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1. Introduction. A recent approach to measure theory is the in-
troduction of measures as functionals on spaces of continuous functions
[2]. To the probabilist, however, the measures are of primary concern,
with the functions occurring as integrands playing a secondary role as
random variables. We are thus motivated to reverse the modern pro-
cedure. We shall introduce various topologies into spaces of measures
and shall in each case investigate the dual space consisting of all con-
tinuous linear functionals on the measures. From this point of view
the continuous functions form only one of many possible dual spaces to
a space of measures.

The study of the dual spaces yields a necessary and sufficient con-
tinuity condition for the existence of transition probabilities in a sto-
chastic semigroup, thus solving a problem posed by W. Feller.

We introduce topologies through the convergence of nets [5], an
elegant device for analysis. The spaces of measures considered are
vector spaces and usually vector lattices [1]. We admit any topology
for which the vector operations are continuous, but do not require that
the lattice operations be continuous.

Let 31 be a Boolean algebra of sets in an abstract space X. Where-
ver 31 is required to be a cr-algebra, it shall be denoted by 3Iσ. A
partition p of X is a finite collection {Ek} of sets in 3ΐ which form a
disjoint covering of X. The partitions of X form a lattice [1] if we
define p<Cp whenever p is a refinement of p. In this way the parti-
tions p will be used extensively as directed indices for nets.

For each x in X define the unit point mass Hx by

( 0 if a? is not in E.
(1.2) HX(E)={

{1 if x is in E.

Such Hx will belong to all spaces of measures considered below. A
discrete measure is any finite linear combination of point masses. We
shall use the symbol E to denote the characteristic function of a set
Ey since the context will serve to distinguish between the set and its
characteristic function. Thus,
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(1.2) E(x)=Hx(E).

A step function is any finite linear combination of characteristic func-
tions of sets in 21. For each step function / there exists a partition
p={Ek} such that

(1.3) /(»HΣ*).
P

If / is any real-valued function on X, f(E) will denote the set of all
f(x) for x in E. Bars will be used to denote the diameter of a set of
numbers. Thus,

(1.4) l/(2?)l=sup/(£)-inf f(E).

2 The topology of simple convergence. Let S consist of all finitely
additive functions on Sί. That is, F belongs to S if

(2.1) -CXD<JP(J5')<OO for all E in 21, and

(2.2) F(A + E)=F(A) + F(E) for A and E disjoint.

S is a vector space with the obvious definitions of addition and scalar
multiplication.

Let {Fa} be a net in S. We induce a topology in S by defining:
FΛ converges simply to F if lim FΰC(E)=F(E) for each E in 31.

THEOREM 1. The discrete measures are dense in S. In particular,

(2.3) F=\ HxdF(x),

where the latter integral is defined to be lϊm Σ F(Eic)HXJC with p= {E^}
P P

and xk in Ek. S*, the dual space of S, consists of all step functions
(1.3). With the topology of stepwise convergence in S*, defined below,

Proof. For p fine enough to partition E and its complement Er,
ΣF(Ek)HXk(E)^F(E). Hence, (2.3).

Each φ in S* defines a function / on X through

(2.4) f(x)=φ(Hx) for all x in X

Suppose / were not a step function. Then, for each partition p
we could choose xp and yp in some set Ek in p such that f{%P)φf{yP)-
Define



CONVERGENCE TOPOLOGIES FOR MEASURES 481

( 2 . 5 ) Gf=-•---"

Then, φ(Gp)=l for all p. But, for all p^{E,E'}, GP(E)=O. Hence,

Gp converges simply to 0. Since φ is continuous, limφ(Gp)=0, a con-

tradiction. So / must be of the form (1.3). Then, of course,

(2.6) Φ(F)=Σ> a*FKE*)= \f dF.
P J

A sequence of step functions fn converges step-wise to a step func-
tion / , if there exists a partition p such that eventually

(2.7)

and

(2.8)
p n

In this topology, every linear functional on S* is continuous. Since
every linear functional on S* defines an additive function on 3ί with
a unique linear extension to S*, S=S**.

3 The topology of bounded convergence» The functions in S that
are bounded form the space B. The condition (2.1) is strengthened to

(3.1) -M<F{E)<M for all E.

