
FUNCTIONALS ASSOCIATED WITH A CONTINUOUS

TRANSFOMATION

WM. M. MYERS, JR.

1* Let T: z=t(w), weR0, be a continuous transformation from a
simply connected polygonal region RQ, in the Euclidean plane π, into
Euclidean three-space. The transformation T is a representation for
an F-surface of the type of the 2-cell in Euclidean three-space, which
will be called, in brief, a surface S. [4, II. 3.7, II. 3.44].

In connection with transformation T, T. Radό defines a non-negative
(possibly infinite) functional a(T), which he shows is independent of the
representation T for the surface S. [4, V. 1.6]. Radό calls a(T) the
lower area of the surface, and it plays an important role in the study
of surface area.

P. V. Reichelderfer has also defined a non-negative (possibly in-
finite) functional eA(β), which he calls the essential area of the surface
S. [5, p. 274]. It too is an important concept in surface area theory.

The question arises as to what relationship exists between the lower
area a(T) and the essential area eA(S). In this paper, we show that eA(S)
=a(T). In addition, we introduce certain other functionals, which we
show yield the same value as that of eA(S) and a(T). These functionals,
as well as eA(S) and α(T), will be defined in § 3, after a discussion in
§ 2 of necessary topological concepts.

2. Let M be a metric space. If ACM9 then M—A, c(A), i(A),
and ϊr(A) denote respectively, the complement, closure, interior, and
frontier of A. lί AC.M, BC.M, then A\JB, A(\B, and A-B denote
the union, intersection, and difference of A and B. φ denotes the empty

CO OO

set. If {An} is a sequence of subsets of M, then \J An and Γ\ An
7 1 = 1 71 <= 1

denote respectively the union and intersection of these sets.
Let F: z=f(w), weM, be a continuous transformation from a

metric space M into a metric space N. If PCM, the symbol F\P
denotes the transformation F with its domain restricted to P.

If zeN, let (F\P)~ιz denote the set of points w such that ιoeP,
f(w)=z. If {F\P)-ιzφψ, then the components of (F\P)-ιz are called
maximal model components for z under F\P. If a maximal model
component for z under F\P is a continuum, then it is called a maximal
model continuum (henceforth abbreviated m.m.c.) for z under F\P.

Now let F: z=f{w)y ιveR{), be a continuous transformation from a
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simply connected polygonal region Ro in the Euclidean plane π into the
Euclidean plane Έ.

If R is a Jordan region, RcZR{), let Clf •• ,CW_1 denote the interior
boundary curves, if any, of R, oriented in the negative sense, and let
Cn denote the exterior boundary curve of R, oriented the positive sense.

If z e F( 0 C\), let μ(z, F, R) = 0. If z 0 F( \J Ct), let /i(z, F, ΛJ) = Σ K*>

F, C€), where λ(z, F, C4) denotes the topological index of z with respect
to the oriented closed curve F{Ct)9 [4, II. 4.34, IV. 1.24]. If zeΈ,
then μ(z, F, R) is an integer.

If P is a Jordan region or a domain, PcZR09 we shall call P an
admissible set.

Suppose P is an admissible set, and consider F\P: z=f(w), we P.
Suppose r is a maximal model component for z under F\P. If, for
every open set G containing γ, there is a Jordan region R such that
r C ί ( β ) , RCZGΓ\i(P), (note that this implies that r is a continuum),
and such that μ(z, F,R)^0, then we say that γ is an essential maximal
model continuum, (henceforth abbreviated e.m.m.c), for z under F\P.

If P and Q are admissible sets, QCZP, and if zeπ, then κ(z,F\P,
Q) will denote the number of e.m.m.c.'s for z under F\P which are
contained in i(Q). κ(z, F\P, Q) is possibly infinite, while, if finite, it
is a non-negative integer. It may be shown that

Φ, F\ Q, Q) = «(i, F | P, Q) = φ, F, Q) .

Further, it is clear that if Pιy ••-, Pw is a collection of admissible
n _

sets with disjoint interiors, and if PjClQ for i = l , •••, n, then X/c(^,

F, P , ) ^ ^ , F, Q).
If P is an admissible set, then κ(z, F, P), zβπ, is a lower semi-

continuous function, and hence is a Lebesgue measurable function.

Iί ιc(Zj Fy P)dz will denote the Lebesgue integral of κ,(z, F, P) over

the set F(P).

