu(\bar{z}, F, R)=0$. If $\bar{z} \notin F\left(\bigcup_{i=1}^{n} C_{i}\right)$, let $\mu(\bar{z}, F, R)=\sum_{i=1}^{n} \lambda(\bar{z}$, $\left.F, C_{i}\right)$, where $\lambda\left(\bar{z}, F, C_{i}\right)$ denotes the topological index of \bar{z} with respect to the oriented closed curve $F\left(C_{i}\right)$, [4, II. 4.34, IV. 1.24]. If $\bar{z} \in \bar{\pi}$, then $\mu(\bar{z}, F, R)$ is an integer.

If P is a Jordan region or a domain, $P \subset R_{0}$, we shall call P an admissible set.

Suppose P is an admissible set, and consider $F \mid P: \bar{z}=f(\imath v), w \in P$. Suppose γ is a maximal model component for \bar{z} under $F \mid P$. If, for every open set G containing γ, there is a Jordan region R such that $r \subset \mathrm{i}(R), R \subset G \cap \mathrm{i}(P)$, (note that this implies that γ is a continuum), and such that $\mu(\bar{z}, F, R) \neq 0$, then we say that γ is an essential maximal model continuum, (henceforth abbreviated e.m.m.c.), for \bar{z} under $F \mid P$.

If P and Q are admissible sets, $Q \subset P$, and if $\bar{z} \in \bar{\pi}$, then $k(\bar{z}, F \mid P$, Q) will denote the number of e.m.m.c.'s for $\overline{\bar{z}}$ under $F \mid P$ which are contained in $\mathrm{i}(Q) . k(\tilde{z}, F \mid P, Q)$ is possibly infinite, while, if finite, it is a non-negative integer. It may be shown that

$$
\kappa(\bar{z}, F \mid Q, Q)=\kappa\left(\bar{z}, F^{\prime} \mid P, Q\right)=\kappa(\bar{z}, F, Q)
$$

Further, it is clear that if $P_{\mathrm{1}}, \cdots, P_{n}$ is a collection of admissible sets with disjoint interiors, and if $P_{j} \subset Q$ for $j=1, \cdots, n$, then $\sum_{j=1}^{n} k(\bar{z}$, $\left.F, P_{\jmath}\right) \leqq \kappa(\bar{z}, F, Q)$.

If P is an admissible set, then $\kappa(\bar{z}, F, P), \bar{z} \in \bar{\pi}$, is a lower semicontinuous function, and hence is a Lebesgue measurable function. $\iint_{F^{(}(P)} k(\bar{z}, F, P) d \bar{z} \quad$ will denote the Lebesgue integral of $k(\bar{z}, F, P)$ over the set $F(P)$.
3. Let R_{0} be a simply connected polygonal region in the Euclidean plane π. We shall consider the following types of collections of sets (where it is to be understood that the collections consist of a finite number of sets, each of which is contained in R_{0}):
(1) Collections of disjoint simply connected polygonal regions.
(2) Collections of disjoint polygonal regions.
(3) Collections of simply connected Jordan regions with disjoint interiors.
(4) Collections of Jordan regions, with disjoint interiors.
(5) Collections of disjoint simply connected domains.
(6) Collections of disjoint domains.

Collections of the type described in (j) will be called collections of class $j, j=1, \cdots, 6$. If $A \subset R_{0}$, and if Φ is a collection of class j such that $R \in \Phi$ implies $R \subset A$, then we shall say that Φ is a collection of class j in A.

The transformation $T: z=t(w), w \in R_{0}$, described in $\S 1$, may be written $T: z=t(w)=\left(x_{1}(w), x_{2}(w), x_{3}(w)\right), w \in R_{0}$, where $x_{1}(w), x_{2}(w)$, and $x_{3}(w)$ are the rectangular coordinates of $t(w)$. We now define three plane transformations.

$$
\begin{array}{lll}
T_{1}: & z_{1}=t_{1}(w)=\left(x_{2}(w), x_{3}(w)\right), & w \in R_{0} \\
T_{2}: & z_{2}=t_{2}(w)=\left(x_{3}(w), x_{1}(w)\right), & w \in R_{0} \\
T_{3}: & z_{3}=t_{3}(w)=\left(x_{1}(w), x_{2}(w)\right), & w \in R_{0}
\end{array}
$$

For $i=1,2,3, T_{i}: z_{i}=t_{i}(w), w \in R_{0}$, is a continuous transformation from R_{0} into the Euclidean plane π_{i}.

If P is an admissible set, (see $\S 2$), let $g\left(T_{i}, P\right)=\iint_{T_{i}(P)} \kappa\left(z_{i}, T_{i}, P\right) d z_{i}$, for $i=1,2,3$, and let $G(T, P)=\left[\sum_{i=1}^{3}\left(g\left(T_{i}, P\right)\right)^{2}\right]^{1 / 2}$. These quantities are non-negative and possibly infinite.

