ON EMBEDDING UNIFORM AND TOPOLOGICAL SPACES

RicHARD F. ARENS AND JAMES EELLS, JR.

In this note we prove the following.

THEOREM. Ewvery space with separated uniform structure can be
embedded as a closed subset of a separated comvex linear space.

Every metric space can be isometrically embedded as a closed subset
of a normed linear space.

These statements follow at once from the theorem of §3. Such an
embedding is known for any complete metric space; and it is also known
that any metric space is isometric which a relatively closed subset of
a convex subset of a Banach space.

We also describe an embedding of an arbitrary 7', space as a closed
subset of a special homogeneous space.

1. Preliminaries.

(A) A semi-metric on a set X is a real non-negative function p on
Xx X such that p(z, )=0, o(x, ¥)=p(y, ), and p(z, y)p(z, 2)+p(z, ¥)
for all o, y,ze X. A semi-metric is a metric if and only if p(x, y)=0
implies x=y.

A collection of semi-metries (p,).cs On X indexed by a set A defines
a uniform structure (and a topology) on X, generated by sets U,,=
{(z, ¥): pfz, y)<a}, where a >0 and «e A. Conversely, every uniform
structure can be defined by a family of semi-metrics; see Bourbaki [1].
We will say that the uniform structure is separated if for every pair
z, y€ X there is a p, such that p.(z, y)540.

(B) If X is a real linear space, a semi-norm on X is a real non-
negative function s on X such that s(ix)=|2|s(z) and s(x+y)<s(x)+s(y)
for all #, ye X and for all real numbers 1. A semi-norm is a norm if
and only if s(z)=0 implies z=0.

A collection of semi-norms (s,),es on X indexed by a set A defines
a (locally) convex topology (and a uniform structure) compatible with
the algebraic operations in X. Conversely, every convex topology can
be described by a family of semi-norms; see Bourbaki [2]. We will say
that the convex topology is separated if for every x=%40 in X there is
an s, such that s,(x)=%=0.

(C) REMARK. Let X and X’ be two sets with uniform structures
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given by the semi-metrics (pg)ucs and (p.).c: indexed by the same set
A. If ¢: X—> X 1is a one-one correspondence such that for all @« ¢ 4
we have p,(z, y)=p(p(®), $(y)), then ¢ preserves the uniform structure
and topology.

2. The space of molecules.

(A) A molecule of a set X is a real-valued function m on X which
is zero except (perhaps) at a finite number of points @, «--, z, of X

k
and which satisfies Zm(x‘)=0 Setting 1,=m(z;), we will represent
m as a linear comblnatlon m= lemz with Zzi=0 The totality of
molecules forms a real linear space M(X) Wlth algebraic operations de-
fined pointwise.

(B) Suppose that X has a uniform structure defined by the semi-
metries (0g)ecs - Then for each ae A we define the semi-norms s, on
M(X) by

(1) sulm)=inf {3} |11 Pl 2}

the infimum being taken over all representations of m=3) 2z, as
m=73 p,(y,—2,); the condition >} 2,=0 insures that such representations
J i

of m do exist.
It follows from the definition (1) that for all «, ye X and for any
aeA,

(2) Sw(x_y)gpw(x: y) .

In fact, it is easily seen that s, is the largest semi-norm on M(X)
satisfying (2); that is, given any such semi-norm s, we have s(m)<s,(m)
for all m e M(X).

(C) Let us fix a “base point” x,€ X. We then note that the set of all
elements of the form z—a, with x,7%ax € X forms a base for the linear
space M(X). Also, any linear functional F on M(X) defines a real
funection f on X by

(3) fl@)=F—x,) ;

conversely, any real function f on X such that f(x,)=0 defines a linear
funetional F' on M(X) by F(m)=73 2, f(x;), and the relation (3) holds.
1

With that identification of functionals, we have the following.

PROPOSITION. The linear functionals F on M(X) which are con-
tinuous in the topology of the semi-norms (Sy)we. correspond to those real
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functions f on X vanishing at x, and satisfying

(4) If @) =S (v) |=Kp, y)

for some constant K and semi-norm p,, both depending on f. If X is a
metric space then the continuous linear functionals correspond to the
Lipschitz functions on X vanishing at x,.

Note that the functions f are uniformly continuous on X.

