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Introduction* This paper is a chapter in the study of convolution
algebras begun in [7]. The algebras studied here are algebras of Borel
measures on certain compact semigroups, and we describe completely
the structure of these algebras. The solution obtained seems remarkable
in view of the extreme complexity of the corresponding measure algebras
for compact Abelian groups (see [12]). Our success is explained by the
simple algebraic structure of the semigroups we deal with.

In addition to the structure theory (§§ 2-6), we give an application
to probability (§7), and some concrete examples and illustrations (§ 8).

Throughout this paper, we use the notation and terminology of [7].
In particular, the reader should be familiar with § 1 of [7]. The related
papers [6] and [8] are not essential for understanding the present paper,
but are referred to occasionally here at points of contact in subject-
matter. For all measure-theoretic terms and techniques not explained
here, see [4]. References are made throughout the present paper to
[9] for topological matters, and to [10] for the elementary theory of
Banach algebras. We use K to denote the complex number system. All
other special symbols will be explained as they appear.

1. The semigroups to be studied.

1.1. We consider an arbitrary non-void set G, completely ordered
by a transitive, irreflexive relation " < " . That is, for all x, yeG, ex-
actly one of the relations x<Cy, x=^y, y<Cx obtains, and the relations
%<Cy and y<Cz imply x<Cz. As usual, we write y^>x, meaning
and we write x^y, meaning x<Cy or x=y. For u,veG, we define

]u, v[={x: xeG, w < # < v) (open interval) ,

[u, v[={x: xeG, u<Lx<^v) (half-open interval) ,

~}u, v]= {x: x 6 G, u<^x<Lv} (half-open interval) ,

[u, v]={x: xeG, u<Lx<Lv} (closed interval) .

These sets may or may not be void, depending upon the relation between
u and v.
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1.2. We make G into a semigroup by defining the product xy as
max (x, y) for all x,yeG. It is obvious that x(yz)=(xy)z for all x, y,
zeG, that xy=yx for all x,yeG, and that x2=x for all xeG.

1.3. Being a completely ordered set, (? has a natural topology defined
in terms of the ordering. For all ae G and all u,veG such that u<
α < v, the open interval ]u, v[ is taken as an open neighborhood of the
point a. If there is no u such that u<^a (i.e., if a is the first element
of G), then [α, ^[ with v > a is a neighborhood of a, and analogously if α
is the last element of G. These are all of the open neighborhoods of a.
It is obvious that HausdorfΓs neighborhood axioms are satisfied and that
Hausdorff s separation axiom is satisfied. A point a in G is isolated if
and only if it has an immediate predecessor and an immediate successor.
It has a complete neighborhood system consisting of intervals [a, v[
(]u, a]) if and only if it has an immediate predecessor (an immediate
successor).

It is easy to verify that the semigroup operation xy= max (x, y) is
continuous in both x and y for the topology described above. Hence G
is a topological semigroup satisfying the Hausdorff separation axiom.

1.4. We impose the additional restriction on G that it be compact
in the interval topology1. For this, it is both necessary and sufficient
that every subset of G admit a least upper bound and a greatest lower
bound. In particular, G has a least element, which we shall call a, and a
greatest element, which we shall call ω (not to be confused with the ordinal
number ω). For a sketch of the proof of this, see [9], p. 162, exercise C.

1.5. From now on, we shall suppose, save where the contrary is
explicitly stated, that G is a completely ordered set that is compact in
the interval topology, and made into a topological semigroup by the
operation max (x, y).

1.6. Let E(G) denote the linear space of all complex-valued con-
tinuous functions on G. We give (£((?) the usual norm :

for /e(£(G). Let (£((?) denote the conjugate space of (£((?), that is,
the linear space of all complex-valued linear functionals L on (£(G) such
that the number

is finite. It is well known that each Le (£(G) has a unique representation
1 See however 8.5.
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as an integral with respect to a complex-valued, countably additive, re-
gular measure λ defined on all Borel subsets of G (see [4], pp. 247-248).
That is,

(1.6.1) L ( / H ( f{x)dλ(x)

for all / e £ ( G ) . While many authors have contributed to this theorem,
we call it for convenience the Riesz representation theorem. Elements

of &(<?) will be denoted by capital Roman letters, L, M, •••, and the

corresponding measures of the kind referred to will be denoted by the

corresponding lower-case Greek letters λ, μ, . Under our interpretation

of the term "measure," the measures λ, μ, ••• are set-functitns and not

linear functionals (for a different point of view, consult [2], passim).

However, we shall allow ourselves the abuse of notation λ e (£((χ), mean-

ing that λ is connected with an element Led(G) by the relation 1.6.1.