If Φ is a collection of admissible sets, let $g\left(T_{i}, \Phi\right)=\sum_{P \in \Phi} g\left(T_{i}, P\right)$, for $i=1,2,3$, and let $G(T, \Phi)=\sum_{P \in \Phi} G(T, P)$.

For $j=1, \cdots, 6$, let $a_{j}(T)=$ l.u.b. $G(T, \Phi)$, where the least upper bound is taken with respect to all collections Φ of class j. These quantities are non-negative, possibly infinite. We note that $a_{6}(T)$ is precisely the lower area $a(T)$, and $a_{3}(T)$ is the essential area $e A(S)$, discussed in § $1,[4$, V. 1.3], [5, p. 274].

The purpose of this paper is to show that the functionals $a_{j}(T)$, $j=1, \cdots, 6$, all yield the same value.
4. It is quite obvious from the definitions set forth in §3. that $a_{1}(T) \leqq a_{2}(T) \leqq a_{4}(T), a_{1}(T) \leqq a_{3}(T) \leqq a_{4}(T)$, and $a_{5}(T) \leqq a_{6}(T)$.

Further, if R_{1}, \cdots, R_{n} is a collection of class 3 , then $\mathrm{i}\left(R_{1}\right), \cdots, \mathrm{i}\left(R_{n}\right)$ is a collection of class 5 , while, for $k=1, \cdots, n$, and $\mathrm{i}=1,2,3$, we have, (see §2), $\kappa\left(z_{i}, T_{i}, R_{k}\right)=\kappa\left(z_{i}, T_{i}, \mathrm{i}\left(R_{k}\right)\right)$. From this it follows that $a_{3}(T)$ $\leqq a_{5}(T)$. The same type of reasoning shows that $a_{4}(T) \leqq a_{6}(T)$.
5. If D is a domain, $D \subset R_{0}$, then there exists a sequence $\left\{R_{n}\right\}$ of polygonal regions, such that $R_{n} \subset \mathrm{i}\left(R_{n+1}\right)$ for each n, and $\bigcup_{n=1}^{\infty} R_{n}=D$, [4, I. 2.48]. Then $\lim _{n \rightarrow \infty} \kappa\left(z_{i}, T_{i}, R_{n}\right)=\kappa\left(z_{i}, T_{i}, D\right)$, for $i=1,2,3$, [4; IV.
1.43], and this implies that $a_{6}(T) \leqq a_{2}(T)$.

In addition, if D is simply connected, then the polygonal regions $R_{n}, n=1,2, \cdots$, may be chosen to be simply connected, and thus $a_{j}(T)$ $\leqq a_{1}(T)$.
6. The inequalities in $\S 4$ and in $\S 5$ yield $a_{1}(T)=a_{3}(T)=a_{5}(T)$ and $a_{2}(T)=a_{4}(T)=a_{6}(T)$, while $a_{1}(T) \leqq a_{2}(T)$. To establish the equality of these six functionals, therefore, it is sufficient to show that $a_{1}(T) \geq a_{2}(T)$.

Note that if $\mathrm{G}\left(T, R_{0}\right)=+\infty$, then $a_{1}(T)=+\infty$, and so $a_{1}(T) \geqq a_{2}(T)$. Thus we shall assume henceforth, without loss of generality, that $G\left(T, R_{0}\right)<+\infty$. This in turn implies that if Φ is any collection of class $j, j=1, \cdots, 6$, then $G(T, \Phi) \leqq \sum_{i=1}^{3} g\left(T_{i}, \Phi\right) \leqq \sum_{i=1}^{3} g\left(T_{i}, R_{0}\right) \leqq 3 G\left(T, R_{0}\right)$. Consequently, $a_{j}(T) \leqq 3 G\left(T, R_{0}\right)<+\infty$, that is, $a_{j}(T)$ is finite, $j=1, \cdots, 6$.
7. In this section, we suppose that all sets considered are subsets of the Euclidean plane π.

Suppose A and B are connected sets, C is a closed set and $A \cup B$ $\subset \pi-C$. We shall say that C separates A and B if A and B are contained in distinct components of $\pi-C$.

Suppose that C is closed, $\mathrm{C} \subset R$, where R is a polygonal region. Let Q_{1}, \cdots, Q_{a-1} denote the bounded components of $\pi-R$, (if any), and let Q_{q} be the unbounded component of $\pi-R$. We shall say that C separates in R if there exists $k, 1 \leqq k \leqq q-1$, such that C separates Q_{q} and Q_{k}.

Let \mathscr{S} be an upper semi-continuous collection of continua γ, such that $\underset{\gamma \in \mathscr{G}}{\cup} \gamma=R$, [4; II. 1.10]. Let E be the set of points belonging to continua of \mathscr{G} which separate in R. Then E is closed. If $R-E \neq \phi$, let M be a component of $R-E$, and let $N=M \cap \mathrm{i}(R)$. Then there exist a finite number of sets, $\gamma_{1}, \cdots, \gamma_{q}$, such that either $\gamma_{k}=\phi$, or else γ_{k} is a continuum of $\mathscr{G}, k=1, \cdots, q$, and such that $\operatorname{fr}(N) \cap \mathrm{i}(R) \subset \bigcup_{k=1}^{q} \gamma_{k}$.

