ON THE TWO-ADIC DENSITY OF REPRESENTATIONS BY QUADRATIC FORMS

Irma Reiner

1. Introduction. The problem of determining $A_{q}(S, T)$, the number of solutions of $X^{\prime} S X \equiv T(\bmod q)$, where $S^{(m)}$ and $T^{(n)}$ are symmetric integral matrices, has been considered by C. L. Siegel [2, pp. 539-547]. He obtained explicit formulas for $A_{q}(S, T)$ when $q=p^{a}$, where p is a prime not dividing $2|S||T|$. We wish to determine both $A_{2}(S, T)$ and $A_{8}(S, T)$ when $|S||T|$ is odd. Siegel has shown that the calculation of $A_{8}(S, T)$, for $|S||T|$ odd, is sufficient to give results when the modulus is replaced by a higher power of 2. Moreover, his work for composite moduli does not exclude a power of 2 as a factor.

We shall follow the pattern of Siegel's work, modifying it by the use of canonical forms established by B. W. Jones [1, pp. 715-727] and Gordon Pall for symmetric matrices in G_{2}, the ring of 2 -adic integers. (Clearly, $A_{q}(S, T)$ depends only on the classes of S and T in G_{q}, the ring of q-adic integers). We shall calculate $A_{2}(S, T)$ combinatorially and $A_{8}(S, T)$ by the use of exponential sums.
2. Recursion formula. For convenience, we state here the following theorem of Jones:

Every quadratic form with matrix in G_{2} and with unit determinant, D, is equivalent to one of the following:
(a)

$$
x_{1}^{2}+x_{2}^{2}+\cdots+a x_{r-2}^{2}+b x_{r-1}^{2}+c x_{r}^{2},
$$

where a, b, c take one of the following sets of values:

$$
\begin{aligned}
& (1,1,1) \text { or }(1,3,3) \text { for } D \equiv 1(\bmod 8), \\
& (1,1,5) \text { or }(1,3,7) \text { for } D \equiv 5(\bmod 8), \\
& (1,1,3) \text { or }(3,3,3) \text { for } D \equiv 3(\bmod 8), \\
& (1,1,7) \text { or }(3,3,7) \text { for } D \equiv 7(\bmod 8),
\end{aligned}
$$

while if $r=2, b$ and c take one of the following sets of values:

$(1,1)$ or $(3,3)$ for $D \equiv 1(\bmod 8)$,	
$(1,5)$ or $(3,7)$	for $D \equiv 5(\bmod 8)$,
$(1,3)$	for $D \equiv 3(\bmod 8)$,
$(1,7)$	for $D \equiv 7(\bmod 8)$.

(b) A sum of binary forms of the two types: $f=2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}$,

[^0]$g=2 x_{1} x_{2}$. Here, we may at will choose one of types f and g and require that all but at most one of the binary forms be of that type.

When (a) applies, we will call the matrix of the form even; when (b) applies, we will call the matrix odd.

We assume hereafter that $|S \||T|$ is odd. Then we remark immediately, as in Siegel's paper, that all representations of T by S modulo 2^{a}, where $a=1$ or 3 , are primitive. Following the line of Siegel's proof, we now obtain the recursion formula.

Taking $T=T_{0}^{(r)} \dot{+} T_{1}^{(n-r)}$, from the canonical forms above, we let \mathfrak{x} designate the first r columns of X, where $X^{\prime} S X \equiv T\left(\bmod 2^{a}\right)$. Then

$$
\begin{equation*}
\mathfrak{x}^{\prime} S \mathfrak{x} \equiv T_{0} \quad\left(\bmod 2^{a}\right) \tag{1}
\end{equation*}
$$