At various points in our discussion, it will be necessary to pass

from an element Le©((?) to the corresponding measure λ. For non-
negative L (that is, L(/)I>0 for / real and nonnegative), this process
is simple. Let F be any closed subsetM G. Then

(1.6.2) Λ(F)= inf {£(/): / e £(<?), f(x) > 1 for x e F,

. f(x)>:0 for xeG} .

Let H be any open subset of G. Then

(1.6.3) ;(i?)=sup {λ(F): F is closed, FCZH} .

Let X be any subset of G. Then

(1.6.4) ;(X)=inf {λ(H): H is open, H^X} .

These three definitions of λ, on various families of sets, are all consistent,
and λ is an outer measure on all subsets of G. Every Borel set is λ-
measurable, λ is regular, and 1.6.1 holds.

For an arbitrary Le&(G), we obtain the corresponding measure λ
by writing L as

(1.6.5) L=Lι-Lι+i{L,-L,) ,

where Ll9 « ,L 4 are non-negative functionals on

1.7. We recall that a semicharacter of a semigroup Jϊis a bounded
complex-valued function χ on H, not identically zero, satisfying the
functional equation χ(xy)=χ(x)χ(y) for all x,yeH ([7], 3.1 and [8], 1.3).
Semicharacters of our semigroup G play a vital role in the solution of
the present problem, and we proceed to identify the semicharacters of
G.
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1.8. THEOREM. Let G be as specified in 1.5. Then functions of
the following two types are semicharacters of G:

(1.8.1) functions ψa]y where aeG and

0 if x ̂ > a

(1.8.2) functions ψa{, where ae]a, ω\ and

0 if

Furthermore, every semicharacter χ of G is one of these two types.

Proof. It is easy to see that all functions ψa]{aeG) and ψa[{a<l
a<^ω) are semicharacters, and we omit the verification. To establish
the converse, let γ be a semicharacter of G. Since x2=x for all xeG,
χ assumes no values other than 0 and 1. If χ is identically 1 (in this
case we write #=1), then χ=ψω}. If xφl, then there exist a and b
such that χ(a) = l, χ(b)=0. Let A={x; xe Gy χ(x)=l}, B={x; xeG,
χ(x)=0}. If xeA and # '<#, then we have l=χ(x)=χ(x'x)=χ(x')X(x)
=χ(x'). If xeB and # ' > # , then we have χ(x')=χ(x'x)=χ(x')X(x)=O.
The sets A and B are therefore non-void complementary sets forming a
Dedekind cut in G. Since G is compact, A has a least upper bound a.
If aeAy we have χ=ψa]; if aeB, we have χ=ψa[m

1.9. THEOREM. Let G be as specified in 1.5. Suppose first that
<x<La<^ω. Then the function ψa] (1.8.1) is continuous if and only if a
has an immediate successor. The function ψω] is trivially continuous.
Suppose next that a<^a<Lω. Then the function ψa{ is continuous if and
only if a has an immediate predecessor α_, and in this case, ^ α [ =^ α -]

We omit the proof of this theorem.

1.10. THEOREM. The semigroup G admits a continuous semicharacter
different from 1 if and only if G is disconnected.

Proof. Since a semicharacter of G can assume only the values 0
and 1, the necessity of the condition is obvious. Conversely, suppose
that G is disconnected, and that P and Q are non-void complementary
open sets in G. Since sup PeP and sup QeQ (P and Q being closed),
we may suppose without loss of generality that s u p P < ω . Let B=
{x; xe G, # > s u p P } . If s u p P = i n f 5 , then every open interval con-
taining sup P contains points of B, and BCZQ. Since P is open, this
cannot occur. Hence sup P<Mnf B, and the function ^ s u p P ] is a continu-
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ous nonconstant semicharacter.

1.11. REMARK. If G is not compact in its interval topology, then
semicharacters of the types 1, ψa]9 and ψa[ may or may not exhaust the
class of all semicharacters. If G admits a Dedekind cut {̂ 4, B) (where
A is the lower class) and where A has no supremum and B no infimum,
then the function ψA equal to 1 on A and 0 on B is a semicharacter different
from 1, ψa], and ψa{ for any a. The proof of 1.8 shows that the exist-
ence of such a Dedekind cut is also necessary for the existence of a
semicharacter different from 1 and all ψa] and ψa{.

1.12. THEOREM. Let G be as in 1.5. Let G denote the set of all

semicharacters of G. Then G is a semigroup under pointwise multipli-
cation.