The usual topology for B is the topology of uniform convergence, that
is, the topology induced by the norm

(3.2) ii^iHsup F(£)-ίWHlim Σ W(Eh)\ .
E

With this norm B is a Banach space [1]. The norm topology is defec-
tive in that there may exist bounded (that is, continuous) linear func-
tionals on B which have no representation as integrable functions on
X, and B is not reflexive.

These defects are removed by introducing the topology of bounded
convergence: Fa converges boundedly to F if lim F*(E)~F(E) for each
E in SI, and \FJJE)\<M for all a^a0 and all E in 2ί.

THEOREM 2. In the topology of bounded convergence the discrete
measures are dense in B. In particular,

(3.3) F=\ HxdF(x),

defined as in (2.3). The dual space B* consists of uniform limits of
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step functions (1.3). That is, to every continuous linear functional φ
there corresponds biwniquely a function f on X such that f is a uniform
limit of step functions and, for all F in B,

(3.4) Φ(F)=\ f(x)dF(x).

With the topology of uniform convergence on 5*, B**=B.

Proof. By Theorem 1, (3.3) holds for simple convergence. Since
IΣ^(#J#» Λ (#)I^ΣI^#*)I^II^IU the convergence is bounded for F

P P

in J5.
For φ in B* let / be defined by (2.4). Now, suppose / were not

a uniform limit of step functions. Then there would exist some ε > 0
such that for each partition p we could choose xp and yp in some set
EΛ belonging to p such that |/(a?P) —/(2/P)|>e. Define

(3-5) Fp=HXp-Hyp.

Then, Fp converges boundedly to 0, since | |i^p | |=2 for all p and FP(E)
= 0 for p^>{E,E'}. Since φ is continuous, limφ(Fp)=0. But, since φ

P

is linear, Φ(Fp)=f(xp) — f(yp). Hence, |φ(FP)|>β, a contradiction. So
/ is a uniform limit of step functions. The existence of (3.4) follows
from (3.3) and the continuity of φ. Since step functions are bounded,
/ is bounded.

Conversely, the integral (3.4) exists for any uniform limit of step
functions / and thus defines a linear functional φ on B. For, given
any ε > 0 there exists a partition p9 such that |/(^4fc)|<ε for all Ak in ps.
Hence, Σ !/(#*)! \F(Ek)\^ Σ 4 ^ ) 1 ^ 1 1 ^ 1 1 for all P^Pβ. Moreover,

P P

the functional φ defined by (3.4) is continuous. For, let FΛ converge
boundedly to 0. Now,

(3.6) j / c2Fβ= j(/-/ p )dF β + J/P dFΛ

where fP=Σ*akEk and !/(#) —/P(#)|<e for all x. Hence,

(3.7)

and

(3.8) fiSl \fdFu
«i I J

So, limφCFα)=o.
ob

For / in 5* define
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(3.9) ll/IHsup \f(x)\ .

Then Z?* is a Banach space and the norm topology is equivalent to the
topology of uniform convergence. With this topology a continuous linear
functional on Z?* is a bounded linear functional. A bounded linear func-
tional Φ an B* defines, a fortiori, a bounded additive set function on
SI. Since 21 is fundamental in Z?*, the correspondence between Φ and F
is biunique. Hence, B**=B.

For positive measures bounded convergence is equivalent to simple
convergence, and hence to weak convergence over Z?*. To show that
bounded convergence in B is, in general, stronger than weak conver-
gence over Z?* we prove the following.

THEOREM 3. There may exist a net {Fa} in B such that lim \fdFΛ

=0 for every f in B*, but F^ does not converge boundedly.

Proof. Let X consist of all real-valued functions x(t) on (— oo, oo).
Let 2ίσ be the ̂ -algebra in X generated by sets of the form

(3.10) It={x\x(t)el}

where / is any interval. Let {EΛ} be the class of all E in %σ which
contain the zero function 0. The indexing set {a} is directed by de-
fining α < α ' whenever EΛ,CZEΛ. For each real s define xs by

< 0 for tφs.
(3.11) a?,(*H

L 1 for t=s.

Then each EΛ contains all but a countable set of χ8. Hence, we may
choose xsa in E*. Also, choose aΛ such that lim αΛ==oo. Finally, define

(3.12) Fa=aΛ{HXsa-Ha).