Suppose further that R^{\prime} is a polygonal region, and $R^{\prime} \subset N$. Let $Q_{1}^{\prime}, \cdots, Q_{t-1}^{\prime}$ denote the bounded components of $\pi-R^{\prime}$, if any, and let $Q_{t}{ }^{\prime}$ denote the unbounded component $\pi-R^{\prime}$. Suppose also that $Q_{k_{c}} \not \subset \subset N$, $k=1, \cdots, t$. Let \mathscr{C} be an upper semi-continuous collection of continua r^{\prime} such that $\cup \gamma^{\prime}=R^{\prime}$, and such that if $\gamma^{\prime} \in \mathscr{C}$, then there exists $\gamma^{\prime} \in \mathscr{H}$ $\gamma \in \mathscr{S}$ for which $\gamma^{\prime} \subset \gamma$. Then no continuum of \mathscr{C} separates in R^{\prime}.

Next, suppose \mathscr{F} is an upper semi-continuous collection of continua γ, for which $\subset \gamma=R^{\prime}$, and such that no continuum of \mathscr{F} separates in $\gamma \in \mathscr{F}$
R. Suppose \mathscr{L} is an upper semicontinuous collection of continua γ^{\prime},
$\underset{\gamma^{\prime} \in \mathscr{L}}{\cup} \gamma^{\prime}=R^{\prime}$, such that if $\gamma^{\prime} \in \mathscr{L}$, there exists $\gamma \in \mathscr{F}$ for which $\gamma^{\prime} \subset \gamma$. Then no continuum of \mathscr{C} separates in R^{\prime}.
8. We now state several lemmas concerning the transformation T defined in $\S 1$ and $\S 3$. It is assumed that $G\left(T, R_{0}\right)<+\infty$.

Lemma 1. If R is a polygonal region, $R \subset R_{0}$, then, for $i=1,2,3$, there exists a set $K_{i}, K_{i} \subset T_{i}(R) \subset \pi_{i}$, for which $m\left(K_{i}\right)=0$, (where $m\left(K_{i}\right)$ denotes the Lebesgue measure of K_{i}), and such that if $z_{i} \notin K_{i}$, then every m.m.c. γ for z_{i} under $T_{i} \mid R$ is also an m.m.c. for z_{i} under $T \mid R$. [1; vol. 10, p. 287].

Lemma 2. If R is a polygonal region, $R \subset R_{0}$, then for $i=1,2,3$, there exists a set $B_{i}, B_{i} \subset T_{i}(R) \subset \pi_{i}$, for which $m\left(B_{i}\right)=0$, and such that $\cup T_{i}(\gamma) \subset B_{i}$, where the union is extended over every e.m.m.c. γ under $T_{i} \mid R$ such that $\pi-\gamma$ has more than one component. [3; pp.593-6].

Lemma 3. Suppose R is a polygonal region, $R \subset R_{0}$. Suppose that, for $i=1,2,3, F_{i}$ is a bounded Lebesgue measurable set, $F_{i} \subset \pi_{i}$. Then, given $\varepsilon>0$, there exists a closed, totally disconnected set E_{i}, such that $E_{i} \subset F_{i}$ and

$$
\iint_{W_{i}} \kappa\left(z_{i} T_{i}, R\right) d z_{i}>\iint_{F_{i}} \kappa\left(z_{i}, T_{i}, R\right) d z_{i}-\varepsilon
$$

9. As stated previously, we wish to show that $a_{j}(T)=a_{k}(T), j, k$ $=1, \cdots, 6$, and it was noted in $\S 6$ that to do this, it is sufficient to show that $a_{1}(T) \geqq a_{4}(T)$ under the assumption that $G\left(T, R_{0}\right)<+\infty$. The proof that $a_{1}(T) \geqq a_{2}(T)$ when $G\left(T, R_{0}\right)<+\infty$ will be a consequence of Theorem 1 and Theorem 2, which we now consider.

Theorem 1. If R is a polygonal region, $R \subset R_{0}$, then, given $\varepsilon>0$, there is a collection Φ_{1} of class 2 in R, and a subcollection Ψ_{1} of Φ_{1} such that
(a) $g\left(T_{i}, \Phi_{1}\right)>g\left(T_{i}, R\right)-\varepsilon, \quad i=1,2,3$.
(b) $g\left(T_{1}, \Psi_{1}\right)>g\left(T_{1}, R\right)-\varepsilon$.
(c) If $\bar{R} \in \Psi_{1}$, then no m.m.c. under $T_{1} \mid \bar{R}$ separates in \bar{R}.
(d) If $\bar{R} \in \Psi_{1}$, and if, for some $i, 1 \leqq i \leqq 3$, no m.m.c. under $T_{i} \mid R$ separates in R, then no m.m.c. under $T_{i} \mid \bar{R}$ separates in \bar{R}.
(There exist similar collections Φ_{2}, Ψ_{v}, and Φ_{3}, Ψ_{3}, having similar properties relative to the transformations T_{2} and T_{3} respectively.)