3. Let Λo be a simply connected polygonal region in the Euclidean
plane π. We shall consider the following types of collections of sets
(where it is to be understood that the collections consist of a finite
number of sets, each of which is contained in Ro):

(1) Collections of disjoint simply connected polygonal regions.
(2) Collections of disjoint polygonal regions.
(3) Collections of simply connected Jordan regions with disjoint

interiors.
(4) Collections of Jordan regions, with disjoint interiors.
(5) Collections of disjoint simply connected domains.
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(6) Collections of disjoint domains.

Collections of the type described in (j) will be called collections of
class j,j=l, •••, 6. If AdRo, and if Φ is a collection of class j such
that ReΦ implies J?CA, then we shall say that Φ is a collection of
class j in A.

The transformation T: z=t(w), weRQ, described in § 1, may be
written T: z=t(w) = (Xi(w), x λ(w), x3(w)), weR0, where xx{w), χ.2(w), and
x3(w) are the rectangular coordinates of t(w). We now define three
plane transformations.

) , xd{w))>

Xi{w)), weR0

T3: z3=
s=ts(w) = (x1(w)9 x*(w)), weR0.

For i = l , 2, 3, Tt: Zi — ti(w), weRΰf is a continuous transformation from
Ro into the Euclidean plane π%.

If P is an admissible set, (see § 2), let g(Tu P ) = ( ί φif Tif P)dzi ,
J J ΓiCP)

for i = l , 2, 3, and let G(T, P ) = [ Σ (g(Tt, P))ψ\ These quantities are
i = l

non-negative and possibly infinite.
If Φ is a collection of admissible sets, let g(Ti9 Φ)= Σ ^ ( ^ , P), for

i=l, 2, 3, and let G(T, Φ)= ΣG(Γ, P).

For j=l, ---,6, let α/Γ)=l.u.b. G(T, Φ), where the least upper
bound is taken with respect to all collections Φ of class j . These qu-
antities are non-negative, possibly infinite. We note that α6(T) is pre-
cisely the lower area a(T), and a3(T) is the essential area eA(S), discussed
in § 1, [4, V. 1.3], [5, p. 274].

The purpose of this paper is to show that the functional α/T),
i = l , •••, 6, all yield the same value.

4 It is quite obvious from the definitions set forth in § 3. that
^(Γ)^α 2(Γ)^α 4(T), aάT)^a*(T)^at(T), and ab(T)<a6(T).

Further, if Ru -—,Rn is a collection of class 3, then i(#j), •••, i(Rn)
is a collection of class 5, while, for k=l, •• ,n, and i = l , 2, 3, we have,
(see § 2), φ t , ϊ7,, ie f c)-=φ,, Γ t , i(βfc)). From this it follows that α3(Γ)

The same type of reasoning shows that a£Γ)<L<tJί!Γ).

5 If D is a domain, DdR0> then there exists a sequence {Rn}

of polygonal regions, such that i?nCi(#n + 1) for each w, and \J Rn=D,

[4, I. 2.48]. Then limβfe, 71,, β m ) = φ i , Tt,D), for ί = l , 2, 3, [4; IV.
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1.43], and this implies that aQ(T)<La2(T).

In addition, if D is simply connected, then the polygonal regions
RnJ w = l , 2, •••, may be chosen to be simply connected, and thus aύ(T)

6. The inequalities in § 4 and in § 5 yield a1(T)=a3(T)=aΰ(T) and
α2(T)=α,(T)=αβ(T), while a^^a^T). To establish the equality of
these six functionals, therefore, it is sufficient to show that CLi(T)^>a2(T).

Note that if G(Γ, i20H + OT, then αJL(Γ)=4 c», and so a^T^a^T).
Thus we shall assume henceforth, without loss of generality, that
G{T, RQ)<^+OO. This in turn implies that if Φ is any collection of class

j , j=l, ., 6, then G(T, Φ)^ Σ 9(Ti9 Φ)^Σg(Tί, i?0)^3G(T, Ro). Con-

sequently, a3(T)<L3G(T, Λ o ) < + oo, that is, a3(T) is finite, j=l, •••, 6.

7 In this section, we suppose that all sets considered are subsets
of the Euclidean plane π.

Suppose A and B are connected sets, C is a closed set and A\J B
CZπ — C. We shall say that C separates A and B if A and i? are con-
tained in distinct components of π—C.