Then, | |F r t | |=2 |α α | . So lim |\Fa\\ = oo. For / in 5*, [fdH0 exists.

Therefore, lim|/(ί?(,)|=0. Hence, |/(a? s)-/(0)|>l/n for only countably
Oil

many values of s, and thus f(xs)φf{§) for only countably many values

of 8. Therefore, f(xSa)=f(0) eventually. Since \fdFΛ=aJ[f(xaβt)

-/(0)], \fdFΛ=0 eventually. A fortiori, lim ί / d F Λ = 0 .

A modification of the above example shows that the lattice opera-
tions [1] need not be continuous. Let 2ί be the algebra generated by
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sets of the form (3.10). Then, HXfl converges boundedly to Hϋf where
xn is defined by (3.11). However, HZjl/\H0=0 which does not converge
tO # o = # o Λ # o .

If our algebra of sets is also a σ-algebra 3ίσ, we may consider the
space of countably additive set functions on 2ίσ. With the topology of
bounded convergence, this space L is dense in B because of (3.3). The
proof of theorem 2 shows that L*==B*. However, L is reflexive only
with respect to the pseudo-topology on L* induced by the bounded
convergence of sequences: fn converges to / if \imfn(x)=f(x) for

n

each x in X, and | |/J |<Λf for all n. That L**=L follows from the Le-
besgue bounded convergence theorem [4].

4 The topology of regular convergence. Let X be a normal
Hausdorff space and 3ίσ be the Borel sets in X. Let R be the space
of bounded, regular, signed measures on 2ίσ. That is, F is in R if

(4.1) F({JEn) = ΣF(En)
n n

for every sequence {En} of disjoint sets in 2ίσ,

(4.2) \F(E)\<M

for all E in 2ίσ, and if {AΛ} is the class of all open sets containing E
and \F\ is the total variation of F [1], then

(4.3) inf \F\(AΛ-E)=0.
Oil

With norm (3.2) R is a Banach space and with the natural ordering a
Banach lattice [1]. Since every F in R is the difference of two positive
measures in R, we may define convergence for positive measures, a net
of signed measures being convergent if it is the difference of two posi-
tive convergent nets.

A net {FΛ) of positive measures in R converges regularly to F in
R if

(4.4) F(bdγ E)=0 implies \im F«(E)=F(E),
Ob

where bdy E is the boundary of E. Since bdy X is empty, (4.4) im-
plies that eventually

(4.5) I I^JKAf.

This type of convergence, under more restrictive conditions, has been
considered by de La Vallee Pousisn [6].

THEOREM 4. For a net of positive measures in R the following



CONVERGENCE TOPOLOGIES FOR MEASURES 485

conditions are equivalent:
( i ) FΛ converges regularly to F.

(ii) For every bounded, measurable function f on X continuous al-

most everywhere relative to F, \fdFa converges to \fdF

(iii) For every bounded, continuous function f on X, \fdFΛ con-

verges to \fdF.

(iv) FΛ(X) converges to F(X) and, for every closed set E, lim FΛ(E)

The dual space R* of R consists of all bounded, continuous functions f
on X with the functionals defined by (3.4). Thus, for positive measures
regular convergence is equivalent to weak convergence over β*.

Proof. Given (i) and / bounded, measurable, and continuous almost
everywhere relative to F, consider the sets At—f~ι(t). Since F is
additive and bounded, and the sets At are disjoint, F(At)^0 for at
most countably many values of t. Hence, for arbitrary ε > 0 we can
partition the range of / by means of £ x <£ 2 < <^tn so that tk+1 — tk

< e and F(Atk)^0. Let Eh=AH + f-\tkt ί ϊ+1). Then bdy E^AH + AtΊ6+λ

+ D where D consists of discontinuities of / . Hence, ί\bdy Ek)==0.
By (i), lim FΛ(Ek)=F(Ek).

Let VH2S*} and / P = Σ < * # * . Then

(4.6) ~ J fdF\<^\ \{f-fP)dF«

*~ J/pdF

Hence,

(4.7)

Since e is arbitrary,

(4.8)

<2Mε

lim[fdFa=[fdF.

Since a continuous function is, a fortiori, continuous almost every-
where as well as measurable, (ii) implies (iii).