Proof. (1) If R is simply connected, then Φ_{1} and T_{1} may both be chosen to consist of R alone.
(2) If R is not simply connected, let Q_{1}, \cdots, Q_{4-1} denote the bounded components of $\pi-R$ and let Q_{q} be the unbounded component of $\pi-R$. Let r_{1}, \cdots, r_{4} denote the disjoint simple closed polygons which constitute the frontier of R, in such a way that $r_{k}=\operatorname{fr}\left(Q_{k}\right), k=1, \cdots, q$. Consider $T_{1} \mid R: z_{1}=t_{1}(w), w \in R$. Let $:{ }^{\prime}$ denote the collection of all m.m.c.'s under $T_{1} \mid R$. Then $\because=$ is an upper semi-continuous collection of continua γ, such that $\bigcup_{\gamma \in \gamma} \gamma=R$, and the statements of $\S 7$ apply. Let E be the $\gamma \in$ set of points which belong to m.m.c.'s under $T_{1} \mid R$ which separate in R. E is closed.
(3) If E is empty, then Φ_{1} and T_{1} may both be chosen to consist of R alone.

If $\mathrm{i}(R) \subset E$, then $E=R$. In this case, every m.m.c. γ under $T_{1} \mid R$ is such that $\pi-\gamma$ has more than one component. Consequently, by Lemma 2, there is a set $B_{1}, B_{1} \subset T_{1}(R) \subset \pi_{i}, m\left(B_{1}\right)=0$, such that $\cup T_{1}(\gamma)$ $\subset B_{1}$, where the union is extended over every e.m.m.c. γ under $\mathrm{T}_{1} \mid R$. If $z_{1} \notin B_{1}$, we have $\kappa\left(z_{1}, T_{1}, R\right)=0$, so $g\left(T_{1}, R\right)=0$. Thus in this case we may let Φ_{1} consist of R alone, and we may let Ψ_{1} be the empty collection.
(4) From (3), we may assume $E \neq \phi, E \neq R$. Then $R-E \neq \phi . \quad R-E$ is open relative to R, and the components of $R-E$ are open relative to R, and form at most a countably infinite collection. These components will be denoted by C_{1}, C_{2}, \cdots. Let $D_{j}=C_{i} \cap \mathrm{i}(R)$ for each j. D_{i} is nonempty, open, and connected for each j.
(5) Suppose γ is an e.m.m.c. under $T_{1} \mid R$. Then $\gamma \subset \mathrm{i}(R)$. Hence either $\gamma \subset E$ or else $\gamma \subset \mathrm{i}(R) \cap(R-E)=\bigcup_{j=1} D_{j}$.

In the first case, γ separates in R, and so $\pi-\gamma$ has more than one component. By Lemma 2, there is a set $B_{1}, B_{1} \subset T_{1}(R) \subset \pi_{1}, m\left(B_{1}\right)=0$, and $\cup T_{1}(\gamma) \subset B_{1}$, where the union is extended over every e.m.m.c. γ under $T_{1} \mid R$ for which $\pi-\gamma$ has more than one component.

In the second case, since D_{i} is a component of $\bigcup_{j=1} D_{j}$, there exists j such that $r \subset D_{j}$. Hence r is an e.m.m.c. under $T_{1} \mid D_{j}$. This implies that if $z_{1} \notin B_{1}$, then $\sum_{j=1} \kappa\left(z_{1}, T_{1}, D_{j}\right)=\kappa\left(z_{1}, T_{1}, R\right)$. Since $m\left(B_{1}\right)=0$, we have $\sum_{j=1} g\left(T_{1}, D_{j}\right)=g\left(T_{1}, R\right)$. There is an integer n such that $\sum_{j=1}^{n} g\left(T_{1}\right.$, $\left.D_{j}\right)>g\left(T_{1}, R\right)-\varepsilon / 2$.
(6) For each $j, j=1, \cdots, n$, and for each $k, k=1, \cdots, q$, we have, from $\S 7$, a set $\gamma_{j k}$ such that either $\gamma_{j k}=\phi$, or else $\gamma_{j k}$ is an e.m.m.c. under $T_{1} \mid R$, such that $\operatorname{fr}\left(D_{j}\right) \cap \mathrm{i}(R) \subset \bigcup_{n=1}^{g} \gamma_{j b}$, for each $j, j=1, \cdots, n$.

