
ON THE MEASURE OF NORMAL FORMULAS

ROBERT MCNAUGHTON

l Introduction* Qυine has recently found (in [1], [2] and [3]) a
reasonably practical method which yields the simplest normal equivalent
of a given truth functional formula. The problem of this paper is to
find a practical method which yields the simplest normal formula with
a given measure. Roughly, the measure of a formula is the number
of T's in the column under the formula in a truth table which has
2a rows; these rows represent all possible assignments of T's and F's
to d letters including all the letters of the formula and perhaps others.
The problem, which is rather difficult, arises in the design of certain
networks in digital computers (described at the end of § 2) as part of
a more general problem which is all the more difficult. Networks,
however, are not discussed at all in the remainder of the paper, where
the main problem is attacked as a problem in pure logic. I have had
no success in obtaining* a method which is generally satisfactory, but
have succeeded in proving a few theorems which will probably be in-
dispensable in any future attack on the problem.

2. The problem and its origin. Most of the terminology which I
shall use is Quine's. Where it conflicts with Quine's terminology of [1],
[2] and [3] I shall explicitly say so; on the other hand, I shall not pre-
suppose that the reader is familiar with any of these papers. An
italicized word appearing in a sentence of this paper is defined in that
sentence. In this section a sentence without an italicized ^kord is often
a theorem which is either well known or obvious.

A formula is made up in the usual manner from the letters Au •••,
Aa by means of negation, conjunction and disjunction (or alternation).

For any formulas Φu , Φn, n^2, Φλ is the negation of Φu ΦxΦ^^Φn

is the conjunction of Φlf ••, Φn (these being conjuncts), and Φ Λ / ^ V " *
\JΦn is the disjunction (called ' alternation ' by Quine) of Φu •••, Φ»
(these being disjuncts). (I assume that the reader is familiar enough
with the general literature to see how the circularity of definition in
the last two sentences can be avoided.) A letter or its negation is a
literal. If a formula is a disjunction, then the disjuncts are clauses;
if it is not a disjunction, the formula itself is its only clause. A for-
mula all of whose clauses are literals or conjunctions of literals is a
normal formula. (For Quine a clause of a normal formula cannot have
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repetitious letters.)
A formula is consistent if it comes out true under some interpreta-

tion of its letters. An inconsistent normal formula, then, must be one
in which every clause is inconsistent; a clause of a normal formula is
inconsistent if and only if there is a letter appearing both with and
without a bar. An inconsistent clause can be omitted from any con-
sistent normal formula and the resulting formula is equivalent to the
original. A clause of a normal formula subsumes another if every literal
of the second is a literal of the first. Any clause which subsumes
another in a normal formula can be omitted and the resulting formula
is equivalent to the original. A literal which has occurred previously
in the same clause can be omitted and the resulting clause is equivalent
to the original clause; hence, the resulting formula is equivalent to the
original formula. A normal formula in which no clause subsumes ano-
ther, no clause is inconsistent, and no clause contains a repeated literal,
is an apparently irredundant normal formula. An irredundant normal
formula is one in which no literal or clause can be omitted without
sacrificing equivalence. Some apparently irredundant formulas are not
irredundant as example 1 or example 2 of [1] is enough to show. An
interclausally consistent formula is one in which the conjunction of any
two clauses is consistent. A normal formula is interclausally consistent
if and only if no letter appears in it at least once with a bar and at
least once without a bar.

A normal formula is developed with respect to the letters Au ,
A d if every clause has one and only one occurrence of each of these
letter. Ev̂ jry consistent formula Φ containing no letters other than Alf

• , Ad can 1?e transformed into an irredundant normal formula which
is developed with respect to the letters Al9 — *,Ad; the number of clau-
ses in the letter is the measure of Φ, or m(Φ). If Φ is inconsistent,
then the measure of Φ is 0. In general m(Φ) depends on d> but there
is no need to make this dependence explicit in the notation in most of
this paper. Where the notation m{Φ) is used, it is assumed that Φ con-
tains only (perhaps not all) the letters Alf , Ad. If a truth table is
constructed for Φ with 2a rows, representing the 2d assignments of truth
values to Al9 •••, Ad, then there will be m(Φ) T's in the column for Φ.

