ON EMBEDDING UNIFORM AND TOPOLOGICAL SPACES

RICHARD F. ARENS AND JAMES EELLS, JR.

In this note we prove the following.

THEOREM. Every space with separated uniform structure can be embedded as a closed subset of a separated convex linear space.

Every metric space can be isometrically embedded as a closed subset of a normed linear space.

These statements follow at once from the theorem of § 3. Such an embedding is known for any *complete* metric space; and it is also known that any metric space is isometric which a relatively closed subset of a convex subset of a Banach space.

We also describe an embedding of an arbitrary T_1 space as a closed subset of a special homogeneous space.

1. Preliminaries.

(A) A semi-metric on a set X is a real non-negative function ρ on $X \times X$ such that $\rho(x, x) = 0$, $\rho(x, y) = \rho(y, x)$, and $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$ for all $x, y, z \in X$. A semi-metric is a metric if and only if $\rho(x, y) = 0$ implies x = y.

A collection of semi-metrics $(\rho_{\alpha})_{\alpha \in A}$ on X indexed by a set A defines a uniform structure (and a topology) on X, generated by sets $U_{\alpha x} = \{(x, y) : \rho_{\alpha}(x, y) < a\}$, where a > 0 and $\alpha \in A$. Conversely, every uniform structure can be defined by a family of semi-metrics; see Bourbaki [1]. We will say that the uniform structure is *separated* if for every pair $x, y \in X$ there is a ρ_{α} such that $\rho_{\alpha}(x, y) \neq 0$.

(B) If X is a real linear space, a semi-norm on X is a real non-negative function s on X such that $s(\lambda x) = |\lambda| s(x)$ and $s(x+y) \leq s(x) + s(y)$ for all $x, y \in X$ and for all real numbers λ . A semi-norm is a norm if and only if s(x) = 0 implies x = 0.

A collection of semi-norms $(s_{\alpha})_{\alpha\in A}$ on X indexed by a set A defines a (locally) convex topology (and a uniform structure) compatible with the algebraic operations in X. Conversely, every convex topology can be described by a family of semi-norms; see Bourbaki [2]. We will say that the convex topology is *separated* if for every $x\neq 0$ in X there is an s_{α} such that $s_{\alpha}(x)\neq 0$.

(C) REMARK. Let X and X' be two sets with uniform structures

Received January 9, 1955.

given by the semi-metrics $(\rho_{\alpha})_{\alpha \in A}$ and $(\rho'_{\alpha})_{\alpha \in A}$ indexed by the same set A. If $\phi: X \to X'$ is a one-one correspondence such that for all $\alpha \in A$ we have $\rho_{\alpha}(x, y) = \rho'_{\alpha}(\phi(x), \phi(y))$, then ϕ preserves the uniform structure and topology.

2. The space of molecules.

- (A) A molecule of a set X is a real-valued function m on X which is zero except (perhaps) at a finite number of points x_1, \dots, x_k of X and which satisfies $\sum_{i=1}^k m(x_i) = 0$. Setting $\lambda_i = m(x_i)$, we will represent m as a linear combination $m = \sum_i \lambda_i x_i$ with $\sum_i \lambda_i = 0$. The totality of molecules forms a real linear space M(X) with algebraic operations defined pointwise.
- (B) Suppose that X has a uniform structure defined by the semimetrics $(\rho_{\alpha})_{\alpha\in A}$. Then for each $\alpha\in A$ we define the semi-norms s_{α} on M(X) by

$$(1) s_{\alpha}(m) = \inf \left\{ \sum_{j} |\mu_{j}| \rho_{\alpha}(y_{j}, z_{j}) \right\},$$

the infimum being taken over all representations of $m = \sum_{i} \lambda_{i} x_{i}$ as $m = \sum_{j} \mu_{j}(y_{j} - z_{j})$; the condition $\sum_{i} \lambda_{i} = 0$ insures that such representations of m do exist.

It follows from the definition (1) that for all $x, y \in X$ and for any $\alpha \in A$,

$$(2) s_{\alpha}(x-y) \leq \rho_{\alpha}(x, y) .$$

In fact, it is easily seen that s_{α} is the largest semi-norm on M(X) satisfying (2); that is, given any such semi-norm s, we have $s(m) \leq s_{\alpha}(m)$ for all $m \in M(X)$.

(C) Let us fix a "base point" $x_0 \in X$. We then note that the set of all elements of the form $x-x_0$ with $x_0 \neq x \in X$ forms a base for the linear space M(X). Also, any linear functional F on M(X) defines a real function f on X by

$$f(x) = F(x - x_0);$$

conversely, any real function f on X such that $f(x_0)=0$ defines a linear functional F on M(X) by $F(m)=\sum_{i}\lambda_i f(x_i)$, and the relation (3) holds.