As remarked above, any solution a of (1) is primitive, and so can be completed to a unimodular matrix $U_{1}=(a A)$ in G_{2}. We wish to alter U_{1} so that

$$
U_{1}^{\prime} S U_{1} \equiv\left(\begin{array}{cc}
T_{0} & N^{\prime} \tag{2}\\
N & S_{1}
\end{array}\right) \quad\left(\bmod 2^{a}\right),
$$

with N designating an $m-r$ by r null matrix. To do this, we call E the matrix obtained from $U_{1}^{\prime} S U_{1}$ by deleting the first r columns and the last $m-r$ rows. Then, noting that the determinant of T_{0} is a 2 -adic unit, we multiply U_{1} by

$$
\left(\begin{array}{cc}
I^{(r)} & -T_{0}^{-1} E \\
N & I^{(m-r)}
\end{array}\right)
$$

to achieve the desired form (2).
Now if there exists a C, with its first r columns congruent to a $\left(\bmod 2^{a}\right)$, such that $C^{\prime} S C \equiv T\left(\bmod 2^{a}\right)$, we complete C to a unimodular matrix in G_{2}, say $U_{2}=\left(C A_{1}\right)$. Since U_{1} and U_{2} are both completions of a, consideration of $U_{1}^{-1} U_{2}$ shows us that

$$
C \equiv U_{1}\left(\begin{array}{ll}
I^{(r)} & B \tag{3}\\
N & C_{1}
\end{array}\right) \quad\left(\bmod 2^{a}\right),
$$

where C_{1} and the r-rowed B are in G_{2}. Using (2) and (3) in $C^{\prime} S C \equiv T$ $\left(\bmod 2^{a}\right)$, we find that B is null and that $C_{1}^{\prime} S_{1} C_{1} \equiv T_{1}\left(\bmod 2^{a}\right)$. Thus, we obtain each different solution $X\left(\bmod 2^{a}\right)$ exactly once by first determining all different solutions $\mathfrak{K}\left(\bmod 2^{a}\right)$ of (1), then finding a U_{1} as above for each such \mathfrak{x}, and finally determining for the corresponding S_{1} all different solutions of $X^{\prime} S_{1} X \equiv T_{1}\left(\bmod 2^{a}\right)$. Thus

$$
A_{2^{a}}(S, T)=\sum_{\mathfrak{a}} A_{2^{a}}\left(S_{1}, T_{1}\right)
$$

3. Combinatorial calculation of $A_{2}(S, T)$. We use canonical forms,
taken modulo 2, in the following cases:
Case 1. We assume T even and S odd. Here we clearly have no solution.

Case 2. We assume both S and T even.
2.1. For $n=1, A_{2}(S, T)=2^{m-1}$.

Proof. We seek solutions $\left\{x_{i}\right\}$ such that

$$
\begin{equation*}
\sum_{i=1}^{m} x_{i}^{2} \equiv 1 \quad(\bmod 2) \tag{4}
\end{equation*}
$$

Since a parity change in one x_{i} changes the parity of the sum, we see that $A_{2}(S, T)$ is half of 2^{m}.
2.2. For $n=2, A_{2}(S, T)=2^{m-1} \cdot 2^{m-2}$, for even m.

$$
A_{2}(S, T)=\left(2^{m-1}-1\right) \cdot 2^{m-2}, \text { for odd } m
$$

Proof. We use Case 2.1 with the recursion formula. We wish to show that for every solution \mathfrak{a} of (4), except one where m is odd and each component of \mathfrak{a} is $1, A_{2}(S, T)>0$; that is, S_{1} is even. Here we have the additional conditions:

$$
\begin{align*}
& \sum_{i=1}^{m} y_{i}^{2} \equiv 1 \quad(\bmod 2) \tag{5}\\
& \sum_{i=1}^{m} x_{i} y_{i} \equiv 0 \quad(\bmod 2) . \tag{6}
\end{align*}
$$

But there is an obvious $\left\{y_{i}\right\}$ satisfying (5) and (6) with any solution $\left\{x_{i}\right\}$ of (4) which has a zero element; and clearly there is no such $\left\{y_{i}\right\}$ if all the elements of $\left\{x_{i}\right\}$ are 1 . Hence, we have our result.
2.3. For general m and $n,(n>1)$,

$$
A_{2}(S, T)=F(m) \cdot F(m-1) \cdots F(m-n+2) \cdot 2^{m-n}
$$

where $F(m)=2^{m-1}$ for even m and $F(m)=2^{m-1}-1$ for odd m.