Suppose that C is closed, C C S , where R is a polygonal region.
Let Qιy •••, QQ_i denote the bounded components of π—R, (if any), and
let Qq be the unbounded component of π—R. We shall say that C
separates in R if there exists k, l<^k<Lq — l, such that C separates Qq

and Qk.
Let gf be an upper semi-continuous collection of continua γ, such

that U r=-B, [4; II. 1.10]. Let i? be the set of points belonging to

continua of 5? which separate in R. Then E is closed. If R—Eφφ,
let M be a component of R—E, and let N=Mf\i(R). Then there exist
a finite number of sets, γ19 •••, rQ> such that either γk=φ, or else r* is

Q

a continuum of fέ̂ , A=l, •••. g, and such that fr(Λ0Γ\i(^) C U h

Suppose further that R' is a polygonal region, and R C.N. Let
Qί, — , Qί_χ denote the bounded components of π—R\ if any, and let
Q/ denote the unbounded component π — R\ Suppose also that Q^ςtN,
/c=l, — , t. Let 3ίf be an upper semi-continuous collection of continua
γf such that \J γf=R, and such that if γ' e J%f, then there exists

γ e & for which f dγ. Then no continuum of Sίf separates in R'.
Next, suppose JS^ is an upper semi-continuous collection of continua

γ, for which C y—R', and such that no continuum of ^"separates in

R. Suppose J^f is an upper semicontinuous collection of continua γ\
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\J γ'=R, such that if γ'e ,5?, there exists γ e ^ for which r C τ

Then no continuum of jgf separates in R.

8. We now state several lemmas concerning the transformation T
defined in § 1 and §3. It is assumed that G(T, R0)<^+oo.

LEMMA 1. // R is a polygonal region, RCZRQ, then, for i=l, 2, 3,
there exists a set Kίf KidTi(R)CZπiy for which m(Kί)=Q, {where m{K^)
denotes the Lebesgue measure of i Q , and such that if z h 0 Kiy then every
m.m.c. γ for zh under T% \R is also an m.m.c. for zt under T\R. [1; vol.
10, p. 287].

LEMMA 2. If R is a polygonal region, RCZR{>, then for i=l, 2, 3,
there exists a set Bίy BιClTlR)CZπi, for which m{Bi)=0, and such that
\JTi{γ)CZBi, where the union is extended over every e.m.m.c. γ under
TL\R such that π — y has more than one component. [3; pp.593-6].

LEMMA 3. Suppose R is a polygonal region, RCZRO. Suppose that,
for i = l , 2, 3, Ft is a bounded Lebesgue measurable set, FiCZπi. Then,
given ε > 0 , there exists a closed, totally disconnected set Eif such that
EidFi and

9. As stated previously, we wish to show that a3{T)=ak(T), j , k
= 1 , •••, 6, and it was noted in § 6 that to do this, it is sufficient to
show that <h(T)^>SLAT) under the assumption that G{T, #0)<-fcxD. The
proof that αi(Γ)^α 2(Γ) when G{T, JS0)<4-oo will be a consequence of
Theorem 1 and Theorem 2, which we now consider.

THEOREM 1. If R is a polygonal region, RCZRQ, then, given
there is a collection Φλ of class 2 in R, and a subcollection Ψτ of Φ1 such
that

(a) g(Ti9 Φι)>g(Ti, R)-ε , i = l , 2, 3.

(b) g(T19 Ψ1)>g{Tι,R)-e.

(c) If Re¥u then no m.m.c. under Tx \R separates in R.

(d) If Re ψu and if, for some i, I < l i < i 3 , no m.m.c. under Tt\R

separates in R, then no m.m.c. under Tt\R separates in R.

(There exist similar collections ΦZf Ψ2, and Φ3, Ψd, having similar
properties relative to the transformations T^ and T3 respectively.)
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Proof. (1) If li is simply connected, then Φx and Ψλ may both
be chosen to consist of R alone.

(2) If R is not simply connected, let Qlf , Qtι^ι denote the bounded
components of π—R and let Qq be the unbounded component of π—R.
Let rτ, , rq denote the disjoint simple closed polygons which constitute
the frontier of R, in such a way that r,u=fr(Qk), &=1, •••,</. Consider
Tλ\R: zι=-=tι(tv), iceR. Let !C denote the collection of all m.m.c.'s
under T, | R. Then .0 is an upper semi-continuous collection of continua
γ, such that \J γ=R, and the statements of § 7 apply. Let E be the

set of points which belong to m.m.c.'s under TV\R which separate in
i?, E is closed.