With that identification of functionals, we have the following.

PROPOSITION. The linear functionals F on M(X) which are continuous in the topology of the semi-norms $(s_{\alpha})_{\alpha \in A}$ correspond to those real

functions f on X vanishing at x_0 and satisfying

$$|f(x)-f(y)| \leq K\rho_{\alpha}(x,y)$$

for some constant K and semi-norm ρ_a , both depending on f. If X is a metric space then the continuous linear functionals correspond to the Lipschitz functions on X vanishing at x_0 .

Note that the functions f are uniformly continuous on X.

Proof. The functional F is continuous on M(X) if and only if it is bounded (by some K) for some semi-norm s_{α} ; thus if F is continuous and defines f as in (3), $|f(x)-f(y)|=|F(x-y)| \leq Ks_{\alpha}(x-y) \leq K\rho_{\alpha}(x,y)$ by (2). Conversely, if f is a function such that $f(x_0)=0$ and which satisfies (4) for some K and ρ_{α} , then for any $m \in M(X)$ and $\varepsilon > 0$ we can choose a representation $m = \sum_{j} \mu_{j}(y_{j}-z_{j})$ such that $\sum_{j} |\mu_{j}| \rho_{\alpha}(y_{j},z_{j}) \leq s_{\alpha}(m) + \varepsilon$. Then

$$|F(m)| \leq \sum_{j} |\mu_{j}| |f(y_{j}) - f(z_{j})| \leq K \sum_{j} |\mu_{j}| \rho_{\alpha}(y_{j}, z_{j}) \leq K[s_{\alpha}(m) + \varepsilon].$$

Since that is true for all $\varepsilon > 0$, we have $F(m) \leq Ks_{\alpha}(m)$, whence F is continuous on M(X).

Relation (2) is, in fact, always an equality:

PROPOSITION. For any $x, y \in X$ and $\alpha \in A$ we have

$$(5) s_{\alpha}(x-y) = \rho_{\alpha}(x, y).$$

Proof. The function $f(z) = \rho_{\alpha}(z, y)$ clearly satisfies f(y) = 0 and also (4) with K = 1; let F be the corresponding linear functional with x_0 replaced by y. Given any representation of the molecule $x - y = \sum_{j} \mu_j(y_j - z_j)$, we have $\rho_{\alpha}(x, y) = f(x) = F(x - y) = \sum_{j} \mu_j F(y_j - z_j)$, whence $\rho_{\alpha}(x, y) \le \sum_{j} |\mu_j| |\rho_{\alpha}(y_j, y) - \rho_{\alpha}(z_j, y)| \le \sum_{j} |\mu_j| |\rho_{\alpha}(y_j, z_j)$. Taking the infimum over all such representations of x - y, we have $\rho_{\alpha}(x, y) \le s_{\alpha}(x - y)$, proving (5).

The following two statements (and their converses) are easy consequences of (5).

PROPOSITION. If the uniform structure on X is separated, then so is the induced convex topology on M(X).

If the uniform structure on X is given by a single metric (or is metrizable), then the induced convex topology on M(X) is normal (is normable).

(D) REMARK. There are many interesting variants of the semi-norms (1). For instance, suppose we let $\tilde{M}(X)$ denote the linear space of all $m = \sum_{i} \lambda_{i} x_{i}$, with no additional conditions on the λ_{i} ; then by choosing a

base point $x_0 \in X$ we can define the semi-norm \tilde{s}_{α} corresponding to the semi-metric ρ_{α} by

(6)
$$\tilde{s}_{\alpha}(m) = \inf \left\{ \sum_{k} |\nu_{k}| \rho_{\alpha}(w_{k}, x_{0}) + \sum_{j} |\mu_{j}| \rho_{\alpha}(y_{j}, z_{j}) \right\},$$

the infimum being taken over all representations of m as a sum $m=m_1+m_2$, where $m_1=\sum_k \nu_k w_k$ and $m_2=\sum_j \mu_j(y_j-z_j)$. It can be shown that for all $\alpha \in A$ the semi-norm (6) is equal to the semi-norm (1) on the subspace M(X) of $\tilde{M}(X)$.

Semi-norms related to those of type (6) have been studied (in quite a different connection) by H. Whitney; see [4, p. 249].

3. Embedding a uniform space. Take a base point $x_0 \in X$, and then define the transformation $\phi: X \to M(X)$ by $\phi(x) = x - x_0$. Then ϕ is clearly one-one, and by (5) we have $s_{\alpha}(\phi(x)) = \rho_{\alpha}(x, x_0)$.

THEOREM. The transformation ϕ is a uniformly bi-continuous homeomorphism of X into M(X). If the uniform structure of X if separated, then ϕ maps X onto a closed subset of M(X).

