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In this note we prove the following.

THEOREM. Every space with separated uniform structure can be
embedded as a closed subset of a separated convex linear space.

Every metric space can be isometrically embedded as a closed subset
of a normed linear space.

These statements follow at once from the theorem of § 3. Such an
embedding is known for any complete metric space; and it is also known
that any metric space is isometric which a relatively closed subset of
a convex subset of a Banach space.

We also describe an embedding of an arbitrary Tτ space as a closed
subset of a special homogeneous space,

l Preliminaries*

(A) A semi-metric on a set X is a real non-negative function p on
XxX such that p(x, a?)=0, p(x> y)==p(y, %)> and p(x, y)<Lρ(x, z) + p(z, y).
for all x, y, z e X. A semi-metric is a metric if and only if p(x, 2/)=0
implies x=y.

A collection of semi-metrics (pa)aeA on X indexed by a set A defines
a uniform structure (and a topology) on X, generated by sets Z7αα5=
{(a?, y): pa(x, y)<Ca}y where α > 0 and aeA. Conversely, every uniform
structure can be defined by a family of semi-metrics; see Bourbaki [1].
We will say that the uniform structure is separated if for every pair
x9 yeX there is a pΛ such that pΛ(x,

(B) If X is a real linear space, a semi-norm on X is a real non-
negative function s on X such that s(λx) = \λ\s(x) and s(x + y)<Ls(x)±s(y)
for all x, yeX and for all real numbers λ. A semi-norm is a norm if
and only if s(x)=Q implies x=0.

A collection of semi-norms (sa)aeA on X indexed by a set A defines
a (locally) convex topology (and a uniform structure) compatible with
the algebraic operations in X. Conversely, every convex topology can
be described by a family of semi-norms; see Bourbaki [2]. We will say
that the convex topology is separated if for every xφ§ in X there is
an sa such that sΛ

(C) REMARK. Let X and X be two sets with uniform structures
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given by the semi-metrics (pΛ)ΛeA and (p'Λ)ΛeA indexed by the same set
A. If φ: X~>X is a one-one correspondence such that for all a e A
we have pΛ(x, y)=p'a(φ(%)t Φ(y)), then φ preserves the uniform structure
and topology.

2, The space of molecules*

(A) A molecule of a set X is a real-valued function m on X which
is zero except (perhaps) at a finite number of points xl9 •••, xk of X

k

and which satisfies ^m(xt)=0. Setting λi = m(xi)f we will represent

m as a linear combination m=^u?Hxi with ΣΛ« = 0. The totality of

molecules forms a real linear space M(X) with algebraic operations de-
fined pointwise.

(B) Suppose that X has a uniform structure defined by the semi-
metrics (pa)aeA - Then for each a e A we define the semi-norms sa on

by

the infimum being taken over all representations of m=
m = = Σ Juj(Vj~~zj)y ^ e condition Σ^ΐ^O insures that such representations

of m do exist.

It follows from the definition (1) that for all x, yeX and for any

aeA,

( 2 ) 8Λ(x-y)<LpΛ(x, y).

In fact, it is easily seen that s^ is the largest semi-norm on M(X)
satisfying (2); that is, given any such semi-norm s, we have s{m)<LsΛ{m)
for all meM(X).

(C) Let us fix a "base point" x0 e X. We then note that the set of all
elements of the form x—xQ with xQφxeX forms a base for the linear
space M(X). Also, any linear functional F on M(X) defines a real
function / on X by

(3) f(x)=F(x-Xo);

conversely, any real function / on X such that f(xo)=O defines a linear
functional F on M(X) by F(m) = ̂ λιf(xi), and the relation (3) holds.

i

With that identification of functionals, we have the following.

PROPOSITION. The linear functionals F on M(X) which are con-
tinuous in the topology of the semi-norms (sa)aeA correspond to those real
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functions f on X vanishing at x0 and satisfyi?ιg

( 4 ) \f(χ)

for some constant K and semi-norm pa, both depending on f. If X is a
metric space then the continuous linear functionals correspond to the
Ldpschitz functions on X vanishing at x0.

Note that the functions / are uniformly continuous on X.

Proof. The functional F is continuous on M(X) if and only if it is
bounded (by some K) for some semi-norm sΛ; thus if F is continuous and
defines / as in (3), \f(x)-f(y)\ = \F(x-y)\^K8Λ(x-y)^KpΛ(x, y) by (2).
Conversely, if / is a function such that f(xo)=O and which satisfies (4)
for some K and pΛ, then for any meM(X) and ε^>0 we can choose a

representation m=Σft(2/j""^) s u c h that Σ \f*j\p*(yj9 Zj)^sjin)-he. Then
J J

Since that is true for all ε > 0 , we have F(m)<LKsΛ(m), whence F is
continuous on M(X).