Two formulas Φ and Ψ are isomorphic if there is a one-to-one map-
ping / of the set of literals of Φ onto the set of literals of ψ such that,

if both At and A% occur in Φ and if f(At)=AJ then f(Ai)=Ajf and if

f(Ai)=Aj then /(^Lί)==Aj; and such that a formula Ψr can be obtained
from Φ by replacing each literal by its image under /, and Ψ can be
obtained from Ψf by changing the order of conjunts of zero or more
conjunctions and changing the order of disjuncts of zero or more dis-
junctions. Thus AλA^\JA^A^XJA iA^Ar, is isomorphic to AxAbAG\/A^A^
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; here / is the mapping such that /(A1)=A1, /(A2)=A2, /(A3)=A5,

/(A4)=A6, /(A5)=A4. If no letters except Au •••, Ad occur in 0 and Ψ,
and if 0 and Ψ are isomorphie, then m(Φ)=m(Ψ). (If this fact is not
obvious enough to the reader, it is proved for the case in which Φ and
Ψ are normal formulas as Theorem 2.4.)

For the purposes of this paper the word " simplicity " need not be,
and is not, defined precisely. Let us understand merely that simplicity
of a normal formula depends on the number of clauses and the number
of literals in each clause.

A practical solution to the problem of finding the simplest normal
formula with a given measure would have some application to the de-
sign of certain parts of digital computers. Dr. Montgomery Phister,
Jr. of the Ramo Wooldridge Corporation has suggested the following
problem which was the initial stimulus for the research for this paper.

Suppose that one is to devise a circuit with n outputs in such a
way that in each of m given time intervals each output is to be in
state 1 or state 0 as specified. The circuit engineer can select his in-
puts in any way he chooses, so that each input is either 0 or 1 in each
interval. But he must do so in such a way that each output is a func-
tion of the inputs and the circuit is the most economical. If certain
kinds of diode circuit are used, then the part of the circuit which
relates any output to the inputs must be constructed as a normal
formula.

The problem of finding the simplest normal formula with a given
measure is relevant to this problem, even though a practical solution to
the former would not necessarily mean a practical solution to the latter.
If the number of intervals is between 2d~1-h 1 and 2d inclusive and if
each time interval itself is to be a unique function of the inputs, then
there must be d inputs. With these assumptions, a practical way of
choosing inputs so as to minimize the circuit for just one output is
easily obtainable if there is a practical way of finding the simplest nor-
mal formula with a given measure. For example, if there are 16 time
intervals and there is to be one output in state 1 in exactly 5 intervals,
then it is necessary to find, for d=4, a simplest formula whose measure
is 5; in this case, A^X/A^A^ seems to be a formula.

3 Calculation of the measure of a formula. There is a straight-
forward way of calculating the measure of a normal formula which is
somewhat simpler than actually expanding it into a developed normal
formula. At the basis of this method is an easily proved theorem relat-
ing the measures of two formulas, their conjunction and their
disjunction.

THEOREM 3,1, For any formulas Φ and Ψ
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m(Φ\/</>)=m(Φ)-hm(Ψ)-m(ΦΨ)

Proof Consider the developed normal formulas with respect to d
variables equivalent to the four formulas concerned, Φ*, Ψ*> {Φ\JΨ)*,
(ΦΨ)*. The number of clauses in (Φ\/Ψ)* can be counted by counting
the number of clauses in Φ* (which is assumed to be 0 if Φ is incon-
sistent) and then counting the number of clauses in Ψ*, remembering
that any clauses which these have in common have been counted twice.
But the number of clauses which Φ* and Ψ* have in common is pre-
cisely the number of clauses in (ΦΨ)*9 or 0 if ΦΨ is inconsistent, which
in either case is m(ΦΨ). Hence Theorem 3.1 follows.