If X is a metric space, then ϕ is an isometric map of X onto a closed subset of M(X).

Proof. As we have remarked in §1C, such a ϕ is a uniformly continuous homeomorphism and an isometry if X is metric.

Supposing that the uniform structure of X is separated, we will now show that $\phi(X)$ is closed in M(X). Given $m \in M(X)$ not belonging to $\phi(X)$, we will construct a neighborhood of m not meeting $\phi(X)$. Suppose first of all that m has the form $\lambda(y-x)$; since $m \notin \phi(X)$, we have $y \neq z$, $\lambda \neq 0$.

In case $z\neq x_0$, there is a semi-metric ρ and a constant a>0 such that $\rho(y,z)\geq a$, $\rho(x_0,z)\geq a$; in fact, ρ can be defined as the sum of two suitably chosen semi-metrics of the separating family $(\rho_x)_{x\in A}$. Let s_ρ be the semi-norm defined by (1) using ρ . Set $f(x)=\max\{a-\rho(x,z),0\}$, and let F be the corresponding continuous linear functional as in § 2 C; we note that $|F(n)|\leq s_\rho(n)$ for all $n\in M(X)$. Then for any $m_0=x-x_0$ in $\phi(X)$, we have

$$F(m_0-m)=f(x)-f(x_0)-|\lambda|f(y)+|\lambda|f(z)=f(x)+|\lambda|\alpha$$
,

whence $s_{\rho}(m_0-m) \geq |\lambda| a$.

In case $z=x_0$, we have $\lambda \neq 1$ since $m \notin \phi(X)$. As before, take a semi-metric ρ such that $\rho(y, x_0) > 2a$. Then for any $m_0 = x - x_0$ in $\phi(X)$, either $\rho(x, x_0) > a$ or $\rho(x, y) > a$. In the former event define $f(z) = \max\{a - \rho(z, x_0), 0\}$; then $s_{\rho}(m_0 - m) \geq |F(m_0 - m)| = ||\lambda| - 1|a$. In the latter

event define $f(z) = \max\{a - \rho(z, y), 0\}$; then $s_{\rho}(m_0 - m) \ge |\lambda|$.

Thus in any case $s_{\rho}(m_0-m)$ exceeds some positive constant independent of m_0 ; thus if $m=\lambda(y-z)\notin\phi(X)$, then m has a neighborhood not meeting $\phi(X)$. In general, let $m=\sum\limits_{i=1}^k\lambda_ix_i$ with k>2; we can suppose that the x_i are distinct and that $|\lambda_i|\geq b>0$ for all i. As usual, take a semi-norm ρ on X such that $\rho(x_i,x_j)\geq 2c$ for some c>0 and for all pairs i,j with $i\neq j$. Now suppose $m'=\sum\limits_{j}\lambda'_jx'_j$ is a molecule with less than k points. Then there is an i such that $\rho(x'_j,x_i)\geq c$ for all j. Let $f(x)=\max\{c-\rho(x,x_i),0\}$. Then $s_{\rho}(m-m')\geq |F(m)-F(m')|=|F(m)|\geq bc$. Thus if m' satisfies $s_{\rho}(m-m')< bc$, then m' has at least as many points as m. Since every element of $\phi(X)$ has the form $x-x_0$, it follows that we can construct a neighborhood of $m=\sum\limits_{i=1}^k\lambda_ix_i$ which does not intersect $\phi(X)$. The proof of the theorem is now complete.

4. Embedding topological spaces.

(A) M. Shimrat [3] has shown that every topological space X can be embedded in a homogeneous space X^* (a space X^* is homogeneous if for every two points $x, y \in X^*$ there is a homeomorphism h of X^* into itself such that h(x)=y); furthermore, if X is T_1 , then so is X^* and the image of X is closed in X^* . In the following theorem we shall show that any T_1 space X can be embedded as a closed subset of a T_1 space X^* such that for any two points $x, y \in X^*$ there is a homeomorphism of period two interchanging the points.

However, Shimrat manages to prove that if X has stronger separation properties (for example, X is Hausdorff, regular, normal), then X^* has these same properties. No such conclusion can be drawn for our X^* . Shimrat also produces a variant construction embedding a metric space X as a closed set in a metrically homogeneous space X^* ; his X^* (as he points out) is not necessarily locally connected, whereas our embedding space $X^* = M(X)$ in § 3 is (being a normed linear space).

(B) For any set X let X^* denote the Boolean ring of all finite subsets m of X; the void set is denoted by 0, and m+n is the symmetric difference of m and n (whence $\{x\} + \{x\} = 0$).

We have a natural one-one transformation $\phi: X \to X^*$ defined by $\phi(x) = \{x\}$.