Proof. Now S_{1} depends only on a and not on n, so that Case 2.2 tells us that S_{1} is even except when m is odd and each element of \mathfrak{a} is 1. Then the above result follows easily from the recursion formula.

Case 3. We assume both S and T odd.
3.1. For $n=2, A_{2}(S, T)=\left(2^{m}-1\right) \cdot 2^{m-1}$.

Proof. We want solutions, $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$, of

$$
\begin{equation*}
x_{1} y_{2}+x_{2} y_{1}+\cdots+x_{m-1} y_{m}+x_{m} y_{m-1} \equiv 1 \quad(\bmod 2) \tag{7}
\end{equation*}
$$

Now $\left\{x_{i}\right\}$ cannot be null if (7) is to hold; also there is an obvious $\left\{y_{i}\right\}$ satisfying (7) for each non-null $\left\{x_{i}\right\}$. Let us fix a non-null $\left\{x_{i}\right\}$ and call any $\left\{y_{i}\right\}$ satisfying (7) with our fixed $\left\{x_{i}\right\}$ a "solution", otherwise a " non-solution". Then, since, modulo 2, the sum of two "solutions" is a "non-solution" and the sum of a"solution" with a "non-solution" is a "solution", we have our result.

3.2. For general m and n,

$$
A_{2}(S, T)=\left(2^{m}-1\right) \cdot 2^{m-1}\left(2^{m-2}-1\right) \cdot 2^{m-3} \cdots\left(2^{m-n+2}-1\right) \cdot 2^{m-n+1}
$$

Proof. Equivalent matrices in G_{2} have the same parity, which is clearly unchanged when the matrices are taken modulo 2 . Thus, from (2), since S is odd, so is

$$
S_{1} \dot{+}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Hence S_{1} is odd, and our result follows.
Case 4 We assume that S is even and T odd.
4.1. For $n=2, A_{2}(S, T)=\left(2^{m-1}-1\right) 2^{m-2}$, if m is odd.

$$
A_{2}(S, T)=\left(2^{m-1}-2\right) 2^{m-2}, \text { if } m \text { is even. }
$$

Proof. We want solutions $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$, of

$$
\sum_{i=1}^{m} x_{i}^{2} \equiv 0, \quad \sum_{i=1}^{m} y_{i}^{2} \equiv 0, \quad \sum_{i=1}^{m} x_{i} y_{i} \equiv 1,
$$

all taken modulo 2. Let us fix $\left\{x_{i}\right\}$ satisfying the first of these and consider the 2^{m-1} incongruent $\left\{y_{i}\right\}$ which satisfy the second. Of these $\left\{y_{i}\right\}$, we call those satisfying the final congruence with our fixed $\left\{x_{i}\right\}$ "solutions" and those not doing so "non-solutions". By an argument similar to that used in Case 3.1 , we see that exactly half the 2^{m-1} choices of $\left\{y_{i}\right\}$ are "solutions", except when $\left\{x_{i}\right\}$ is the null vector or, with m even, $(1,1, \cdots, 1)$. There is no "solution" $\left\{y_{i}\right\}$ corresponding to either of these exceptional $\left\{x_{i}\right\}$.
4.2. For general m and n,

$$
A_{2}(S, T)=\left(2^{m-1}-p\right) 2^{m-2}\left(2^{m-3}-p\right) 2^{m-4} \cdots\left(2^{m-n+1}-p\right) 2^{m-n}
$$

where $p=1$ for $o d d m$ and $p=2$ for even m.
Proof. Using (2) again, we observe that S_{1} is even. (See Case 3.2.). Then the recursion formula implies our result.
4. Determination of $A_{8}(S, T)$. We will assume throughout the fol-
lowing cases that S and T are in appropriate canonical forms as given in $\S 2$.