Given (iii), the convergence of Fa(X) to F(X) follows if we take
/ ( # ) = ! in (iii). Given a closed set E, let A be any open set containing
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E. By Urysohn's lemma [7], there exists a continuous function g such

that E<^g<^A. Hence Fa{E)<XgdFa and \gdF£F{A). Thus, (iii)

gives lim Fa(E)<LF(A). (iv) follows from (4.3).

Given (iv), let E be any set with JF(bdy£')=0. Let E=E \J bdy E,

a closed set. Then Fx(E)<ίFa{E), so limFβ(ί?)^limJF-(2S)^.F(£) by

(iv). But F(E)=F(E) since F(hdy E) = 0* Hence

(4.9)

Similarly (4.9) holds for the complement E', since bdy E'=hdy E. Thus

(4.10) lim Fa(X-E)<iF(X-E).
Cί>

Since Fa(X) converges to F(X) by (iv), (4.10) gives

(4.11) F(X)-\imFΛ(E)<LF(X)-F(E) .

Hence

(4.12)

Thus, (i) follows from (4.9) and (4.12).
Since (i) implies (iii), every bounded, continuous function / on X

defines a continuous linear functional φ on R of the form (3.4). We
need only prove conversely that every φ is of this form.

Since Hx is regular and simple convergence implies regular conver-
gence for positive measures, we have (3.3). So discrete measures are
dense in R. Hence, for φ in R* we have (3.4) with / defined by (2.4).
Moreover, / is continuous: If {xΛ} is a net in X converging to x,
then HXa converges regularly to Hx. Hence, f(xΛ) converges to f(x).
Also, / is bounded: Otherwise there would exist a sequence {xn} such

that | / ( O | > 2 \ We could then define Fm=f,(^!fM)HXn. Let F(E)

=\im Fm(E). Then Fm converges regularly to F in R. Hence, φ(Fm)
converges to Φ(F). But, φ(Fm)=m which diverges, a contradiction.

5, Transition, probabilities for stochastic semigroups* A system of
stationary transition probabilities is a function p(x, t, E) of three vari-
ables: x in the sample space X, t in (0, oo), and E in the σ-algebra
2Iσ in X such that

(5.1) p(x, t, ) is a probability measure on ̂  for each x and t,

(5.2) p( , t, E) is a measurable function on X for each t and E,
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and

(5.3) p(y, s±t, E)=[p(x, t, E) p(y, s, dx).

Such a system defines a family of operators {Tt} on L through

(5.4) FTt(E)=\ φ , t, E) dF(xf

with the readily verified properties:

(5.5) Tt is a positive linear operator on L.

(5.6) For F > 0 , ilF^IHIii^il .

(5.7) TtTs=Tt*s

We call any {Tt} satisfying (5.5)—(5.7) a stochastic semigroup. These
have been studied by W. Feller [3].

If we try to define Markov processes abstractly by means of sto-
chastic semigroups, we encounter the following obstacle:

THEOREM 5. There exist stochastic semigroups {Tt} for which there
are no transition probabilities satisfying (5.1)—(5.4).

Proof. This simple, but striking, example is due to Feller. Let
X be the real numbers and 2lσ the Borel sets of X. For each F in L
let F=-Fc-hFs be the Lebesgue decomposition [4] where Fc is absolutely
continuous and Fs is singular. Define

(5.8) TtE=*{x\x-teE}

for each E in 2ίσ, and

(5.9) FTt{E)^Fΰ{T-tE) + Fs{TtE).

Thus, continuous measures drift to the right and singular measures drift
to the left as t increases. If transition probabilities exist for this pro-
cess, (5.4) implies

(5.10) p(χ, t, E)~HxTt{E)^

Hence,

(5.11) FTt{E)Λ Hx{TtE)dF{x)~F{TtE),

1 We express operators on measures as right operators and their adjoints as left opera-
tors, using the same symbol for both.
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which contradicts (5.9) if F is absolutely continuous.

The preceding example suggests that we examine the adjoint oper-
ators to {Tt}. We see then that a system of transition probabilities
defines a semigroup of operators on L* through

(5.12) TJ(y)=\ f(x)p(y,t,dz).

That Ttf is a bounded, measurable function follows from the fact that
/ is a uniform limit of step functions fn, so Ttf is a uniform limit of
Ttfn9 and Ttfn is bounded and measurable. Thus, L* is invariant under
{Tt}. The topological significance of this is given by the following.