THEOREM. Let X be a T_1 space. Then we can define a topology on X^* for which the additive translations are homeomorphism, and ϕ maps X homeomorphically onto a closed subset of X^* .

We do not assert that X^* is a topological group under addition. We will show that the transformation $X^* \times X^* \to X^*$ defined by $(m, n) \to m+n$ is continuous in each variable separately, not that it is simultaneously continuous.

Proof. For every open cover \mathscr{V} of X we define (\mathscr{V}) as the collection of those sets $m \in X^*$ whose points can be listed $x_1, x_2, \dots, x_{2k-1}, x_{2k}$, where the "partners" x_{2j-1}, x_2 , always lie in one element $V_j \in \mathscr{V}$. Then $0 \in (\mathscr{V})$, and if \mathscr{U} is a common refinement of the open covers \mathscr{V} , \mathscr{W} , we have $(\mathscr{U}) \subset (\mathscr{V}) \cap (\mathscr{W})$.

We take the sets $m+(\mathscr{V})$ as a fundamental system of neighborhoods of $m \in X^*$, and will show that for any open cover \mathscr{V} and any $m \in (\mathscr{V})$ there is an open cover \mathscr{U} such that $n \in (\mathscr{U})$ implies $m+n \in (\mathscr{V})$. It will follow

- 1) that these neighborhoods define a unique topology on X^* , and
- 2) that translation by m is a homeomorphism.

We construct \mathscr{U} as follows: For each $V \in \mathscr{V}$, let V_0 denote the set of points of V not in m; for each $x_i \in m \cap V$ such that its partner is also in V, we define $U_i = V_0 \cup \{x_i\}$. Thus each U_i is defined by removing a finite number of points from V, and since points of X are closed, it follows that U_i is open. We define the open cover \mathscr{U} of X as the collection of all possible such U_i constructed from all $V \in \mathscr{V}$.

Now take any $n = \{y_1, y_2, \dots, y_{2p-1}, y_{2p}\} \in (\mathcal{W})$, where y_{2j-1}, y_{2j} always belong to some $U \in (\mathcal{W})$; let us suppose all the y's are distinct. We will arrange m+n into a set of partners which share elements of \mathcal{W} , thus showing that $m+n \in (\mathcal{W})$. If $y_{2j-1}, y_{2j} \in U_i \in \mathcal{W}$, then at most one of them belongs to m, and that one (if any) must be x_i ; we then pair the other y with the partner of x_i , forming a pair not appearing in m+n. If neither y belongs to m, we can make them partners of each other. Elements of m not affected by these transactions shall remain partners. That completes the arrangement of m+n.

To show that this topology on X^* is itself T_1 , take any $m \neq 0$, and let \mathscr{C} be the set of complements of the sets $m + \{x\}$, where x varies over m. Then \mathscr{C} is an open cover of X, and (\mathscr{C}) is a neighborhood of 0 in X^* which does not contain m.

We will now prove that the map $\phi(x) = \{x\}$ is a homeomorphism of X onto X^* . Given $x \in X$ and a neighborhood (\mathscr{V}) of $\{x\}$, we know there is an open set V such that $x \in V \in \mathscr{V}$; then for any $y \in V$ we have $\{y\} = \{x\} + (\mathscr{V})$, proving that ϕ is continuous. On the other hand, given $\{x\} \in X^*$ and a neighborhood V of x, take the open cover $\mathscr{V} = \{V, X + \{x\}\}$. Then for any $\{y\} \in \{x\} + (\mathscr{V})$, we have $y \in V$ since $x, y \in X + \{x\}$ is impossible; that is, the mapping ϕ^{-1} is continuous.

Finally we will show that $\phi(X)$ is closed in X^* . Take any m with

more than one element, and as above let $\mathscr V$ be the set of complements of the sets $m+\{x\}$, where x varies over the elements of m. Then $m+(\mathscr V)$ does not intersect $\phi(X)$, for if $\{x\}+m\in(\mathscr V)$, then x has a partner y in m; that is impossible, for no two elements of m lie in the same $V\in\mathscr V$. The proof of the theorem is now complete.

REFERENCES

- 1. N. Bourbaki, Topologie générale, Ch. IX, Paris, Hermann, 1948.
- 2. N. Bourbaki, Espaces vectoriels topologiques, Ch. I, II, Paris, Hermann, 1953.
- 3. M. Shimart, $Embedding\ in\ homogeneous\ spaces,\ Quart.\ J.\ Math.\ Oxford\ (2)$ 5 (1954), 304-311.
- 4. H. Whitney, n-Dimensional integration in n-space, Proc. Inter. Congress of Math. 1 (1950), 245–256.

University of California, Los Angeles, Institute for Advanced Study.