Case 1. We assume T is even.
Clearly, $A_{8}(S, T)=0$ for S odd and T even; so we will also assume S is even.
1.1. Let $n=1$. Here $T=(t)$. For ω a primitive 8 th root of unity, we have

$$
\begin{equation*}
8 A_{8}(S, T)=\sum_{n, a(\bmod 8)} \omega^{V}, \quad Y=h\left(a_{1} s_{1}^{2}+\cdots+a_{m} s_{m}^{2}-t\right) \tag{8}
\end{equation*}
$$

where h and the elements $a_{1}, a_{2}, \cdots, a_{m}$ of the vector a run through a complete residue system modulo 8 , and where the diagonal elements of S are the odd $s_{1}, s_{2}, \cdots, s_{m}$. Calling

$$
\sum_{a(\bmod 8)} \omega^{h a^{2} s}=[h s],
$$

we get

$$
\begin{equation*}
8 A_{8}(S, T)=\sum_{n=1}^{7}\left[h s_{1}\right]\left[h s_{2}\right] \cdots\left[h s_{m}\right] \omega^{-h t}+8^{m} \tag{9}
\end{equation*}
$$

We observe that $\left[h s_{i}\right]=4 \omega^{n s_{i}}$, for odd $h ;\left[h s_{i}\right]=0$, for $h \equiv 4(\bmod 8)$; $\left[h s_{i}\right]=4 \sqrt{ } 2 \omega$, for $h s_{i} \equiv 2(\bmod 8) ;$ and $\left[h s_{i}\right]=4 \sqrt{2} \omega^{7}$, for $h s_{i} \equiv 6(\bmod 8)$. Then, let us call $u \equiv \sum_{i=1}^{m} s_{i}-t(\bmod 8)$, and define $f(u)=1$ for $u \equiv 0(\bmod$ 8), $f(u)=-1$ for $u \equiv 4(\bmod 8)$, and $f(u)=0$ for $u \equiv 0(\bmod 4)$. Also define

$$
K \equiv(-1)^{\left(s_{1}-1\right) / 2}+(-1)^{\left(s_{2}-1\right) / 2}+\cdots+(-1)^{\left(s_{m}-1\right) / 2}-2 t \quad(\bmod 8) .
$$

Then direct calculation gives from (9),

$$
8 A_{8}(S, T)=8^{m}+4^{m+1} f(u)+2(4 \sqrt{2})^{m} \cos \begin{gathered}
K \pi \\
4
\end{gathered}
$$

1.2. Let $n=2$. We will (a) ascertain when S is even and (b) show that two even S_{1} 's corresponding to different solutions \mathfrak{a} are equivalent in G_{2}. Then the result follows from the recursion formula.
(a) Let $T=t_{1} \dot{+} t_{2}$. Since parity is the same modulo 2 or modulo 8 , we see from § 3, Case 2.2, that of all solutions, \mathfrak{a}, of $\mathfrak{r}^{\prime} S \mathfrak{c} \equiv t_{1}(\bmod 8)$, those and only those which reduce, modulo 2 , to the vector $(1,1, \cdots, 1)$ will yield odd S_{1} 's. For such an $\mathfrak{a}, \sum_{i=1}^{m} a_{i}^{2} s_{i} \equiv t_{1}(\bmod 8)$ implies $\sum_{i=1}^{m} s_{i} \equiv t_{1}$ (mod 8$).$ But, equally well, if S and t_{1} are such that $\sum_{i=1}^{m} s_{i} \equiv t_{1}(\bmod 8)$,
then $\sum_{i=1}^{m} a_{i}^{2} s_{i} \equiv t_{1}(\bmod 8)$ holds for arbitrary odd a_{i}. Thus, if $\sum_{i=1}^{m} s_{i} \equiv t_{1}$ $(\bmod 8)$, we get 4^{m} number of a^{\prime}, solutions of $x^{\prime} S \mathfrak{x} \equiv t_{1}(\bmod 8)$, which yield odd S_{1} 's; otherwise, none.
(b) Now let \mathfrak{a} be such that S_{1} is even. From [1], we see that two even matrices of odd determinant, which are congruent modulo 8 , are in the same class in G_{2}. Thus, using (2), we obtain:

$$
t_{1}\left|S_{1}\right| \equiv|S|(\bmod 8) \text { and } \lambda\left(t_{1}+S_{1}\right)=\lambda(S)
$$

where $\lambda(S)$ is the class invariant defined as 1 if $4 j$ or $4 j+1$ of the diagonal elements of a diagonalized form of S are congruent to 3 modulo 4 and -1 if $4 j+2$ or $4 j+3$ are congruent to 3 modulo 4 . These two conditions determine uniquely, independently of a, the class of S_{1} in G_{2}.