Proof. The functional F' is continuous on M(X) if and only if it is
bounded (by some K) for some semi-norm s,; thus if F' is continuous and
defines 1 as in (3), | (2)—S W) |=|F(x—y)| < Ksuo—y)< Kpu(z, y) by (2).
Conversely, if f is a function such that f(x,)=0 and which satisfies (4)
for some K and p,, then for any me M(X) and ¢ >0 we can choose a
representation m= 73] p(y,;—#,) such that Zj‘, 5] palyys 2)) < 8u(m)+e. Then

J

[Fm)| S 21| 1 W) =) S KX 1] 0alt 2) S Klsulm) +e]

Since that is true for all ¢>0, we have F(m)< Ks,(m), whence F is
continuous on M(X).
Relation (2) is, in fact, always an equality:

PROPOSITION. For any x, ye X and o€ A we have
( 5 ) sw(w_y)_;low(x, y) .

Proof. The function f(z)=p.(z, ¥) clearly satisfies f(y)=0 and also

(4) with K=1; let F be the corresponding linear functional with w,

replaced by y. Given any representation of the molecule x—y= > ¢(y,—2,),
J

we have pux, ¥)=Ff(x)=F(x —y)= jZ ¢ F(y;—2z;), whence puz, y)<
; LesHea(ys ) =pal2s D= 1051 0ulyy 7). Taking the infimum over
all such representations of x—y, we have p (2, y) <s,(x—vy), proving (5).

The following two statements (and their converses) are easy con-
sequences of (5).

PROPOSITION. If the uniform structure on X s separated, then so
18 the induced convex topology on M(X).

If the uniform structure on X is given by a single metric (or 1is
metrizable), then the induced convex topology on M(X) s normed (is
normable).

(D) REMARK. There are many interesting variants of the semi-norms

(1). For instance, suppose we let M(X) denote the linear space of all
m=>Y,,x;,, with no additional conditions on the 4;; then by choosing a
(3
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base point x,€ X we can define the semi-norm S, corresponding to the
semi-metric p, by

(6) §w(m)=inf{; [vi | palwr, 2,)+ ; L2451 palYss 29)}

the infimum being taken over all representations of m as a sum m=m,
+m,, where m,=> vw, and m,=>, p(y,—%,). It can be shown that
k

for all «€ A the semi-norm (6) is]equal to the semi-norm (1) on the
subspace M(X) of M(X).

Semi-norms related to those of type (6) have been studied (in quite
a different connection) by H. Whitney; see [4, p. 249].

3. Embedding a uniform space. Take a base point z,€ X, and
then define the transformation ¢: X—M(X) by ¢(x)=2—x, Then ¢ is
clearly one-one, and by (5) we have s, (¢(z))=p(x, ,).

THEOREM. The transformation ¢ is a uniformly bi-continuous homeo-
morphism of X into M(X). If the uniform structure of X 4f separated,
then ¢ maps X onto a closed subset of M(X).

If X is a metric space, then ¢ is an isometric map of X onto a
closed subset of M(X).

Proof. As we have remarked in §1C, such a ¢ is a uniformly
continuous homeomorphism and an isometry if X is metric.

Supposing that the uniform structure of X is separated, we will
now show that ¢(X) is closed in M(X). Given me M(X) not belonging
to ¢(X), we will construct a neighborhood of m not meeting ¢(X).
Suppose first of all that m has the form A(y—zx); since m ¢ $(X), we
have yz%z, 1540.

In case z5£uw,, there is a semi-metric p and a constant ¢ >0 such
that p(y, 2)=a, p(x, 2)=a; in fact, p can be defined as the sum of two
suitably chosen semi-metrics of the separating family (o,)ses. Let s, be
the semi-norm defined by (1) using p. Set f(x)=max{a—p(z, 2), 0}, and
let F' be the corresponding continuous linear functional as in §2C; we
note that |F(n)|<s,(n) for all ne M(X). Then for any m,=x—wx, in
¢(X), we have

F(my—m)=f(@)— (@)= 2] F @)+ f(=f(x)+]2]a,

whence s, (m,—m)=>12] a.

In case z=z, we have i7%1 since m¢ $(X). As before, take a
semi-metric p such that p(y, x,)>>2a. Then for any m,=z—2a, in H(X),
either p(z, @) >a or p(z, y)>a. In the former event define f(z)=
max {a—p(z, z,), 0} ; then s,(m,—m)=>|F(my—m)|=||A]—1la. In the latter
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event define f(z)=max{a—p(z, y), 0}; then s,(m,—m)=>]2].
Thus in any case s,(m,—m) exceeds some positive constant inde-
pendent of m,; thus if m=I(y—2)¢ ¢(X), then m has a neighborhood

k
not meeting ¢(X). In general, let m=73] 3,2, with £>>2; we can suppose
i=1

that the x; are distinct and that [2,|=6>>0 for all 7. As usual, take

a semi-norm p on X such that p(z;, ,)>>2¢ for some ¢ >0 and for all

pairs 4, 7 with i=%j. Now suppose m =3 jx; is a molecule with less
J

than %k points. Then there is an ¢ such that p(z}, #;)—=>¢ for all j. Let
f(@)=max{c—p(x, x;), 0}. Then s(m—m')=|F(m)—F(m')|=|F(m)| =bc.
Thus if m’ satisfies s,(m—m’)<be, then m’ has at least as many points
as m. Since every element of ¢(X) has the form z—z,, it follows that

k
we can construct a neighborhood of m=>3" A, which does not intersect
2

v

¢(X). The proof of the theorem is now complete.