Therefore, $\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right) \cap \mathrm{i}(R) \subset \bigcup_{j=1}^{n} \bigcup_{h=1}^{4} \gamma_{j l l}$, and $T_{1}\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right) \cap \mathrm{i}(R)\right) \quad$ is
a finite set. Also, $\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{i}\right) \subset\left(\bigcup_{j=1}^{n} \bigcup_{k=1}^{q} r_{j k}\right) \cup \operatorname{fr}(R)=\left(\bigcup_{j=1}^{n} \bigcup_{k=1}^{q} \gamma_{i k}\right) \cup\left(\bigcup_{k=1}^{q} r_{k}\right)$.
(7) Let $F=\bigcup_{j=1}^{n} \mathrm{c}\left(D_{j}\right) . \quad F^{\prime}$ is closed, $F^{\prime} \subset R$, and $R-F^{\prime}$ is open relative to R. Let $C_{n+1}^{\prime}, C_{n+2}^{\prime}, \cdots$ denote the components of $R-F$. These components are open relative to R, and form at most a countably infinite collection. For each j, let $D_{n+j}^{\prime}=C_{n+j}^{\prime} \cap \mathrm{i}(R)$. D_{n+j}^{\prime} is open and connected. (We are assuming $R-F \neq \phi$. If $R-F=\phi$, the proof is essentially the same and somewhat simpler.)

Also, it is easily seen that $\bigcup_{j=1} \operatorname{fr}\left(D_{n+j}^{\prime}\right) \subset\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right)\right) \cup\left(\bigcup_{k=1}^{q} r_{k}\right)$,

$$
\begin{aligned}
& \left(\bigcup_{j=1}^{n} D_{j}\right) \cup\left(\bigcup_{j=1} D_{n+j}^{\prime}\right) \cup\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right)\right) \cup\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{n+j}^{\prime}\right)\right)=R, \quad \text { and } \\
& \left(\bigcup_{j=1}^{n} D_{j}\right) \cup\left(\bigcup_{j=1} D_{n+j}^{\prime}\right) \cup\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right)\right) \cup\left(\bigcup_{k=1}^{q} r_{k}\right)=R .
\end{aligned}
$$

(8) Consider the transformation $T_{2} \mid R: z_{2}=t_{2}(w)$, $w \in R$. Let γ be an e.m.m.c. under $T_{2} \mid R$. Then either γ intersects $\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right)\right) \cup\left(\bigcup_{j=1} \operatorname{fr}\left(D_{n+j}^{\prime}\right)\right)$, or not.

In the first case, from (7), r intersects $\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right) \cap \mathrm{i}(R)$. In (6), we have seen that $T_{1}\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right) \cap \mathrm{i}(R)\right)$ is a finite set, so $T_{2}\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right)\right.$ $\cap \mathrm{i}(R))$ is a set of measure zero. Then $\cup T_{z}(\gamma) \subset T_{j}\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right) \cap \mathrm{i}(R)\right)$, where the union is extended over every e.m.m.c. γ under $T_{2} \mid R$ such that $r \cap\left(\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right)\right) \cup\left(\bigcup_{j=1} \operatorname{fr}\left(D_{n+j}^{\prime}\right)\right)\right) \neq \phi$.

In the second case, $r \subset\left(\bigcup_{j=1}^{n} D_{j}\right) \cup\left(\bigcup_{j=1} D_{n+j}^{\prime}\right)$, from (7). If there exists $j, 1 \leqq j \leqq n$, such that $\gamma \cap D_{j} \neq \phi$, then, since γ is connected, and $\gamma \cap \operatorname{fr}\left(D_{j}\right)=\phi$, it follows that $\gamma \subset D_{j}, \gamma$ is an e.m.m.c. under $T_{2} \mid D_{j}$.

If there is a j such that $\gamma \cap D_{n+j}^{\prime} \neq \phi$, then the same reasoning shows that γ is an e.m.m.c. under $T_{2} \mid D_{n+j}^{\prime}$.

Hence, if $z_{2} \notin T_{2}\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right) \cap \mathrm{i}(R)\right)$, we have

$$
\sum_{j=1}^{n} \kappa\left(z_{2} T_{2}, D_{j}\right)+\sum_{j=1} \kappa\left(z_{2}, T_{2}, D_{n+j}^{\prime}\right)=\kappa\left(z_{2}, T_{2}, R\right)
$$

Since

$$
T_{2}\left(\bigcup_{j=1}^{n} \operatorname{fr}\left(D_{j}\right) \bigcap \mathrm{i}(R)\right)
$$

is a set of measure zero, we have

$$
\sum_{j=1}^{n} g\left(T_{2}, D_{j}\right)+\sum_{j=1} g\left(T_{2}, D_{n+j}^{\prime}\right)=g\left(T_{2}, R\right)
$$

(In similar fashion, $\sum_{j=1}^{n} g\left(T_{3}, D_{j}\right)+\sum_{j=1} g\left(T_{3}, D_{n+j}^{\prime}\right)=g\left(T_{3}, R\right)$.)
(9) Choose n^{\prime} so that

$$
\sum_{j=1}^{n} g\left(T_{i}, D_{j}\right)+\sum_{j=1}^{n^{\prime}} g\left(T_{i}, D_{n+j}^{\prime}\right)>g\left(T_{i}, R\right)-\varepsilon / 2, \quad \text { for } \quad i=1,2,3 .
$$