THEOREM 3.2. If Φ is a conjunction of j distinct literals, no two of
which are of the same letter, then m{Φ) = 2a~j.

This theorem follows readily from well known properties of truth
tables or developed normal formulas.

For the remainder of this paper let Φ be a normal formula. Let
Ψu •••, Ψk be the clauses of Φ in the order of their appearance in Φ.
Let Φx, l<Lx<^k, be the normal formula ^iV^V * * Wχ Thus Φk is
Φ. Let C(Φ) be the set of all clauses of Φ. For any S g φ ) let j s

be the total number of distinct letters appearing in the clauses of S.
Let is be 0 if at least one letter appears in at least one clause with a
bar and in at least one clause without a bar, that is, if the conjunction
of all the clauses of & is inconsistent. If there is no such letter, let
is be 1 if there are an odd number of clauses in S or —1 if there are
an even number of clauses in S.

THEOREM 3.3.

the summation being taken only over nonempty subsets S.

The proof is by induction on the number k of clauses in Φ. If k
= 1, then there is only one S to be considered, namely, the unit set of
the one clause. If there is a letter which appears both with and with-
out a bar, is is 0 and so is m(Φ). If there is no such letter, then
m(Φ)=2*-Js9 by Theorem 3.2.

Suppose that k^> 1 and suppose that Theorem 3.3 holds for all
formulas having fewer than k clauses. By Theorem 3.1,
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Now Φic-xψn is not a normal formula unless A; — 1 = 1 . If k — l^>l let Ψ
be the normal formula which is equivalent to Φk-\ψk obtained by dis-
tributing the conjunct ψk over the clauses of Φk-u and if fc — 1 = 1 , let Ψ
be Φk-tfjc. Thus Ψ will have k — 1 clauses and, for each h<Lk — l, the
hth clause of Ψ will have the literals of the hth clause of Φk-λ and those
of ψk9 but no others. Now since Ψ is equivalent to Φk-λψkί

( 2 )

By the inductive hypothesis and Theorem 3.2,

( 3 ) w(0*-,H Σ i

( 4 )

and

( 5 )

where in each case only nonempty subsets S are considered.
Making substitutions in (1), justified by (2), (3), (4) and (5), we get

( 6 ) m(0)= Σ is2^s+i 2d-Jc^~ Σ i^-'*.

It remains only to show that we can equate the expression Σ is2
d~':fs

5CCCΦ)

with the right side of (6). But these expressions are equal, term by
term, as can be seen as follows. For every S in C{Φ), either S does
not contain ψk (case I), S contains φk and other clauses (case II), or S
contains ψk only (case III). In case III, the summand is2

a~js is the
middle term of the right side of (6). In case I, SeC(Φk^) and so the
summand i&2a~js occurs as a summand in the first term on the right
side of (6). In case II, finally, suppose S contains besides ψk the gψ,
• ••, g%£ clauses of Φ. Then consider S', the set containing the g?1, •••,
gt clause of Ψ. The literals appearing in these clauses are exactly the
literals appearing in the clauses of S. A letter will appear both with a
bar and without a bar in S if and only if it does in Sr. Hence, is,=^0
if and only if is=0. There an odd (even) number of clauses in S if
and only if there are an even (odd) number in S' since S has just one
more clause than S'. Hence the summand is2

d~js occurs negatively as
a summand in the third term of the right side of (6). It is easy to
see that this correspondence is one to one and that the equality of the
two expressions is established.

THEOREM 3.4. If Φ and Ψ are normal formulas, and if Φ is iso-
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morphic to Ψ, then m(Φ)=m(Ψ).

Proof. The corresponding clause in Ψ to a clause φ in Φ is the
clause which contains those literals into which the literals of <p are
mapped. Consider any set S of clauses of Φ and the corresponding set
of clauses S' in Ψ. The total number of distinct letters of S equals the
total number of distinct letters of S'. There is a letter appearing with
a bar and without a bar in £ if and only if there is such a letter
appearing in S'. And, of course, the number of clauses of S is the
same as the number of clauses of S'. Thus the expressions for m(Φ)
and m(Ψ) as given by Theorem 3.3 will be the same, term by term.