(3) If E is empty, then Φγ and Ψ{ may both be chosen to consist
of R alone.

If i(R)CZE, then E=R. In this case, every m.m.c. γ under Tλ\R
is such that π — γ has more than one component. Consequently, by
Lemma 2, there is a set Bu Bι(ZT,(R)CZτrι, m{Bx) = Q, such that \JTx(γ)
C-B.I, where the union is extended over every e.m.m.c. γ under T, | R.
If z1&B1, we have κ(z{, Tlf R) = 0, so g(Tlf ϋ?)=0. Thus in this case we
may let Φ] consist of R alone, and we may let Ψτ be the empty collection.

(4) From (3), we may assume Έφφ, EφR. Then R-Eφφ. R-E
is open relative to R, and the components of R-~E are open relative to
R, and form at most a countably infinite collection. These components
will be denoted by d, G\, ••. Let Dj^=C,Γ\KR) for each j . D, is non-
empty, open, and connected for each j .

(5) Suppose γ is an e.m.m.c. under T{\R. Then γ CZi(R). Hence
either γ CE or else γ C_i(R) Γ\ (R-E)= VJ D,r

J = l

In the first case, γ separates in R, and so π — γ has more than one
component. By Lemma 2, there is a set BL, Bι(ZT1(R)CZ^^ m(S1)==0,
and \JTι(γ)CZB{, where the union is extended over every e.m.m.c. γ
under TL\R for which π — γ has more than one component.

In the second case, since D1 is a component of \JD1y there exists

j such that γdDr Hence γ is an e.m.m.c. under T^D^ This implies
that if zL 0 5L, then Σ φl9 Tlf Dj)=φι, Tl9 R). Since m(S 1)=0, we

l

have Σ ^ ( ^ i . D3) = g(Tu R). There is an integer n such that

(6) For each j,j=l, •••, n, and for each k, k=l, •••, q, we have,

from § 7, a set γjΊc such that either γj7c=φ, or else γjJc is an e.m.m.c.

under % \ R, such that fr {D3) f\ Ί{R) C U γ1Ίi, for each j , j=l, , w.
i =1

Therefore, 0 f r (D}) f\ i(R) c O O r3κ, and Γ,( 0 f r (Dj) f\ \{R)) is
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a finite set. Also, (j fr (D,) C(U U ?>) W fr (Λ')=(0 W Tn) I/ (V/ r ί ; ).

(7) Let F=\J cφ,) ^ is closed, f C Λ , and R-F is open relative

to i?. Let C^+Ί, C'n+29 denote the components of R—F. These
components are open relative to R, and form at most a countably in-
finite collection. For each j , let D'n+j=C'n+:fΓ\i(R). D'n+j is open and
connected. (We are assuming R—Fφφ. If R — F=φ, the proof is
essentially the same and somewhat simpler.)

Also, it is easily seen that \J fr (Dr

n+j) C ( 0 fr (£>,)) \J (\J rfc),
j=l j = l fc=l

( 0 A) U (W Z>;+,) U ( 0 fr (A)) U (U fr(Z?;+,))=K , and
j=ι j - i j=i ;=i

(U £ ,)U(U D'n+,)\J(\J ίr(Dj))\J{(j rk)=R.

(8) Consider the transformation T2\R: zi=t2(w), weR. Let ^ be an

e.m.m.c. under T2\R. Then either γ intersects (\J ίτ(Dj))\J(\J fr(Z);+Λ),

or not.

In the first case, from (7), γ intersects \J ίτ{D3)Γ\\{R). In (6),

we have seen that Tλ{\J ίτ{D3) f\i{R)) is a finite set, so T,(\Jfr(D3)

Πi(β)) is a set of measure zero. Then \J T,(γ) CT,((j MD3) Γ\i(R))f

where the union is extended over every e.m.m.c. γ under T2\R such

that γ Γ\ ((0 fr (A)) U (U fr {Πn+,)))φφ .

In the second case, r C ( U D3)\J(\J D'n+j), from (7). If there exists
.7 = 1 J = l

j», l<Lj<Ln, such that γ f\Djφφ9 then, since 7- is connected, and
γ f\fr(Dj)=φ, it follows that rC.Dp γ is an e.m.m.c. under T*,\Dj.