Example. Let S be of type $(1,3,3)$ as given in $\S 2, m>3$, and $t_{1}=5$. Then the determinantal relation gives an even S_{1} of type (1, 1, 5) or $(1,3,7)$. But the λ-condition admits only the second of the two, so any even S_{1} is of type ($1,3,7$).

Thus we have

$$
\begin{aligned}
8^{2} \cdot A_{8}(S, T)=\left(8^{m}+4^{m+1} f\right. & \left.\left(u_{0}\right)+2(4 \sqrt{ } 2)^{m} \cos \left(K_{0} \pi / 4\right)-8 \cdot 4^{m} h\left(u_{0}\right)\right) \\
& \times\left(8^{m-1}+4^{m} f\left(u_{1}\right)+2(4 \sqrt{ } 2)^{m-1} \cos \left(K_{1} \pi / 4\right)\right),
\end{aligned}
$$

where u_{0} and K_{0} are arguments obtained from S and t_{1} as above; u_{1} and K_{1} are arguments similarly obtained from S_{1} and t_{2}; and $h\left(u_{0}\right)$ is defined as 1 if $u_{0} \equiv 0(\bmod 8)$ and as 0 otherwise.
1.3. Let $n \geq 2$. Since the process of obtaining an S_{1} from a given pair, S and t_{1}, is the same for $n=2$ and for $n>2$, we may use 1.2 above to obtain

$$
\begin{aligned}
& 8^{n} A_{8}(S, T)=\left(8^{m-n+1}+4^{m-n+2} f\left(u_{n-1}\right)+2(4 \sqrt{ } 2)^{m-n+1} \cos \left(\pi K_{n-1} / 4\right)\right. \\
& \quad \times \prod_{j=m-n+2}^{m}\left(8^{j}+4^{j+1} f\left(u_{m-j}\right)+2(4 \sqrt{2})^{j} \cos \left(\pi K_{m-j} / 4\right)-8 \cdot 4^{j} h\left(u_{m-j}\right)\right),
\end{aligned}
$$

where, for each i, u_{i} and K_{i} come from S_{i} and t_{i+1}, as above.
(The process of finding successive S_{i} and t_{i}, and hence of successive $K_{i}, f\left(u_{i}\right)$, and $h\left(u_{i}\right)$, is easy in practice, as evidenced by the example above. Explicit but complicated formulas could be given.)

Case 2. We assume S and T are both odd. We will first take $n=2$.
2.1. We suppose that

$$
T=\left(\begin{array}{ll}
b & 1 \\
1 & b
\end{array}\right) \text { and } S=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \dot{+}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \dot{+} \cdots \dot{+}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

where $b=0$ or 2 . Then we seek solutions of:

$$
\begin{aligned}
& F(x)=2\left(x_{1} x_{2}+x_{3} x_{4}+\cdots+x_{m-1} x_{m}\right) \equiv b \quad(\bmod 8) \\
& G(y)=2\left(y_{1} y_{2}+y_{3} y_{4}+\cdots+y_{m-1} y_{m}\right) \equiv b \quad(\bmod 8) \\
& H(x, y)=x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}+x_{4} y_{3}+\cdots+x_{m-1} y_{m}+x_{m} y_{m-1} \equiv 1 \quad(\bmod 8) .
\end{aligned}
$$

Thus

$$
8^{3} A_{8}(S, T)=\sum_{\substack{h, k, l \\ \mathfrak{E}, \mathfrak{y}}} \omega^{(F-b) h+(G-b) k+(H-1) \imath},
$$

where $\omega=e^{\pi i / 4}$; and h, k, l, and the components of the vectors \mathfrak{x} and \mathfrak{y} all run through complete residue systems modulo 8. Then, letting

$$
\begin{equation*}
R=\sum_{x_{1}, x_{2}, y_{1}, y_{2}(8)} \omega^{B Y P}, \quad E X P=2 x_{1} x_{2} h+2 y_{1} y_{2} k+\left(x_{1} y_{2}+x_{2} y_{1}\right), \tag{10}
\end{equation*}
$$

we get

$$
\begin{equation*}
8^{3} A_{8}(S, T)=\sum_{h, k, l(8)} R^{m / 2} \omega^{-l-b h-b k} \tag{11}
\end{equation*}
$$

We note that, for l odd, replacement of h by $l h$, of k by $l k$, of x_{1} by $l x_{1}$, and of y_{1} by $l y_{1}$ in $E X P$, the displayed exponent of (10), shows that $\sum_{n, k} R^{m / 2}$ is independent of l. A similar argument works for $l \equiv 2(\bmod 4)$.