The formula Ψ implies Γ if every assignment of truth values which
makes Ψ true also makes Γ true. As is well known, Ψ implies Γ if
and only if every clause of a developed normal formula equivalent to
Ψ is a clause of a developed normal formula with respect to the same
variables equivalent to Γ. The formula Ψ is equivalent to Γ is Ψ im-
plies Γ and Γ implies Ψ. The formulas Ψ and Γ are equivalent if
and only if they are equivalent to a common developed normal formula.
Theorems 3.5, 3.6 and 3.7 are direct consequences of these remarks.

THEOREM 3.5. For any formulas Ψ and Γ, m(Ψ\/Γ)^im(Ψ). The
equality holds when, and only when, Γ implies Ψ.

THEOREM 3.6. m(ΨΓ)<Lm(Ψ). The equality holds when, and only
when, Ψ implies Γ.

THEOREM 3.7. // Γ implies Ψ, then m(Γ) <; m{Ψ). The equality
holds when, and only when, Γ and Ψ are equivalent.

4 Bounds on the measure of a formula with a given structure.
If jι <I jz <I <^jk9 then a formula has the structure <ijuj2, , j k >
if and only if it is an apparently irredundant normal formula with k
clauses which have, in the order in which they appear in the formula,
0i> m

 9jk literals. Note that a formula has some structure if and only
if it is normal, it is apparently irredundant, and its clauses are in order
of nondecreasing length. In finding a simplest normal formula we need
only consider formulas which have some structure; for every normal
formula which does not is equivalent to, and is no simpler than, a
normal formula which does. In this section I shall give an upper bound
and a lower bound on the measure of formula with a given structure.
This result will be convenient in some cases where one is trying to
determine a simplest formula with a given measure.

THEOREM 4.1. If Φ has the structure <OΊ, •• , i * > , then
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The proof is by induction on k. For Jc=l, if Φ is of structure < O Ί > ,
then since Φ is apparently irredundant, m(Φ)=2a~jι by Theorem 2.2. I
shall assume that Theorem 4.1 is true about all structures whose for-
mulas have less than k clauses, and show that it is true about the
structure < £ , , jk > . If Φ has the structure < £ , , jk > , then,
by inductive hypothesis, m{Φk-1)<^2a-jι-\-... +2 d " ί*-i, and
But, by Theorem 3.1,

( N o t e t h a t , for a n y f o r m u l a Φ w i t h s t r u c t u r e <^jl9 •••, j f c > , m(Φ)=2d~jι
A h2d~^ if and only if the conjunction of every pair of clauses is
inconsistent. It can be proved that such a formula exists if and only
if 2d-jL+...+2a-jk^2d.)

Theorem 4.2, 4.3 and 4.4 are, in effect, lemmas to Theorem 4.5
which establishes a lower bound on formulas with a given structure.

THEOREM 4.2. If Φ is not interdausally consistent, if the number
of distinct literals of Φ does not exceed d, and if Φ has some structure,
then there is an interdausally consistent normal formula with the same
structure as Φ but with no greater measure.

Proof If Φ is not interdausally consistent, then there is at least

one letter in Φ appearing both with and without a bar I shall prove

Theorem 4.2 by proving that there is a formula Φ' with the same struc-

ture as Φ with exactly one less letter appearing both with and without

a bar, such that m(Φf)<Lm(Φ). Suppose An appears both with and

without a bar in Φ. Let Φ' be Φ with every occurrence of An replaced

by a variable Ap with does not appear in Φ. Since Φ has some struc-

ture, it is apparently irredundant, and so An never appears both with

and without a bar in any one clause of Φ. Hence Φ is equivalent to

Anφ\/AnΓ\/Ω and Φ' is equivalent to Anψ\JApΓ\JΩy where ψ, Γ, and

Ω are normal formulas in which An, An, and Av do not occur. By

Theorem 2.1, then, the following hold.