Relation (2) is, in fact, always an equality:

PROPOSITION. For any x, y e X and a e A we have

( 5 ) 8«(χ-y)=p»(χ, y).

Proof. The function f(z)=pΛ(z, y) clearly satisfies f(y)=Q and also

(4) with K=l; let F be the corresponding linear functional with xQ

replaced by y. Given any representation of the molecule x — y=Σiftj(yj'-zj)>

we have pa(x, y) =f(x) = F(x - y) = Σ μ3 F(VJ - ZJ)> whence pΛ(x, y) <I

Σ \t*A ipΛVjf y)-p«(zj, y)\^L Σ iμΛpJyjf ZJ) Taking the infimum over
3 J

all such representations of x — y, we have pΛ(xf y)<Lsa(x — y), proving (5).
The following two statements (and their converses) are easy con-

sequences of (5).

PROPOSITION. If the uniform structure on X is separated, then so
is the induced convex topology on M(X).

If the uniform structure on X is given by a single metric {or is
metrizable)j then the induced convex topology on M(X) is normed (is
normable).

(D) REMARK. There are many interesting variants of the semi-norms

(1). For instance, suppose we let M(X) denote the linear space of all

ra=ΣΛί#«> with no additional conditions on the Λo then by choosing a
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base point xoe X we can define the semi-norm sa corresponding to the
semi-metric p* by

( 6 ) s Λ (m)=inf { Σ | vk \ pΛ{wk, xύ)-f X \μό \ pΛ{yό, zό)} ,
& j

the infimum being taken over all representations of m as a sum m=mι
+ m2, where m1=^uJcwk and m.ii=^Aμj(yj — zj)t It can be shown that

for all α e i the semi-norm (6) is equal to the semi-norm (1) on the

subspace M(X) of M(Z).
Semi-norms related to those of type (6) have been studied (in quite

a different connection) by H. Whitney; see [4, p. 249].

3 Embedding a uniform, space Take a base point xQ 6 X, and
then define the transformation φ: X->M(X) by φ(x)=x—x0. Then φ is
clearly one-one, and by (5) we have sΛ(φ(x))=pΛ(x, x0).

THEOREM. The transformation φ is a uniformly bi-continuous homeo-
morpkism of X into M(X). If the uniform structure of X if separated,
then φ maps X onto a closed subset of M{X).

If X is a metric space, then φ is an isometric map of X onto a
closed subset of M(X).

Proof. As we have remarked in § 1 C, such a φ is a uniformly
continuous homeomorphism and an isometry if X is metric.

Supposing that the uniform structure of X is separated, we will
now show that φ(X) is closed in M(X). Given meM(X) not belonging
to φ(X), we will construct a neighborhood of m not meeting Φ(X).
Suppose first of all that m has the form λ{y—x); since mφφ{X), we
have yφz, λφ§.

In case zφxQ, there is a semi-metric p and a constant α > 0 such
that p(y, Z)^LOL, p(xQ, z)^>a; in fact, p can be defined as the sum of two
suitably chosen semi-metrics of the separating family (pa)aeA. Let sp be
the semi-norm defined by (1) using p. Set /(#)=max{<z — ρ{x, z), 0}, and
let F be the corresponding continuous linear functional as in §2C; we
note that \F(ri)\<±s?(ri) for all neM(X). Then for any mύ=x — xQ in
Φ(X), we have

F(mύ-m)=f(x)-f(x0)-\λ\f(y)+\λ\f(z)=f(x)+\λ\a1

whence sp(mQ — m)>\λ\ a.
In case z=xQ, we have λφl since mφφ{X). As before, take a

semi-metric p such that p(y, #0)>2α. Then for any m^=x — x0 in φ(X),
either p(x, xo)^>a or p(x, y)^>a. In the former event define f(z) =

{a — p(z9xo)9O}; then sp(m0 — m)'^>\F(mQ-~m)| = |U| —l|α. In the latter
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event define f(z)=max{a — p(z, y), 0}; then
Thus in any case sp(m0 — m) exceeds some positive constant inde-

pendent of mo; thus if m=λ(y—z)$φ(X), then m has a neighborhood
Jc

not meeting φ(X). In general, let m = Σ XtXi with k^>2; we can suppose
ί-l

that the x% are distinct and that Mil^6>0 for all i. As usual, take
a semi-norm p on X such that p(xif Xj)^2c for some c^>0 and for all
pairs i, j with i ^ i Now suppose mf = YΛλ

/

jx
/

j is a molecule with less
than k points. Then there is an i such that p(xj, ^)I>c for all j . Let

Thus if mr satisfies Spim — m'X^bc, then m' has at least as many points
as m. Since every element of φ(X) has the form x—x0, it follows that

we can construct a neighborhood of m='Σiλixι which does not intersect

Φ(X). The proof of the theorem is now complete.