If there is a i such that y (\D'n+5 φφ, then the same reasoning shows
that γ is an e.m.m.c. under T.z\D'n+j.

Hence, if ^ 0 ^ ( 0 fr (A)Πi(-β)). we have
.7 = 1

Since

is a set of measure zero, we have

11

71 o, D'n +)~g(T.>, R).
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(In similar fashion, f>g{T,, Dj)+^9(T99 D'n+j)^g{T3, R).)

(9) Choose n' so that

Jig(Ttf D'n+J)>g(Tt, R)-ej2, for i = l , 2, 3.

We can determine polygonal regions Rjy j=l, • - ,nΛ-nt, so t h a t
RjdDj and no component of r—i?7 is contained in Dj for i = l , •••, n,
and so t h a t Rn+jC.D'n+j, and no component of π — Rn+j is contained in
Z>ή+j, for ; / = l , " ,ri, and such t h a t

* , D'n+j)-el2 ,

for i = l , 2, 3.
Let m=n-\-nf. Then

4, Rj)>g(Tίf R)-e , i = l , 2, 3,

and

For each i, j=l, •••, w, consider the transformation TΊIJBj: zι=tL(w)f

j . Let i ^ denete the collection of m.m.c/s under Tτ\Rj. Then
r ^ is an upper semi-continuous collection of continua γ', with \J γ' ==Rj.

Further, if γf 6 <9έf3, there exists γe 27, such that r'dr. In addition,
no component of π—R3 is contained in Όj. From § 7, no continuum of
, 3 ^ separates in Rj9 that is no m.m.c. under TL\Rό separates in Rj, j=l,
•••, n.

In a similar fashion, we find from §7 that if, for some i, l<l i<13,
no m.m.c. under Tt\R separates in i?, then no m.m.c. under T^Rj sepa-
rates in Rj9 j=l, •••, n.

(10) Let (?L be the collection consisting of the disjoint polygonal
regions R19 , Rm, and let Ψx be the collection consisting of Rlf , Rn.
These collections satisfy the requirements of the theorem. Assertions
(a), (b), (c), and (d) of the theorem have been verified in (9).

10, We now prove the following.

THEOREM 2. Let R be a polygonal region, RCZRQ, and give ε > 0 .
Let il9 •• ,ih9 1<IA<ΞI3, denote those subscripts, if any, suck that no
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m.m.c. under TtJ\R separates in R, j=l, •••, h. Then there exists a

collection Φ of class 1 in R such that g(Tijf Φ)^>g(Tij, R) — ε, j=l, , h.

Proof. We shall prove the theorem in the case where no m.m.c.
under Tt\R separates in #, for i = l , 2, 3. Then proofs in the remaining
case are similar, and simpler.

(1) If R is simply connected, then Φ may be chosen to consist of
R alone.

(2) If R is not simply connected, then let Qιy •••, Q^^ denote the
bounded components of π—R, and let Qq denote the unbounded component
of π — R. Let rlf , rq denote the disjoint simple closed polygons which
constitute the frontier of R in such a way that rfc=fr(Qfe), k=l, •••, q.

By Lemma 1, there is for i = l , 2, 3, a set Ktf KίcZTi(R)cZ7ri, such
that m(Kι)~0, and such that if γ is an m.m.c. under Tt\R, and if
Tt(r)φKl9 then γ is an m.m.c. under T\R. By Lemma 3, there is for
i = l , 2, 3, a closed and totally disconnected set Eif such that Ei(Z(π--Ki)
f\Tt{R)9 and such that

Since

we have

[f , Γf R)ctet>g(Tlt R)-
2

Let E^iT^RY^i, for i = l , 2, 3. Then ^ is closed, and also, the

components of Et are m.m.c/s under T,ι\R. No component of ^ sepa-

rates in R, and E,h does not separate in R, for ΐ = l, 2, 3, [2; p. 117].

(3) Let 7Ί be a component of JEΊ. Suppose γx[\E>zφφ. Then there

is a component γ^ of ^ such that 7ιΓ\T'zΦΦ ΓI ̂ nd 72 are, respectively,
m.m.c.'s under ΓJJB and T«\R, while Tiγ^φK, and T^$Kλ. Con-
sequently, ri and 7-2 are both m.m.c.'s under T\R, so ri=r2

Therefore, if γx is a component of Eu then γλf\Et is connected.