m{Φ)^m(AnΓ) + m{Anψ\/Ω)-m(Anr{Anψ\JΩ))

We have, m{ApΓ)=m{AnΓ) since APΓ and AnΓ are isomorphic and can

easily be converted into isomorphic normal formulas. Therefore we can

concentrate on the last term of each equation. AnΓ(Anψ\JΩ) is equi-

valent to AnΓΩ, and ApΓ{Anψ\/Ω) is equivalent to AnApΓψ\JAPΓΩ.
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Also m(AnΓΩ) = m(ApΓΩ), the formulas being isomorphic. Finally
m(ApΓΩ)<Lm(AnAprψ\/ApΓΩ), by Theorem 3.5. Thus m(Φr)<:m(Φ),
Φ' has the same structure as Φ, and the number of literals of Φf equals
the number of literals of Φ.

Now if Φr still has at least one letter with and without a bar, I
construct Φ1', related to Φr as Φf is to Φ, and so forth. Eventually I
shall obtain a formula Φ(q) which has no letters appearing both with
and without a bar, has the same structure as Φ and has demonstrably
no greater measure. It is obvious enough that the number of variables
in 0 ( α ) will not exceed d if the hypothesis of the theorem is satisfied.

(Two things can be noted. First the formula # ( Q ) can easily be
constructed from Φ as follows: supposing (without loss of generality)
that Au •••, Aq are the variables which appear both with and without

bars and Aq+1, •••, Ar are the other variables of Φ, replace Alf •••, At

by Ar+1, •••, Ar+q respectively. Second, if we prefer, we can delete all
the bars from Φi<ύ and the resulting formula will have the same mea-
sure, being isomorphic to Φi<ύ. In summary, then, given a formula Φ
which satisfies the hypothesis of Theorem 4.2 it is an easy matter to
write down another formula without bars, with the same structure and
with the same structure and with no greater measure.)

THEOREM 4.3. If Ψ, Γ have no letters in common, then

Proof. Suppose (without loss of generality) that Aly •••, An are the
letters occurring in Ψ; then every letter appearing in Γ is one of the
letters An+1, , Aa. From well known logical laws, the developed normal
equivalent Ψ' of Ψ with respect only to the letters Au •••, An has
m{Ψ)lt2

a~n clauses. And the developed normal equivalent Γ' of Γ with
respect to the letters An+1, •••, Ad has m{Γ)l2n clauses. ΨΓ is equi-
valent to Ψ'Γ'\ the developed normal equivalent of these can be obtain-
ed from the latter by the distributive law for disjunction over conjunc-
tion; the number of clauses will be the product of the number of clauses
of Ψ' and Γ\ which is m{Ψ)m{Γ)l2d. Since this last formula is the
developed normal equivalent of ΨΓ with respect to Alf , Adf this
number is the measure of ΨΓ. (For example, if d=5, Ψ is A1\/Aι and

Γ is A A*, then rc=2, Ψf is Λ Λ V Λ Λ V Λ Λ and Γf is AAA^AAA^
The result of " multiplying o u t " Ψf and Γ! yields the developed normal
equivalent with respect to Al9 •••, A& of ΨΓ.)

THEOREM 4.4. If k<d, the formula A J V Λ V V ^
 has the
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maximum measure 2d~1-f 2d"~2-f -h2d~h of all interclausally consistent
normal formulas having exactly k <^d clauses; the formula A^\/A^\/
VA has the maximum measure 2d~1 + 2d-*-i h2° of all interclausally
consistent normal formulas having d or more clauses.

Proof The formula mentioned in the second part of the theorem

is equivalent to — (A^- Ad). Therefore its developed normal form has
all the 2d clauses except one, and therefore its measure is 2d--l. This
measure is a maximum for all interclausally consistent formulas since
the one higer measure, 2d, is that of a tautology, which is never inter-
clausally consistent.