Proof. If Xι and #2 are semicharacters, then the product χxχ%

(X\X%(χ)—X\(χ)X%(χ) f ° r %sG) is obviously either 0 or a semicharacter.
Since Xι(oL)=χ2{a)=ly we cannot have M 2 = 0 .

2. The convolution algebra (£((?)• In a previous paper, we have
introduced the general notion of a convolution algebra ([7], p. 69, 1.3).

We shall show here that (£(G) is a convolution algebra, where g = (

2.1. THEOREM. Let xeG and let /eg( f f ) . Then the function xf
whose value at yβG is f(xy)=f(ma,x(x, y)) is continuous.

Proof. This assertion follows immediately from the fact that

1 f(y) for y > x .

2.2. THEOREM. Let /e©((?) and Le&(G). Then the function on

G whose value at x e G is L(xf) is continuous [we also write L(xf) as

Ly(f(χy))l

Proof. Let u, veG and suppose that u<Lv. Then we have

(f(v)-f(u) if

(2.2.1) υf(y)-uf(y)= f(v)-f(y) if u<

0 if v<Ly .

Now let ε be a positive real number, and let x be an arbitrary element
of G, Since / is continuous, there exist a,beG such that a<
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(we omit the obvious changes needed when x=a or x=ω) and such that
\f(s)-f(t)\<Cε4L\\-1 for all s, te]a, δ[. It follows from 2.2.1 that
\χ'f(y)-J(y)\<^\L\~1 for all x'e]a, b[ and all yeG. Hence we have

This completes the proof.

2.3. THEOREM. Let L and M be elements of S(G). For all f e
let L*M(f) be the value assumed by the functional L for the function
whose value at x is M(xf). We write

(2.3.1) L*M(f)=Lx(My(f(xy))) .

Then L*Me$.(G), and

(2.3.2) }L*M\\^\\LI }M •

Proof. Theorem 2.2 shows that the right side of 2.3.1 has meaning.
Now for all x,yeG, we have |/(o2/)|<;||/H, and hence [xf\\ <; ||/||.
Therefore \Myf(xy)\^WHfl and in turn |L*ikf(/)|^||L«.||M|H|/||. This
proves that L*M is a bounded functional, and since L*M is obviously
linear, 2.3.2 and the present theorem follow.

2.4. REMARK. Theorems 2.1, 2.2, and 2.3 are verifications of [7]
1.3.1, 1.3.2, and 1.3.3, respectively. Therefore we have proved that
®((τ) is a convolution algebra with the convolution L*M of 2.3.

2.5. THEOREM. Let L, M be elements of &(G) and let λ, μ be the
corresponding measures as in 1.6. Then we have

(2.5.1) L*M(f) = [ \ /(max(a?, y))dμ{y)dλ{x) ,

for all /eg((r).

Proof. The right side of 2.5.1 simply rewrites the right side of
2.3.1, making use of 1.6.1.

We shall write λ*μ to denote the measure associated with L*M by
1.6.1.

2.6. THEOREM. The algebra &(G) is associative and commutative.

Proof. Associativity is a property of all convolution algebras ([7],
p. 73, Theorem 1.5). Commutativity follows immediately from Fubini's
theorem (which applies since all measures under consideration are finite
and countably additive) and 2.5.1:
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L*M(/)==\ I /(max (x, y))dμ{y)dλ{x) = \ \ f(max(x,y))dλ(x)dμ(y)
JGJG JGJG

= f ( /(max(y, x))dλ{x)dμ{y)=M*L{f) .
JGJG

2.7. To identify the unit in ©((?), and also for certain future pur-
poses, we introduce a class of special linear functionals EJa e G):

(2.7.1) Ea(f)=f(a) for / e £ ( ( ? ) .

It is clear that {tJE^Λ + ^ ^ 1 = Σ \t3\ for all complex numbers tu

• ••, ts and distinct alf , a8 in G. It is also clear that the measure εa

corresponding to Ea is the unit mass at a :

if aeX,
(2.7.2)

Ό if aφXy

for all I C G .

2.8. For all λe&(G) and every Borel set A in G, let λA be the
measure such that λΛ{X)=λ(A f\X) for all Borel sets XC.G.

2.9. THEOREM. For all λe€(G) and all aeG, we have

(2.9.1)

(2.9.2) εα*^-^([α:, α[)

Proof. The set [α, α] being a closed subset of G, it is certainly
a Borel set (although not necessarily a Baire set), and hence λ([a, a]) is
defined. Similarly, ]α, ω\ (which is void if a=ω) is a Borel set, so that
]̂α,«] j s defined. Hence the right side of 2.9.1 is defined.