We can determine polygonal regions $R_{j}, j=1, \cdots, n+n^{\prime}$, so that $R_{j} \subset D_{j}$ and no component of $\pi-R_{j}$ is contained in D_{j} for $j=1, \cdots, n$, and so that $R_{n+j} \subset D_{n+j}^{\prime}$, and no component of $\pi-R_{n+j}$ is contained in D_{n+j}^{\prime}, for $j=1, \cdots, n^{\prime}$, and such that

$$
\sum_{j=1}^{n+n^{\prime}} g\left(T_{i}, R_{j}\right)>\sum_{j=1}^{n^{\prime}} g\left(T_{i}, D_{j}\right)+\sum_{j=1}^{n^{\prime}} g\left(T_{i}, D_{n+j}^{\prime}\right)-\varepsilon / 2,
$$

for $i=1,2,3$.
Let $m=n+n^{\prime}$. Then

$$
\sum_{j=1}^{m} g\left(T_{i}, R_{j}\right)>g\left(T_{i}, R\right)-\varepsilon, \quad i=1,2,3
$$

and

$$
\sum_{j=1}^{n} g\left(T_{1}, R_{j}\right)>g\left(T_{1}, R\right)-\varepsilon
$$

For each $j, j=1, \cdots, n$, consider the transformation $T_{1} \mid R_{j}: z_{1}=t_{1}(w)$, $w \in R_{j}$. Let \mathscr{H}_{j} denete the collection of m.m.c.'s under $T_{1} \mid R_{j}$. Then \mathscr{C}_{j} is an upper semi-continuous collection of continua γ^{\prime}, with $\cup \gamma^{\prime}=R_{j}$. Further, if $\gamma^{\prime} \in \mathscr{C}_{g}$, there exists $\gamma \in \mathscr{O}$, such that $\gamma^{\prime} \subset \gamma$. In addition, no component of $\pi-R_{j}$ is contained in D_{j}. From $\S 7$, no continuum of \mathscr{H}_{j} separates in R_{j}, that is no m.m.c. under $T_{1} \mid R_{j}$ separates in $R_{j}, j=1$, \cdots, n.

In a similar fashion, we find from $\S 7$ that if, for some $i, 1 \leqq i \leqq 3$, no m.m.c. under $T_{i} \mid R$ separates in R, then no m.m.c. under $T_{i} \mid R_{j}$ separates in $R_{j}, j=1, \cdots, n$.
(10) Let Φ_{1} be the collection consisting of the disjoint polygonal regions R_{1}, \cdots, R_{m}, and let Ψ_{1} be the collection consisting of $\mathrm{R}_{\mathrm{i}}, \cdots, R_{n}$. These collections satisfy the requirements of the theorem. Assertions (a), (b), (c), and (d) of the theorem have been verified in (9).
10. We now prove the following.

Theorem 2. Let R be a polygonal region, $R \subset R_{0}$, and give $\varepsilon>0$. Let $i_{1}, \cdots, i_{h}, \quad 1 \leqq h \leq 3$, denote those subscripts, if any, such that no
m.m.c. under $T_{i_{j}} \mid R$ separates in $R, j=1, \cdots, h$. Then there exists a collection Φ of class 1 in R such that $g\left(T_{i_{j}}, \Phi\right)>g\left(T_{i_{j}}, R\right)-\varepsilon, j=1, \cdots, h$.

Proof. We shall prove the theorem in the case where no m.m.c. under $T_{i} \mid R$ separates in R, for $i=1,2,3$. Then proofs in the remaining case are similar, and simpler.
(1) If R is simply connected, then Φ may be chosen to consist of R alone.
(2) If R is not simply connected, then let Q_{1}, \cdots, Q_{q-1} denote the bounded components of $\pi-R$, and let Q_{q} denote the unbounded component of $\pi-R$. Let r_{1}, \cdots, r_{q} denote the disjoint simple closed polygons which constitute the frontier of R in such a way that $r_{k}=\operatorname{fr}\left(\mathrm{Q}_{k}\right), k=1, \cdots, q$.

By Lemma 1, there is for $i=1,2,3$, a set $K_{i}, K_{i} \subset T_{i}(R) \subset \pi_{i}$, such that $m\left(K_{i}\right)=0$, and such that if γ is an m.m.c. under $T_{i} \mid R$, and if $T_{i}(\gamma) \notin K_{i}$, then γ is an m.m.c. under $T \mid R$. By Lemma 3, there is for $i=1,2,3$, a closed and totally disconnected set E_{i}, such that $E_{i} \subset\left(\pi-K_{i}\right)$ $\cap T_{i}(R)$, and such that

$$
\iint_{E_{i}} \kappa\left(z_{i}, T_{i}, R\right) d z_{i}>\iint_{\left(\pi-K_{i}\right) \cap T_{i}(R)} \kappa\left(z_{i}, T_{i}, R\right) d z_{i}-\frac{\varepsilon}{2} .
$$