The formula of the first part of the theorem, when developed with
respect to Al9 - *,Ak, has 2fc —1 clauses (by the first two sentences of
the above paragraph with ' k ' for ' d '). From this we obtain an equi-
valent formula developed with respect to all d letters by developing
each clause into 2d~k clauses. The measure of the formula, therefore,
is

Now every interclausally consistent formula with k clauses not isomor-
phic to Aτ\/ \M/b either has at least one clause with more than one
literal or has one literal in every clause with some repetitions of clauses.
In the latter case, the formula is equivalent to Ax\/ \/AJf for some
j < & , whose measure is 2d4-2*-M -f 2d- j <2d-i -f2d""\ I dispose
of the former case by showing that, in an interclausally consistent for-
mula, if every clause containing more than one literal is replaced by
just one of its literals then the measure of the formula is not decreas-
ed. Suppose the formula Ψ\JAiφi\/-"\/Aiψi is thus replaced by
Ψ\Ά^V' VΆ% The latter is implied by the former and hence, by
Theorem 3.7, its measure is no smaller than that of the former.

(It is easy to extend this method of proof to prove that a formula
with k clauses in which no letter appears both with and without a bar
has this maximum measure if and only if each clause has one literal
and no literals are repeated or, equivalently, no clauses are redundant.)

T H E O R E M 4.5. If Φ has the structure <Cjlf •• , i * ] > , then

m(Φ) I> 2d-

I prove first that Theorem 4.5 holds where Φ is interclausally con-
sistent. The proof is by induction. If Φ is of structure <OΊ ̂ >> then
equality holds. Assume, as an inductive hypothesis, that the measure
of any formula Γ of structure < i 2 , •• , i A - i > satisfies
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m{Γ) ^ 2d- Ί4- 2£*"V1 + . . . + 2*-Ά

Where Φh is of structure

The formula Φh-X has structure <CJu •••,i*-i> a n d so> b ^ inductive
hypothesis,

{ u ι ) ,

Also m(φh)=2a~jfι. Therefore, it remains to prove that

The formula ψhΦh-\ is equivalent to ψhψ', where Ψ is obtained from Φh-λ

by deleting literals which appear in ψh; we know that there must be
at least one literal in each clause of φh-λ which does not occur in φh,
for otherwise <ph would subsume another clause of Φ contrary to the as-
sumption that Φ has structure <^ju * , i Λ > and is therefore apparent-
ly irredundant. Therefore Ψ has h — l clauses and has no literals of ψh.
Since Φ is interclausally consistent, it has no letters both with and without
bars; it follows that, since Ψ has no literals of <ph, it has no letters of
ψΛ. Thus,

m(ψhΨ)=^m(φh)m(Ψ) =~~ m(Ψ)

by Theorems 4.3 and 3.2. Since Ψ has h — l clauses and since no letter
appears both with and without bars in Ψ, it follows from Theorem 4.4
that, regardless of the value of h, m{Ψ) ^2 ί *~ 1 + 2d'2 -f 4- 2d'(h-Ό .
Therefore,

) ^ 2^(2d-1 + 2d->+ . 4 - 2 d - ^

which is what had to be proved.
To show that Theorem 4.5 still holds when Φ is not mtercluasally con-

sistent, I must discuss what happens to a formula when d varies. I
shall use the notation md(Φ) here (and only here) to denote the measure
of Φ for a given d. From the definition of measure, it can be seen
that md(Φ)=md,(Φ)-2d-d', assuming that Φ has at most min (d, d') letters.
Let Φ be a formula of structure <OΊ, * , i Λ > which is not interclau-
sally consistent. I have to prove that, for any d not less than the
number of distinct letters appearing in Φ,

md(Φ) > 2d-Ji + 2d-j*-1+
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Let e be the number of letters appearing both with and without bars
in Φ; then md+e{Φ)=md{Φ)2e. There are at most d + e distinct literals in
Φ, and so, by Theorem 4.2, there is an interclausally consistent Φ' of
structure <CJU ••-,.?*> (with at most d + e letters) such that md+e(Φ')
<Lmd+e(Φ). But from what has been established it follows that

