CONTINUOUS SPECTRA AND UNITARY EQUIVALENCE

C. R. PUTNAM

1. Introduction. In the differential equation

(1)
$$(px')' + (\lambda + f(t))x = 0$$
,

let λ denote a real parameter and let p(t) (>0) and f(t) be continuous real-valued functions on $0 \leq t < \infty$. Suppose that (1) is of the limit-point type, so that (1) and a linear homogeneous boundary condition

(2_a)
$$x(0) \cos \alpha + x'(0) \sin \alpha = 0$$
, $0 \leq \alpha < \pi$,

determine a boundary value problem with a spectrum $S=S_{\alpha}$ on the half-line $0 \leq t < \infty$; cf. [7]. The continuous spectrum C_{α} (if it exists) is determined by a continuous monotone nondecreasing basis function $\rho_{\alpha}(\lambda)$. It is known that the set of cluster points, S', of S_{α} is independent of α , [7, p. 251]; the question as to whether the corresponding assertion for C_{α} is also true was raised by Weyl [7, 7. 252] but is still undecided.

Consider the self-adjoint operators $H_{\alpha} = \int \lambda dE_{\alpha}(\lambda)$ (all of which are extensions of the same symmetric operator) belonging to the various boundary value problems determined by (1) and (2_{α}) ; cf. for example, [2]. The object of this note is to shown that any two H_{α} possessing purely continuous (hence, in view of the above remark concerning S', necessarily identical) spectra are unitarily equivalent, at least if certain conditions concerning the nature of the sets C_{α} and the basis functions $\rho_{\alpha}(\lambda)$ are met. In fact there will be proved the following.

THEOREM (*). Suppose that there exist two (distinct) values α_1 and α_2 ($0 \leq \alpha_k < \pi$) such that, for each of the two boundary value problems determined by (1) and $(2_{\alpha k})$, the following three conditions are satisfied:

(i) $S_{\alpha k} \neq (-\infty, \infty),$

(ii) the point spectrum is empty, and

(iii) $\rho_{\alpha k}(\lambda)$ is absolutely continuous. Then $H_{\alpha 1}$ and $H_{\alpha 2}$ are unitarily equivalent.

The condition (i) of (*) surely holds if, for instance, f is bounded or even bounded from below on $0 \leq t < \infty$. It should be noted however that every (real) λ belongs to an S_{α} for some α (depending on λ); [1].

For other results on the continuous spectra of boundary value pro-

Received April, 1956. This work was supported by the National Science Foundation research grant NSF-G481.

blems with absolutely continuous basis functions (on certain intervals), see [4].

The proof of (*) in § 2 will depend upon the following result of M. Rosenblum [5] concerning perturbations of self-adjoint operators: Let the self-adjoint operators $A_k = \int \lambda dE(\lambda)$ (for k=1, 2, 3) satisfy $A_1 - A_2 = A_3$. Suppose, in addition, that A_3 is completely continuous and such that $\int |\lambda| dE_3(\lambda)$ has a finite trace while (E_1x, y) and (E_2x, y) are absolutely continuous functions of λ for arbitrary x and y in Hilbert space. Then A_1 and A_2 are unitarily equivalent.

2. Proof of (*). In the sequel, the index α_k will be replaced by k. It is clear from the assumptions that there exists some real value $\lambda = \lambda^*$ not belonging to S_k for k=1, 2. Consequently, since f(t) can be replaced in (1) by $f(t) + \lambda^*$, it can be supposed without loss of generality that $\lambda = 0$ is not in either of the sets S_k . Then the operators H_k^{-1} , where

$$H_{k}^{-1} = \int_{\lambda}^{-1} dE_{k}(\lambda) = \int dF_{k}(\lambda) \qquad (F_{k}(\lambda) = E_{k}(\lambda^{-1}))$$

are bounded, self-adjoint integral operators with kernels $G_k(s, t)$ on $0 \leq s, t < \infty$; cf. for example, [2], [7]. Furthermore,

$$G_1(s, t) - G_2(s, t) = cg(s)g(t)$$
,

where c denotes a constant and g(t) is a function of class $L^2[0, \infty)$; cf. [7, p. 251]. Thus $(H_1^{-1}-H_2^{-1})x$ is a multiple of g for every element x of class $L^2[0, \infty)$. Hence $H_1^{-1}-H_2^{-2}$ is a multiple of a one-dimensional projection operator; in particular, $H_1^--H_2^{-1}$, corresponding to A_3 , satisfies the trace condition on that operator mentioned at the end of § 1.

In view of the assumptions (ii) and (iii) of (*), it follows from the formulas relating the basis functions $\rho_k(\lambda)$ to the projections $E_k(\lambda)$ (cf., for example, [2]) that $||E(\lambda)x||$ is an absolutely continuous function of λ for every x in the Hilbert space; therefore $(E_k(\lambda)x, y)$, hence also $(F_k(\lambda)x, y)$, is absolutely continuous for every pair x, y of this space. According to the above mentioned theorem of Rosenblum, it now follows that the operators H_k^{-1} (hence also the H_k) are unitarily equivalent, and the proof of (*) is now complete.

3. Consider the special case of (1) in which $f \equiv 0$. It is readily seen that there are no eigenvalues for either of the boundary value problems determined by $x'' + \lambda x = 0$ and the respective boundary conditions x(0)=0 and x'(0)=0. (These boundary conditions correspond to $\alpha=0$, $\pi/2$ in (2^{α}) ; in a somewhat more general connection, cf. [3, p. 792]). Thus, in each case, there is a purely continuous spectrum consisting of the half-line $0 \leq \lambda < \infty$. Moreover, the basis functions, which, in this instance, are even known explicitly [6, p. 59] are absolutely continuous. Consequently, Theorem (*) is applicable and shows that the self-adjoint operators belonging to the above mentioned boundary value problems are unitarily equivalent.

Reference

1. P. Hartman and A. Wintner, An oscillation theorem for continuous spectra, Proc. Nat. Acad. Sci., **33** (1947), 376-379.

2. K. Kodaira, The eigenvalue problem for ordinary differential equations of the second order and Heisenberg's theory of S-matrices, Amer. J. Math., **71** (1949), 921-945.

3. C. R. Putnam, An application of spectral theory to a singular calculus of variations problem, Amer. J. Math., **70** (1948), 780-803.

4. On the continuous spectra of singular boundary value problems, Can. J. Math., **6** (1954), 420-426.

5. M. Rosenblum, *Perturbations of the continuous spectrum and unitary equivalence*, Technical Report No. 12, for Office of Ordnance Research, Department of Mathematics, University of California, December 1955.

6. E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations (Oxford, 1946).

7. H. Weyl, Ueber gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann., **68** (1910), 222-269.

PURDUE UNIVERSITY