4. Embedding topological spaces.

(A) M. Shimrat [3] has shown that every topological space X can
be embedded in a homogeneous space X* (a space X* is homogeneous
if for every two points z, ye X* there is a homeomorphism % of X*
into itself such that Z(z)=y); furthermore, if X is T,, then so is X*
and the image of X is closed in X*. In the following theorem we
shall show that any T, space X can be embedded as a closed subset of
a T, space X* such that for any two points z, ye X* there is a homeo-
morphism of period two interchanging the points.

However, Shimrat manages to prove that if X has stronger separa-
tion properties (for example, X is Hausdorff, regular, normal), then X*
has these same properties. No such conclusion can be drawn for our
X*. Shimrat also produces a variant construction embedding a metric
space X as a closed set in a metrically homogeneous space X*; his X*
(as he points out) is not necessarily locally connected, whereas our em-
bedding space X*=M(X) in § 3 is (being a normed linear space).

(B) For any set X let X* denote the Boolean ring of all finite
subsets m of X; the void set is denoted by 0, and m+n is the sym-
metric difference of m and n (whence {z} + {x}=0).

We have a natural one-one transformation ¢: X— X* defined by

P(x)= {x}.

THEOREM. Let X be a T, space. Then we can define a topology on
X* for which the additive translations are homesmorphism, and ¢ maps
X homeomorphically onto a closed subset of X*.
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We do not assert that X* is a topological group under addition.
We will show that the transformation X*x X*—X* defined by (m, n)
—m+n is continuous in each variable separately, not that it is simul-
taneously continuous.

Proof. For every open cover » of X we define ( /) as the collec-
tion of those sets m e X* whose points can be listed z,, @, *«+, Zopo1y Tory
where the ‘‘partners’” x,;,.,, @,, always lie in one element V,e /.
Then O0e (), and if ~/ is a common refinement of the open covers
77, we have (/)T ( 2 YN ).

We take the sets m+( /) as a fundamental system of neighborhoods
of me X*, and will show that for any open cover ~ and any me (/)
there is an open cover  such that ne () implies m+ne (7 ). It
will follow

1) that these neighborhoods define a unique topology on X*, and

2) that translation by m is a homeomorphism.

We construct 7 as follows: For each Ve ', let V, denote the
set of points of V not in m; for each z;cm N\ V such that its partner
is also in V, we define U,=V,\U {#;}]. Thus each U, is defined by
removing a finite number of points from V, and since points of X are
closed, it follows that U, is open. We define the open cover # of X
as the collection of all possible such U, constructed from all Ve /.

Now take any n={y,, s, ***, Yop-1, Yop} € (77), Where y,;_,, %, always
belong to some Ue(); let us suppose all the y’s are distinct. We
will arrange m+n into a set of partners which share elements of /7,
thus showing that m+ne (/7). If y,;_1, y,;€ U, e 27, then at most one
of them belongs to , and that one (if any) must be z,; we then pair
the other y with the partner of z;,, forming a pair not appearing in
m+mn. If neither y belongs to m, we can make them partners of each
other. Elements of m not affected by these transactions shall remain
partners. That completes the arrangement of m +n.

To show that this topology on X* is itself 7, take any m=40, and
let /" be the set of complements of the sets m+ {x}, where x varies
over m. Then /" is an open cover of X, and ( /') is a neighborhood
of 0 in X™ which does not contain .

We will now prove that the map ¢(z)-= {2} is a homeomorphism of
X onto X*. Given ze X and a neighborhood ( /) of [z}, we know
there is an open set V such that 2€ Ve /; then for any ye V we have
{y} ={&} +( /), proving that ¢ is continuous. On the other hand, given
{2} € X* and a neighborhood V of x, take the open cover / ={V, X
+ {z}}. Then for any {y}e {z}+( /), we have yeV since z, yeX
+ {x} is impossible; that is, the mapping ¢~' is continucus.

Finally we will show that ¢(X) is closed in X*. Take any m with
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more than one element, and as above let 7~ be the set of complements
of the sets m+ {«}, where x varies over the elements of m. Then
m+(7") does not intersect ¢(X), for if {a}+me(/"), then = has a
partner y in m; that is impossible, for no two elements of m lie in
the same Ve . The proof of the theorem is now complete.
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