For $l \equiv 0(\bmod 8)$, we have

$$
R=2^{4+r(h)} \cdot 2^{4+r(k)},
$$

where $r(t)=0$ if $t \equiv 1(\bmod 2), r(t)=1$ if $t \equiv 2(\bmod 4)$, and $r(t)=2$ if $t \equiv 0(\bmod 4)$.

For $l=4(\bmod 8)$ and h odd, we let $z \equiv x_{i} h+2 y_{2}(\bmod 8)$, and replace y_{2} by z as a variable in $E X P$. Then, summing first on x_{1}, we get

$$
R=2^{8+r(k)} .
$$

For $l \equiv 4(\bmod 8)$ and $h=2 h_{1}$, we let $z \equiv x_{2} h_{1}+y_{2}(\bmod 8)$ and again replace y_{2} by z as a variable in $E X P$. Summing first on x_{1} and z, we readily get
$R=2^{9}$, for $h_{1} k \equiv 1(\bmod 2)$
$R=2^{10}$, for $h_{1} k \equiv 0(\bmod 4)$ or for $h_{1} k \equiv 2(\bmod 4)$ and $k \equiv 1(\bmod 2)$
$R=2^{11}$, for $h_{1} k \equiv 2(\bmod 4)$ and $k \equiv 0(\bmod 2)$.
Summing first on l in (11), we get by straightforward calculation:

$$
\begin{array}{ll}
A_{8}(S, T)=2^{5 m-7}\left(2^{m}+2^{m / 2}-2\right), & \text { for } b=0 . \\
A_{8}(S, T)=2^{5 m-7}\left(2^{m}-3 \cdot 2^{m / 2}+2\right), & \text { for } b=2
\end{array}
$$

2.2. We suppose that

$$
T=\left(\begin{array}{ll}
b & 1 \\
1 & b
\end{array}\right) \text { and } S=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \dot{+}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \dot{+} \cdot \cdots \dot{+}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \dot{+}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Then, using the same R as before and letting

$$
V=\sum_{x, y, u, v(8)} \omega^{P},
$$

where $P=2\left(x y+x^{2}+y^{2}\right) h+2\left(u v+u^{2}+v^{2}\right) k+(u y+v x+2 u x+2 v y) l$, we get

$$
\begin{equation*}
8^{3} A_{8}(S, T)=\sum_{h, k, l(8)} R^{(m-2) / 2} V \omega^{-l-b h-b l e} \tag{12}
\end{equation*}
$$

To evaluate V, we use repeatedly:

$$
\begin{aligned}
\sum_{u(8)} \omega^{2 a u^{2}+d u} & =0, \text { if } d \equiv 2(\bmod 4) \text { or if } d \equiv 1(\bmod 2) \\
& =-4 \omega^{2 a}+4, \text { if } d \equiv 4(\bmod 8) \\
& =4 \omega^{2 a}+4, \text { if } d \equiv 0(\bmod 8)
\end{aligned}
$$

We obtain:
(i) For l odd, $V=64$.
(ii) V is the same for $l \equiv 2$ and $l \equiv 6(\bmod 8)$.
(iii) For $l \equiv 0(\bmod 8), V=g(h) g(k)$, where we define $g(t)=64$ for $t \equiv 0(\bmod 4), g(t)=16$ for $t \equiv 1(\bmod 2)$, and $g(t)=-32$ for $t \equiv 2(\bmod 4)$.
(iv) For $l \equiv 4(\bmod 8)$, we have:
(a) When h is odd, $V=16 g(k)$.
(b) When h or $k \equiv 0(\bmod 4), V=2^{10}$.
(c) When $h=2(\bmod 4), V=-2^{9}$, when k is odd, and $V=-2^{11}$, when $k \equiv 2(\bmod 4)$.
We sum first on l in (12), using our results for R and considering only $l \equiv 0(\bmod 4)$. We get