Since

$$
\iint_{K_{i}} k\left(z_{i}, T_{i}, R\right) d z_{i}=0
$$

we have

$$
\iint_{E_{i}} \kappa\left(z_{i}, T_{i} R\right) d z_{i}>g\left(T_{i}, R\right)-\frac{\varepsilon}{2} .
$$

Let $\bar{E}_{i}=\left(T_{i} \mid R\right)^{-1} E_{i}$, for $i=1,2,3$. Then \bar{E}_{i} is closed, and also, the components of $\overline{E_{i}}$ are m.m.c.'s under $T_{i} \mid R$. No component of \bar{E}_{i} separates in R, and $\overline{E_{i}}$ does not separate in R, for $i=1,2,3,[2 ; \mathrm{p} .117]$.
(3) Let γ_{1} be a component of \bar{E}_{1}. Suppose $\gamma_{1} \cap \overline{E_{2}} \neq \phi$. Then there is a component γ_{2} of \bar{E}_{2} such that $\gamma_{1} \cap \gamma_{2} \neq \phi . \quad \gamma_{1}$ and γ_{2} are, respectively, m.m.c.'s under $T_{1} \mid R$ and $T_{2} \mid R$, while $T_{1}\left(\gamma_{1}\right) \notin K_{1}$ and $T_{2}\left(\gamma_{2}\right) \notin K_{2}$. Consequently, γ_{1} and γ_{2} are both m.m.c.'s under $T \mid R$, so $\gamma_{1}=\gamma_{2}$.

Therefore, if γ_{1} is a component of \bar{E}_{1}, then $\gamma_{1} \cap \bar{E}_{2}$ is connected. Thus $\bar{E}_{1} \cup \bar{E}_{2}$ does not separate in R, [2; p. 120].

Let γ_{3} be a a component of \bar{E}_{3}. As above, either $\gamma_{3} \cap \overline{E_{1}}=\phi$ or else $\gamma_{3} \cap \bar{E}_{1}=\gamma_{3}$, and either $\gamma_{3} \cap \bar{E}_{2}=\phi$ or else $\gamma_{3} \cap \bar{E}_{2}=\gamma_{3}$. Hence, $\gamma_{3} \cap\left(\bar{E}_{1}\right.$ $\left.\cup \overline{E_{2}}\right)$ is connected, and so $\bar{E}_{1} \cup \bar{E}_{2} \cup \bar{E}_{3}$ does not separate in $R,[2 ; \mathrm{p} .120]$.
(4) Let $\bar{E}=\bar{E}_{1} \cup \widehat{E}_{2} \cup \bar{E}_{3} . \bar{E}$ is closed, so $\pi-\overline{E^{\prime}}$ is open. Also, since \bar{E} does not separate in k, the components $\mathrm{Q}_{k}, k=1, \cdots, q$, of $\pi-R$ are contained in the same component of $\pi-\bar{E}$. Denote this component by D. Since D is open and connected, there exist polygonal arcs $p_{k}, k=1$, $\cdots, q-1$, so that for each $k, p_{k} \cap \bar{E}=\phi$, and $p_{k} \cup S_{k} \cup S_{q}$ is connected, where $S_{k}=\mathrm{Q}_{k} \cup r_{k}, k=1, \cdots, q$.

Let $G=\mathrm{i}(R)-\bigcup_{k=1}^{q-1} p_{k}$. Then G is open, $G \subset R$. Let $D_{1}, \cdots, D_{j}, \cdots$ be the components of G. For each $j, D_{j} \subset R$, and $\operatorname{fr}\left(D_{j}\right) \subset \operatorname{fr}(G) \subset \pi-G$ $=\bigcup_{k=1}^{q-1}\left(p_{k} \cup S_{k} \cup S_{q}\right) \cup S_{q}$. Then $\pi-G$ is connected, so $\pi-G$ is contained in a single component of $\pi-D_{j}$. But each component of $\pi-D_{j}$ contains just one component of $\operatorname{fr}\left(D_{j}\right)$, so $\pi-D_{j}$ has only one component, that is, D_{j} is a simply connected domain, [2; p. 118].
(5) If, for some $i, 1 \leqq i \leqq 3, \gamma$ is an e.m.m.c. under $T_{i} \mid R$, then $r \subset i(R)$. Either $r \cap\left(\bigcup_{k=1}^{q-1} p_{k}\right) \neq \phi$, or else $r \subset G$.

In the first case, $T_{i}(\gamma) \notin E_{i}$, for otherwise

$$
r \subset\left(T_{i} \mid R\right)^{-1} T_{i}(\gamma) \subset\left(T_{i} \mid R\right)^{-1} E_{i}=\overline{E_{i}},
$$

while

$$
\bar{E}_{i} \cap\left(\bigcup_{k=1}^{q-1} p_{k}\right)=\phi .
$$

Hence $\gamma \not \subset G$ implies $T_{i}(\gamma) \notin E_{i}$.
If $\gamma \subset G$, then since γ is connected, it follows that γ is contained in a component D_{j} of G, and γ is an e.m.m.c. under $T_{i} \mid D_{j}$.