4* Embedding topological spaces.

(A) M. Shimrat [3] has shown that every topological space X can
be embedded in a homogeneous space X* (a space X* is homogeneous
if for every two points x, y e X* there is a homeomorphism h of X*
into itself such that h(x)=y); furthermore, if X is Tlt then so is X*
and the image of X is closed in X*. In the following theorem we
shall show that any Tλ space X can be embedded as a closed subset of
a Tx space X* such that for any two points x, y e X* there is a homeo-
morphism of period two interchanging the points.

However, Shimrat manages to prove that if X has stronger separa-
tion properties (for example, X is Hausdorff, regular, normal), then X*
has these same properties. No such conclusion can be drawn for our
X*. Shimrat also produces a variant construction embedding a metric
space X as a closed set in a metrically homogeneous space X*; his X*
(as he points out) is not necessarily locally connected, whereas our em-
bedding space X*=Af(X) in § 3 is (being a normed linear space).

(B) For any set X let X* denote the Boolean ring of all finite
subsets m of X; the void set is denoted by 0, and mΛ-n is the sym-
metric difference of m and n (whence {x} + {x}=0).

We have a natural one-one transformation φ: X-»X* defined by
Φ(x)={x}. .

THEOREM. Let X be a Tλ space. Then we can define a topology on
X* for which the additive translations are homeomorphism, and φ maps
X homeomorphically onto a closed subset of X'\
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We do not assert that X* is a topological group under addition.
We will show that the transformation Γ ; ; x P - > P defined by (ra, n)
~>m + n is continuous in each variable separately, not that it is simul-
taneously continuous.

Proof. For every open cover / of X we define ( 7 ) as the collec-
tion of those sets m e X* whose points can be listed xl9 x.lf , x2k-ι, %->IM
where the " p a r t n e r s ' 7 x2j-u xtl always lie in one element Vόe 7'\
Then 0e(7'), and if / / i s a common refinement of the open covers
7 Ύf, we have ( 7/) C ( '/ ) Γ\ ( W).

We take the sets m-f ( / )̂ as a fundamental system of neighborhoods
of m e Γ ' ; , and will show that for any open cover / ^ and any m e ( > )
there is an open cover 7/ such that ne(7/) implies m±ne ('/'). It
will follow

1) that these neighborhoods define a unique topology on X*, and
2) that translation by ra is a homeomorphism.

We construct // as follows: For each Ve 7\ let Fo denote the
set of points of V not in ra; for each x,he?nr\ V such that its partner
is also in V, we define £7*= F0\J {#*}. Thus each ?7Z is defined by
removing a finite number of points from V, and since points of X are
closed, it follows that Ό% is open. We define the open cover // of X
as the collection of all possible such Όt constructed from all Ve Ψ\

Now take any n= {yl9 y2, . . . , y,^ly y.zp) e ( / / ) , where y2J_l9 y2j always
belong to some f / e ( / / ) ; let us suppose all the y7s are distinct. We
will arrange m-hn into a set of partners which share elements of >•",
thus showing that m + ne( 7^). If y.2j-u y2j eUiβ ΨS, then at most one
of them belongs to m, and that one (if any) must be x%\ we then pair
the other y with the partner of xi9 forming a pair not appearing in
7Π +n. If neither y belongs to m, we can make them partners of each
other. Elements of m not affected by these transactions shall remain
partners. That completes the arrangement of m + n.

To show that this topology on X* is itself Tl9 take any mφ0, and
let /~ be the set of complements of the sets m+{x}, where x varies
over m. Then 7^ is an open cover of X, and ( > ') is a neighborhood
of 0 in X* which does not contain m.

We will now prove that the map φ(x)={x] is a homeomorphism of
X onto X*. Given xeX and a neighborhood ( / ) of \x}, we know
there is an open set V such that xe Ve 7 then for any yeV we have
{y} = {x} -f( 7y), proving that φ is continuous. On the other hand, given
{x} e X* and a neighborhood V of x, take the open cover / ={V, X
+ {#}}. Then for any {#} e {#} 4-('/")> we have yeV since x9yeX
4- {a;} is impossible; that is, the mapping ψ~! is continuous.

Finally we will show that c/>(X) is closed in X*. Take any m with
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more than one element, and as above let/^ be the set of complements
of the sets m+{x}, where x varies over the elements of m. Then
m + ( F ) does not intersect φ(X), for if ( x } + m e ( ι f ) , then x has a
partner y in m; that is impossible, for no two elements of m lie in
the same V e ψ~. The proof of the theorem is now complete.
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