$$
\begin{array}{ll}
A_{8}(S, T)=2^{4}\left(2 \cdot 2^{6(m-2)}-2^{1((m-2) / 2}-2^{5(m-2)}\right), & \text { for } b=0 . \\
A_{5}(S, T)=2^{1}\left(2 \cdot 2^{8(m-2)}+3 \cdot 2^{11(m-2) / 2}+2^{5(m-2)}\right), & \text { for } b=2 .
\end{array}
$$

For $n>2$, when S and T are odd, we will use our results for $n=2$, along with the recursion formula. The successive canonical forms of T, T_{1}, \ldots are clear; that is, T_{1} is obtained from T by removing the initial binary block, etc. T_{1} is thus odd and known. From

$$
S_{1} \dot{+}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \equiv U_{1}^{\prime} S U_{1} \quad(\bmod 8)
$$

we deduce $-\left|S_{1}\right| \equiv|S|(\bmod 8)$ and the oddness of S_{1}. Thus S_{1} is easily determined classwise uniquely. The same holds true, of course, for successive S_{i}.

Case 3. We assume S is even and T is odd. Considering first
$n=2$, we let $s_{1}, s_{2}, \cdots, s_{m}$ be the diagonal elements in the canonical form of S, and let T be

$$
\left(\begin{array}{ll}
b & 1 \\
1 & b
\end{array}\right),
$$

where $b=0$ or 2 . Then we seek solutions of:

$$
\begin{aligned}
& u=x_{1}^{2} s_{1}+x_{2}^{2} s_{2}+\cdots+x_{m}^{2} s_{m} \equiv b(\bmod 8) \\
& v=y_{1}^{2} s_{1}+y_{2}^{2} s_{2}+\cdots+y_{m}^{2} s \equiv b_{m}(\bmod 8) \\
& r=x_{1} y_{1} s_{1}+x_{2} y_{2} s_{2}+\cdots+x_{m} y_{m} s_{m} \equiv 1(\bmod 8) .
\end{aligned}
$$

Here

$$
8^{3} A_{8}(S, T)=\sum_{h, k, l, \mathfrak{\&} \mathfrak{\mathfrak { H }},(8)} \omega^{h(u-b)+k(v-b)+l(r-1)} .
$$

Let $\omega^{s} i=\omega_{i}$ and call

$$
f_{i}(h, k, l)=\sum_{x, y(8)} \omega_{i}^{h x^{2}+l x y+k y^{2}}
$$

Then

$$
\begin{equation*}
8^{3} A_{8}(S, T)=\sum_{n, k, l(8)} f_{1} f_{2} \cdots f_{m .} \omega^{-h b-k b-l} \tag{13}
\end{equation*}
$$

We calculate f_{i}, considering the value of $l(\bmod 8)$, and note that as before we need consider only $l \equiv 0(\bmod 4)$. We get:

h	k	$l(\bmod 8)$	f_{i}
odd	odd	0	$c=16 \omega_{i}^{h+k}$
		4	$-c=-16 \omega_{i}^{h+k}$
odd	even	0	$d=16 \omega_{i}^{h+k}+16 \omega_{i}^{h}$
		4	$e=-16 \omega_{i}^{h+k}+16 \omega_{i}^{h}$
even	even	0	$p=16\left(\omega_{i}^{h+k}+\omega_{i}^{h}+\omega_{i}^{h}+1\right)$
		4	$q=16\left(-\omega_{i}^{h+k}+\omega_{i}^{h}+\omega_{i}^{k}+1\right)$.