md+e(Φ') > 2d+G-jι-h2d+e-h-1^ . . . + 2<l+β- >*-(*-1) ,

which must now be true for md+G(Φ). Therefore,

md{Φ) ^ 2*-'i + 2 d -V 1 + . 4- 2*-'*-c*-1> #

This observation completes the proof of Theorem 4.5.
For j k -f k <1 d -f 1, a formula with structure <OΊ, > ifc ^> which

has the minimum measure 2d"" Ί-f2d~V-1H + 2*- >*-<*-1> has been ex-
hibited in the literature, namely in Quine's paper [2]. Quine does not
discuss the measure of formulas, but proves, in his Theorem 2, that his
formula has the value truth in just the first 2 d - J H f-2d-J*""(fc~i:> rows
of the conventional truth table. By the well known connection between
truth tables and developed normal formulas it follows that the measure
of Quine's formula is this number. The construction of this formula
which has no bars can be described as follows: the first clause has j ι

distinct letters, and, in general, the hth clause has all the letters of the
(h~ l) t b clause except the last and enough letters which do not appear
in any previous clause (at least one, since jh-ι<Ljh) to make a total of
j h distinct letters; the last letter of the hth clause is a letter which has
not appeared previously. It follows that the last letter of any clause
of Quine's formula appears in that clause only. For example, if d=10,
the Quine formula of structure < 1, 1, 3, 3, 6 > whose measure is
294-284-254-244-20 is

(It is possible to exploit the method used in proving Theorem 4.5
to prove that, for i&-f & <^c£-hl, the only formulas with structure
<Cii> '"yjk^> and measure 2 C Z ~ J ΊH— 4-2c*~i*-(fc~1) are those isomorphic
to Quine's formula. The key property of Quine's formula is the fact
that each clause ψ contains a literal, say Aq, such that Aq is not in any
other clause of the formula and all clauses followings φ contain all the
literals of φ except Aq. In Quine's formula Aq is the last letter of the
clause. This property is necessary, as well as sufficient, in order to
insure that the formula Ψ in the proof of Theorem 4.5 has exactly h — 1
clauses of one letter each, these letters being different from each other.)

One method of finding, for a given d and for a given measure
m <I 2a, a simplest normal formula whose measure is m is to construct
some normal formula of measure m and then calculate the measure of
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all simpler normal formulas. This method is impractical (although ef-
fective) unless there is some way of limiting the number of formulas
whose measure must be calculated. A method of constructing a for-
mula due to Quine was described two paragraphs above; from what
Quine shows, it follows that for any given measure such a formula can
be constructed. Although Quine's formula is not always a simplest
formula with that measure, it can serve to start the search for such a
formula. Then the bounds on the measure of formulas with given
structures established in this section serve to limit the number of for-
mulas among which the search is to be made, (although not enough to
make this method practicable). Only formulas having some structure
need be examined; normal formulas without any structure are not ap-
parently irredundant and have shorter equivalent formulas or can be
converted to a formula with structure by changing the order of dis-
juncts. Needless to say, once a formula has been examined, formulas
isomorphic to it need not be. The following theorem will be of some
help in the search, although not enough to make it practicable in all
examples.

THEOREM 4.6. If a formula with some structure and with a least
clauses, where h+l<Lk, has measure

and if the first h clauses of it have exactly j u , j h 9 respectively, letters,
then the (&-f l) s t clause has at least j h + ι letters.

Proof A formula Φ of structure < ^ , , j h , j ' h + u j ' h + 2 , •>, where
J'h+i<CJh+ι, has a measure which satisfies, by Theorem 4.5,

m(Φ) >__ 2d~h + 4- 2*- 'Λ-<Λ-1> + 2d- >'Λ+i-
Λ -f

> 2d'h+ . . . -f 2ίZ-4-(Λ-1>4-2*- Ά+i-Λ+ +2 t l - '*-(*-1) .