Thus Ei\JE2 does not separate in i?, [2; p. 120].

Let T:i be a a component of E3. As above, either γdΓ\E1=φ or else

^ i ^ r i, and either γ3Γ\E^φ or else γ3Γ\E2^γs. Hence, r 3 Π(^i

) is connected, and so Eχ\JE2\JEd does not separate in i?, [2; p. 120].



526 WM. M. MYERS, JR.

(4) Let E=E\\JK\)Ez* Έ is closed, so π—E is open. Also, since

E does not separate in R, the components Qk, Jc=l, •••, q, of π — R are

contained in the same component of π — E, Denote this component by

D. Since D is open and connected, there exist polygonal arcs pk, k=l,

•••, q — 1, so that for each k, pkΓ[E=φ, and pkι\JSk\JSq is connected,

w h e r e Sk=Qk\Jrk, k=l, ••-, q.

Let G=Ί(R)-\Jpk. Then G is open, G C Λ . Let DL, ••-,£>„ •••

be the components of 6r. For each j , DjCZR, and ΐr (Dj)CZtr(G)Clπ—G
q-ί

= VJ (PkVJSk\JSq)\JSq. Then π — G is connected, so π — G is contained

in a single component of π—JJj. But each component of rc — Dj contains
just one component of fr (Dj), so π—D3 has only one component, that
is, Dj is a simply connected domain, [2; p. 118].

(5) If, for some i, 1 < ^ < ; 3 , γ is an e.m.m.c. under Tt\R, then

{\JrCi(B). Either γ (\{\J v*)ΦΦ, or else

In the first case, T^^E^ for otherwise

while

Hence rζίG implies Tt(r)$Et.

If γdG, then since 7- is connected, it follows that γ is contained
in a component Ό5 of Cr, and γ is an e.m.m.c. under Tt\D3.

Therefore, if z^E^ then each e.m.m.c. r under Tt\R, for which
Ti{γ)=zu is also an e.m.m.c. under Tt\DJ9 for some j. Then

and

j = l .7 = 1 JJ^j JJ^ί 2

for i = l , 2, 3.

(6) There is an integer n for which
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for i = l , 2, 3, Each domain L)̂  is simply connected, so there is a collec-
tion Ri9 , Rn of class 1, such that

RJCZDJCR, and g(Ti9 Rj)>g(Ttf D , ) - ε ,

for i = l , •••, », i=l, 2, 3. Then

ΣftfΓ,, R])>g(Ti,R)-ε,

and the collection JBX, •• ,i?n serves as the collection 0 in the statement
of Theorem 2.

l l From Theorem 1 and Theorem 2, the following theorems are
readily proved.

THEOREM 3. If R is a polygonal region, R(ZR0 and if ε > 0 , then
there is a collection Φλ of class 1 in R such that g(T19 0j)^>g(Tu R) — ε.

(Similar collections Φ, and Φό exist relative to the transformations
Γ2 and Γ3.)

THEOREM 4. If R is a polygonal region, RdR{)y and if ε > 0 , then
there is a collection Φz of class 1 in R such that g(Tu Φό)^>g(Tu R) — ε,
and g(TifΦ3)>g(TifR)-e.

(Similar collections Φ2 and φι exist relative to the transformations
T3 and Tl9 and to the transformations Tz and Tό.)

THEOREM 5. If R is a polygonal region RCZRQ, and if ε > 0 , then
there is a collection Φ of class 1 in R, such that g(Tίf Φ)^>g(Ti, R) — ε,
for i = l , 2, 3.

12* From Theorem 5, it follows that if R is a polygonal region,
RCZRo, and if ε > 0 , then there is a collection of class 1 in R, such
that G(T, Φ)>G(T,R)-ε.

This in turn implies, of course, that if Ψ is a collection of class 2
in RQ, and if ε > 0 , then there is a collection Φ of class 1 in Ro, such
that G(T,Φ)>G(T,Ψ)-ε. Hence α^ΓJ^αXΓ), and so each of the
functional a/27), i = l , β ,6, defined in §3, yields the same value.
We have shown in particular that the essential area of Reichelderfer,
a3(T) is equal to the lower area of Radό, a6(T).

This paper constitutes a portion of doctoral dissertation written at
the Ohio State University under Professor P. V. Reichelderfer.
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