THEOREM 6. A linear operator T on B (or L) is continuous in the
topology of bounded convergence if, and only if, the adjoint to T defines
a bounded operator on the dual space B* (resp. L*).

Proof, Let the adjoint to T be a bounded operator on J3*. Then,
if FΛ converges boundedly to F, we have lim F(XTE=FTE for all E, since

cc

TE is in β*. Thus, FaT converges simply to FT. Since T is bounded,
Ili^TII^Hi^il ||ZΊ|, so FaT converges boundedly to FT. Hence, T is
continuous with respect to bounded convergence.

Conversely, if T is continuous in the topology of bounded conver-
gence, then T is bounded. To prove this we need only show that the

function u(x) = \\HxT\\ is bounded, since by (3.3), FT=[HXT dF(x), so

||FT||<2sup2φ?)i|JFl|. Suppose u(x) were unbounded. Then, by Zorn's
X

lemma, there is a maximal collection SDΐ of sets such that 9Jί has the
finite intersection property and u(x) is unbounded on every finite inter-
section of sets in 2Jί. Thus, for each partition p there exists a unique
Ep belonging to both p and 3Dΐ. Choose xp and yp in Ep such that
limu(xp)—u(yp) = oo. Let FP=HX —Hyp. Then Fp converges boundedly

to 0. So FPTconverges boundedly to 0. Hence, \\FPT\\ is eventually bound-
ed. But u(xp)—ιt(yp)<^\\FpT\\f a contradiction. So u(x) must be bounded.

Now, the dual of a continuous operator always exists; that is, the
dual space is invariant under the adjoint operator. For, if Fa converges
to F, FJΓ converges to FT, and so FJΓφ converges to FTφ for each φ
in the dual space. Thus, Tφ is a continuous, linear functional. Hence,
Tφ is in the dual space.

The same proof holds for the space L. With an analogous argu-
ment, theorem 4 gives a similar result for the space R:

THEOREM 7. A positive linear operator on R is continuous in the
topology of regular convergence if, and only if, the adjoint defines a
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positive operator on the dual space 22*.

We can now remedy the defect given by Theorem 5. To (5.5)—
(5.7) we add the condition

(5.13) Tt is continuous in the topology of bounded convergence.

THEOREM 8. To every system of transition probabilities p(x, t, E)
there corresponds bίuniquely a stochastic semigroup {Tt} satisfying (5.13)
such that (5.4) holds.

Proof. We need only prove that (5.5)—(5.7) and (5.13) are suf-
ficient, since the necessity of these conditions has already been discussed.
Given {Tt} we define

(5.14) P(χ, t, E)=HxTtE.

Condition (5.13) implies, by Theorem 6, that TtE is in L*. Hence,
(5.2). (5.1) follows from (5.5), (5.6), and (5.14). (5.3) is a direct result
of (5.7), (5.14), and

(5.15) FTtE=\ HxTtEdF(x).
J

which results from TtE being in L*. Finally, (5.4) follows from (5.14)
and (5.15).

For the space R we have the following.

THEOREM 9. Suppose (5.4) defines a stochastic semigroup of opera-
tors on R. Then the following conditions are equivalent:

( i ) p(x, t, E) is continuous at x if p{x, t, bdy E)=0.
(ii) Tt is continuous in the topology of regular convergence.
(iii) // / is a bounded, continuous function, then so is Ttf.

Proof. The equivalence of (ii) and (iii) follows directly from
Theorem 7.

Given (ii), let xΛ converge to x in X. Then HXΛ converges regularly
to Hx so HXΛTt converges regularly to HxTt. Thus, HXoύTtE converges
to HxTtE if HxTt(bdγ E) = 0. This, through (5.14), gives (i).

Given (i), consider positive measures such that FΛ converges regu-
larly to F. Let FTt(bdyE)=0. Then (5.4) implies p(x, t, bdy E)=0
except for x in D, where F(Ό) = 0. Let f(x)=p(xf t, E). By (i), / is
continuous almost everywhere relative to F. Thus, condition (ii) of
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Theorem 4 applied to (5.4) gives lim F«T',£?=FT\E. So FJF converges
Oί

regularly to FT, Hence, (ii),
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