Then from (13), we get

$$
\begin{gathered}
8^{3} A_{8}(S, T)=2 \underset{\substack{h \text { odd } \\
k \text { even }}}{ }\left(\prod_{i=1}^{m} d-\prod_{i=1}^{m} e\right) \omega^{-h b-k b}+\left(1-(-1)^{m}\right)\left(\sum_{h, k \text { odd }}\left(\prod_{i=1}^{m} c\right) \omega^{-h b-k b}\right) \\
+\sum_{h, k \text { even }}\left(\prod_{i=1}^{m} p-\prod_{i=1}^{m} q\right) \omega^{-h b-k b},
\end{gathered}
$$

where all the sum indices are taken modulo 8. Replacement of k by $k+4$ in the first summand merely changes the sign of the expression, so the first sum is zero. The second sum is easily seen to be 16^{m+1}. $\alpha\left(1-(-1)^{m}\right)$, where $\alpha=1$ if $\Sigma s_{i} \equiv b(\bmod 4)$ and $\alpha=0$ otherwise.

We consider particular contributions to the third sum, using $\omega_{j}^{2 k}=$ $i^{s_{j}{ }^{k}}$ and adjusting so that h and k run through a complete residue system modulo 4.
(a) For $h \equiv 2(\bmod 4)$ and all $k(\bmod 4)$, we have contributed $-4 \alpha(32)^{m}$.
(b) For $h \equiv k \equiv 2(\bmod 4)$, we get $-(-32)^{m}$.
(c) For $h \equiv 0(\bmod 4)$ and $k \equiv 1,3(\bmod 4)$, we obtain

$$
16^{m} \cdot 2^{m+1} \cdot i^{-b}\left(2^{m / 2} \cos (\pi B / 4)-1\right), \quad \text { where } B=\sum_{j=1}^{m}(i)^{s_{j}-1}
$$

(d) For h and k odd, with $h \equiv k(\bmod 4)$, we get

$$
16^{m}\left(-2^{m+1} 2^{m / 2} \cos (\pi B / 4)+2^{m+1} \cos (\pi B / 2)\right) .
$$

(e) For h and k odd, with $h \equiv-k(\bmod 4)$, we get $2(32)^{m}$.
(f) For $h \equiv k \equiv 0(\bmod 4)$, we have $16^{m}\left(2^{2 m}-2^{m}\right)$.

Thus, here

$$
\begin{gathered}
8^{3} A_{8}(S, T)=16^{m+1} \alpha\left(1-(-1)^{m}\right)+32^{m}\left(-8 \alpha+(-1)^{m}+4 i^{-b}\left(2^{m / 2} \cos (\pi B / 4)-1\right)\right) \\
+32^{m}\left(2 \cos (\pi B / 2)-2^{1+(c m / 2)} \cos (\pi B / 4)+2+2^{m}-1\right) .
\end{gathered}
$$

For $n>2$, where S is even and T odd, we use the recursion formula with the results for $n=2$. The successive diagonal forms of T are clear. From

$$
S_{1} \dot{+}\left(\begin{array}{ll}
0 & 1 \tag{11}\\
1 & 0
\end{array}\right) \equiv U_{1}^{\prime} S U_{1} \quad(\bmod 8)
$$

we see firstly that S_{1} is even and secondly, that its determinant is determined modulo 8. Again, using (14) and the remarks of $\S 4,1.2 \mathrm{~b}$, we see from the following transformations that the number of 3 's, modulo 4, in a diagonal form of S_{1} is one less than the number of 3 's modulo 4, in a diagonal form of S; hence, $\lambda\left(S_{l}\right)$ is known:

$$
\begin{aligned}
& a x^{2}+2 y z \rightarrow a(x+y)^{2}+2 y z=a x^{2}+a y^{2}+2 y(a x+z) \rightarrow \\
& \quad a x^{2}+a y^{2}+2 y z \equiv a x^{2}+a(y+a z)^{2}-a z^{2} \rightarrow a x^{2}+a y^{2}-a z^{2},
\end{aligned}
$$

where a is odd, the congruence is taken modulo 8 , and \rightarrow indicates 2 -adic equivalence. Thus S_{1} is classwise unique and easily determined.

References

1. B. W. Jones, Duke Math. J. 11 (1944), 715-727.
2. C. L. Siegel, Ann. of Math. 36 (1935), 527-606.

[^0]: Received October 3, 1955. The author wishes to thank Professor Irving Reiner for helpful suggestions during the preparation of this paper.