Consider the integral I(x)=\ f(max(x, y))dεa(y), where feQZ(G).
JG

The integrand has the constant value f(x) for y e [a, x~\, and is equal to
/ in the interval ]#, ω\. Therefore if x<La, then l(x)=f(a). If x^>a,
then I(x)=f(x). It follows that

(2.9.3) L*Ea(f)=[ I(x)dλ(x)= [ f(a)Λdλ(x) + ( f{x)dλ{x)
JG J[Λ,a] J]α,ω]

-;([α, ά])Ea(f)+\ f{x)dλ\^\x) .

The relations 2.9.3 imply 2.9.1 immediately, and 2.9.2 is a trivial con-
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sequence of 2.9.1.

2.10. THEOREM. For all ^el(G), we have εa*λ=λ. That is, ΈΛ is

the unit of (£(<?).

Proof. Putting a=a in 2.9.1, aud taking an arbitrary Borel set
I C G , we have

(2.10.1) ε^λ(X) = λ({a})-εΛ(X) + λQa, ώ]f\X).

If a $ X, then εΛ(X) = 0 and ]α, ώ] f\ X=X. Hence eΛ*λ(X)=λ(X) in this
case. If aeX, the right side of 2.10.1 is equal to

λ({a}

Therefore εΛ*λ(X)=λ(X) in all cases, and eΛ*λ=λ.

2.11. THEOREM. For all L e &(G), we have Eω*L-=L(l)Eω. In terms
of measures, we have εω*λ=λ([a, ω])εω.

Proof. The set ]ω, ω] is void, and so, putting a=ω in 2.9.1, we
get λ]ω'ω]=-0 and εω*λ = λ([a, ω])eω. The first statement is obviously equiva-
lent to this.

2.12. THEOREM. For a,beG, we have eα*e6=emax(αfW.

Proof. This too follows at once from 2.9.1.

We summarize 2.3, 2.6, and 2.10 as follows.

2.13. THEOREM. Under the convolution 2.3.1, (!((•?) is a commutative
Banach algebra with unit.

3. The maximal ideals of (£((?).

In this section, we identify all of the maximal ideals in &(G). Since

(£(G) is a commutative Banach algebra with unit, every maximal ideal

in (£(G) is closed and regular, and we may identify the class of maximal

ideals in U(G) with the class of all (algebra) homomorphisms of ©((?)
onto K. For a discussion of Gel'fand's theory of commutative Banach
algebras, see [10], pp. 66-81.

3,1, An obvious source of homomorphisms of (£(G) onto K is the
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set of all continuous semicharacters on G. If χ is such a semicharacter,

then L(χ) is defined for all L e &(G) and the mapping

(3.1.1) L-

is obviously a linear functional on d(G). If L, Me (S(G), then

(3.1.2) L*M(χ)=\ \ X{χy)dμ{y)dλ{x) = f f χ(χ)χ(y)dμ(y)dλ(x)

Hence the mapping 3.1.1 is multiplicative, that is, it is a homomorphism

of (£(G) onto K.
However, as 1.8 and 1.10 show, G may have very few continuous

semicharacters. Indeed, it can be shown that there exist mappings of
the form 3.1.1 carrying an arbitrary LφQ into a non-zero number if and
only if G has Urysohn dimension zero. (We shall go no further into

this minor point.) Therefore, if we have any hope of proving (£(G)
semisimple, we must look further for homomorphisms of (£(G) onto K.
Our construction hinges on the fact that while the functions ψa] and
φa[ are often discontinuous, still they are Borel measurable and bounded.

Therefore they are Λ-integrable for all λ e (£(G) even though L(ψa]) and
L(φa[) may be undefined ab initio. The Riesz representation theorem
gives us a canonical method of extending L from (£(G) to the space of
all bounded Borel measurable functions on G, and it is just this fact
that we use.

3.2. THEOREM. Let aeG. Then the mapping

(3.2.1) L -+ λ&x, α])= ( φa,{x)dλ{x) (L e g(G))

is a homomorphism of ®(G) onto K. Let ae]a, ω\. Then the mapping

(3.2.2) L -* λ(\μ, α[)= ( φa[{x)dλ{x) (L e <g(G))

is a homomorphism of ®(G) onto K.

Proof, First of all, it is clear that the mappings 3.2.1 and 3.2.2
are linear and not identically zero on (£(G). Our only task is to show
that they are multiplicative. To this end, we consider first the mappings
3.2.1. If a=ω, then we are dealing with the continuous semicharacter
1, and this case has already been treated in 3.1. We may therefore
suppose that α < ω . If α has an immediate successor α+, then the
interval [α, α] is open and closed, and the function ψa] is a continuous
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semicharacter. Once again we can refer to 3.1. The remaining case is
that in which a<^ω and a has no immediate successor. In this case,
the interval ]α, u[ is non-void for every u^>a, the semicharacter ψa] is
discontinuous, and a more detailed examination is needed.