Therefore, if $z_{i} \in E_{i}$, then each e.m.m.c. γ under $T_{i} \mid R$, for which $T_{i}(\gamma)=z_{i}$, is also an e.m.m.c. under $T_{i} \mid D_{j}$, for some j. Then

$$
\iint_{E_{i}} \kappa\left(z_{i}, T_{i}, R\right) d z_{i}=\sum_{j=1} \iint_{E_{i}} \kappa\left(z_{i}, T_{i}, D_{j}\right) d z_{i}
$$

and

$$
\sum_{j=1} g\left(T_{i}, D_{j}\right) \geqq \sum_{j=1} \iint_{F_{j}} \kappa\left(z_{i}, T_{i}, D_{j}\right) d z_{i}=\iint_{F_{i}} \kappa\left(z_{i}, T_{i}, R\right) d z_{i}>g\left(T_{i}, R\right)-\frac{\varepsilon}{2}
$$

for $i=1,2,3$.
(6) There is an integer n for which

$$
\sum_{j=1}^{n} g\left(T_{i}, D_{j}\right)>g\left(T_{i}, R\right)-\frac{\varepsilon}{2},
$$

for $i=1,2,3$. Each domain D_{3} is simply connected, so there is a collection R_{1}, \cdots, h_{n} of class 1 , such that

$$
R_{j} \subset D_{j} \subset R, \text { and } g\left(T_{i}, R_{j}\right)>g\left(T_{i}, \mathrm{D}_{j}\right)-\frac{\varepsilon}{2 n}
$$

for $j=1, \cdots, n, i=1,2,3$. Then

$$
\sum_{j=1}^{n} g\left(T_{i}, R_{j}\right)>g\left(T_{i}, R\right)-\varepsilon
$$

and the collection R_{1}, \cdots, R_{n} serves as the collection Φ in the statement of Theorem 2.
11. From Theorem 1 and Theorem 2, the following theorems are readily proved.

Theorem 3. If R is a polygonal region, $R \subset R_{0}$ and if $\varepsilon>0$, then there is a collection Φ_{1} of class 1 in R such that $g\left(T_{1}, \Phi_{1}\right)>g\left(T_{1}, R\right)-\varepsilon$.
(Similar collections Φ_{2} and Φ_{3} exist relative to the transformations T_{2} and T_{3}.)

Theorem 4. If R is a polygonal region, $R \subset R_{0}$, and if $\varepsilon>0$, then there is a collection Φ_{3} of class 1 in R such that $g\left(T_{1}, \Phi_{3}\right)>g\left(T_{1}, R\right)-\varepsilon$, and $g\left(T_{v}, \Phi_{3}\right)>g\left(T_{2}, R\right)-\varepsilon$.
(Similar collections Φ_{2} and Φ_{1} exist relative to the transformations T_{3} and T_{1}, and to the transformations T_{2} and T_{3}.)

Theorem 5. If R is a polygonal region $R \subset R_{0}$, and if $\varepsilon>0$, then there is a collection Φ of class 1 in R, such that $g\left(T_{i}, \Phi\right)>g\left(T_{i}, R\right)-\varepsilon$, for $i=1,2,3$.
12. From Theorem 5, it follows that if R is a polygonal region, $R \subset R_{0}$, and if $\varepsilon>0$, then there is a collection of class 1 in R, such that $G(T, \Phi)>G(T, R)-\varepsilon$.

This in turn implies, of course, that if Ψ is a collection of class 2 in R_{0}, and if $\varepsilon>0$, then there is a collection Φ of class 1 in R_{0}, such that $G(T, \Phi)>G(\mathrm{~T}, \Psi)-\varepsilon$. Hence $a_{1}(T) \geq a_{2}(T)$, and so each of the functionals $\mathrm{a}_{j}(T), j=1, \cdots, 6$, defined in $\S 3$, yields the same value. We have shown in particular that the essential area of Reichelderfer, $a_{3}(T)$ is equal to the lower area of Radó, $a_{6}(T)$.

This paper constitutes a portion of doctoral dissertation written at the Ohio State University under Professor P. V. Reichelderfer.

References

1. L. Cesari, Caratterizzazione analitica della superficie continue di arca finita secondo Lebesgue, Ann. Scoula Norm. Sup. Pisa, Serie II., 10 (1941), 253-294, 11 (1942), 1-42.
2. M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press, Cambridge, 1934.
3. T. Rado, Two-dimensional concepts of bounded variation and absolute continuity, Duke Math. J., 14, (1947), 587-608.
4. .-. Length and area, Amer. Math. Soc. Colloquium Publications, 30, New York, 1948.
5. P. V. Reichelderfer, On bounded variation and absolute continuity for parametric representations for continuous surfaces, Trans. Amer. Math. Soc., 53 (1943), 251-291.

Montana State University