The last inequality is justified by the fact that the two expressions are
each sums of powers of 2 with descending indices. As is well known
about such expressions, since equality holds for the first h terms, the
inequality of the (h + Vf1 term is decisive.

5 Conjectures and a counterexample* The results of the previous
sections lead to no practical method of findining a simplest formula
with a given measure. But there are two conjectures which, if they
are true, would be of some significance. Another conjecture which sug-
gests itself rather naturally turns out to be false, as a counterexample
of mine will show. (I must admit that these conjectures may turn on
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the definition of " simplicity " which has not be given precisely in this
paper.)

A one-clause formula with j literals, no two of which are of the
same letter, has a measure 2a~3. Any formula with at least two non-
contradictory clauses having this measure cannot have a non-contradic-
tory clause with less than j + 1 literals (by Theorem 4.1). Thus a one-
clause formula is simpler than any formula with more clauses but with
the same measure. My first conjecture, in its strong form, is that any
normal formula Φ is simpler than any formula with the same measure
but with more clauses. The weaker form is that Φ is at least a simple
any such formula. I have no conterexample to either of these proposi-
tions, nor do I have any good reason to believe that either of them is
true in general.

Let r be the number of distinct letters of Φ. Then r <Ld, and
m(Φ) is divisible by 2d~r. If. 2d~x is the largest power of two which
divides a given number m, then it is possible to find a formula with
measure m with just x distinct letters. One example is Quine's formula
with that measure (described near the end of § 4 of this paper). But
for some Φy m{Φ) is divisible by a power of two greater than 2*~r.
For example, for <2I>3, m(A1A2\/A2A^\/A1A3)=2d~\ In this example
there is a simpler formula with the same measure, namely Ax. My
second conjecture is that for any measure m, for any simplest formula
Φ with measure m, m is divisible by 2d~r. A weaker form of this con-
jecture is that, for any measure m, there exists a simplest formula Φ
with measure m such that m is divisible by 2d~r.

A formula with two clauses which are each consistent but which
contradict each other (because a letter appears with a bar in one and
without a bar in the other) has a measure 2α + 2δ, if there are d-a and
d~b distinct literals in the respective clauses. If a=b then a single
clause formula with d-a-1 literals, no two of the same letter, has the
same measure and is simpler. If a > 6, then Quine's formula of mea-
sure 2Λ-f 2δ has two clauses with d-a and d-b~l, respectively, letters
and is, therefore, simpler. A third conjecture that suggests itself is
that, for any formula in which some letter appears both with and with-
out a bar, there is another formula in which no letter appears both
with and without a bar, which has the same measure and which is no
less simple. However, for d=6 the formula

is simpler than any formula which has the same measure and which
has no letter appearing both with and without a bar. (To verify this,
the reader should note that Quine's formula with that measure has
structure < 2 , 2, 3, 3 > . Using Theorems 4.6 and 4.1 the only possible
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structures for formulas which have the desired measure and are at least
as simple as the displayed formula are < 2, 2, 3 >, < 2, 2, 4 >,
< 2 , 3, 3 > , and < 2, 2 > . Since the desired measure is not divisible
by two, and since d=6, there must be exactly six distinct letters in
any formula with that measure: for there are at most six, since cZ=6;
and there are at least six, by an observation made in this section.
Therefore, the structure < 2 , 2 > is excluded. Any formula with
exactly six distinct letters in which no letter appears both with and
without a bar is isomorphic to AxA2\jAλA^\J'A±A5A6 or
if it has the structure < 2, 2, 3 >, is isomorphic to AλA^\JΆdA^\
or Λii4aVAτA3\/A^A^AQ or A^^/AτA2\JA^AbAQ if it has the structure
< 2, 2, 4 >, and is isomorphic to AXA.^\/A^A^/AτAbAQ or A^^A^A^

or AλA2\fA^A^/AzAbAQ or Λ Λ V ^ Λ Λ W i Λ Λ or AλA2

tAfλ/A3A±A6 if is has the structure << 2, 3, 3 > . But none of
these formulas has the desired measure.)
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