It is convenient first to treat the case of non-negative, non-zero linear
f unctionals L and M. It is obvious that if L and M are non-negative,
then L*M is non-negative. The set [α, α] being compact, we have
λ*μ([a, α])=inf L*Λf(/), the infimum being taken over all / e (£((?) such
that f^>Ψa] (see 1.6.2). Since the measure λ is regular, we have

λ{\a, α])-inf {λ{T): T is open, ϊ 7 ^ [a, a]} .

Every such set T contains an interval [a, u[y where u^>a, and hence

λ([a, α])=inf

Similarly, we see that

μ{[a, α])=inf

Now let e be any positive real number. Since λ and μ are additive
measures, the preceding two sentences show that there exists an element
n e ]α, ώ\ for which the following inequalities hold :

(3.2.3) , α α f

(3.2.4) μQμ, u[) < min (-~τr- \ l) .

Since G is normal, there exists fe&(G) such that f(x) = l for
xe[a, a], /(a?)=0 for xe[u, ω], and 0<Lf(x)<Ll for xeG. (See [9],
p. 141, Theorem 5.9.) We now consider the function /(max(a?, y)) on
GxG. The following facts are easily verified :

(3.2.5) /(max(x, y))=

for (a?, y) e [a, a] x [a, a]

° f o r ^ y>>eGx&> ^ U iu9 ώ\xG ,
/(a?) for (a?, y)e]a, u[x[a, a] ,

f(y) for (a?, 2/) e [α, α] x ]α, %[ .

We now have, applying 3.2.5, 3.2.3, and 3.2.4 :

**/<[", α])^L*M(/)= jj^/(max(a?, y))dμ(y)dλ(x)

= λ([a, ά\)-μ([at a\) + f /(a?)dΛ(a:).^([α, α])
J]βM*[

( f(v)dμ(y)-λ(la, α])+ f ( /(max (a?, y))dμ{y)dλ{x)+
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^λ([a, a]) μ([a, a]) + λ(]a, u[)-μ{[a, a}) + μ(]a, u\_) λ{[μ, a\)

+ λ(]a, u[) μQμ, u[)

Since ε is arbitrary, we infer that λ*μ{\_oc, &]):5i<K[<2, aΊ)'Kίaf aΊ)-
To establish the reversed inequality, let ε again be an arbitrary

positive real number, and let / e (£((?) have the properties that 11>
fW^Ψafa) for xeG and L*Λf(/)< λ*μ([a, α]) + e. The existence of
such a function / follows at once from 1.6.2 and the non-negativity of
L*M. It is obvious that f(x)f(y) <1 /(max(x, y)) for (x, y)eGxG. We
now have

λ([a, ά\)-μ([a, a]) ̂  \ f{x)dλ{xy \ f(y)dμ(y)

-\ \ f(%)f(y)dμ(y)dλ(x)<,\ \ f(msix(x, y))dμ(y)dλ(x)

Since ε is arbitrary, we have proved that

(3.2.6) λ*μ([a, ά\) = λ([a, a])-μ([a, a]) .

We now prove that the mappings 3.2.2 are multiplicative for non-
negative L and M. Since λ, μ, and λ*μ are regular measures, there
exists, for every positive integer n, a compact subset Cn of [a, a[ such
that

λ(la, a[)-~*~<λ(Cn), μ([a, a\) - -
n n

and

<*Ό-—<
n

We may evidently suppose that Cn=[a, bn] for some bn<^a. (If a has
an immediate predecessor α_, so that [α, a[=[a, α_], we may refer to
3.2.6.) Then we have, applying 3.2.6 :

(3.2.7) λ*μ([a9 α[H Km l*μ(Cn)= lim (λ(Cn).μ(Cn))

To establish the present theorem for arbitrary L, Me K(ff), we cite
1.6.5: L^(L1-L2)A-i(L3-L4l M=(M1 -M2)+i(M3-Mi)f where L3 and
Mk are non-negative (j,k=lf •••,4). The relations
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l<*> «]) = <*([<*, ά])-μ([a, a]) (a e G) ,

λ*μ([a, a\)=λ(la, a[) μ([a, α[) (ae [α, ώ]) ,

now follow from 3.2.6, 3.2.7, and the identity (rλ + sμ)(A)=r

valid for all r, seK; L,Me (£(£), and Borel sets AC.G. This completes
the present proof.

3.3. THEOREM. Let π be a komGmorphism of &(G) onto K, Then

either there exists beG such that π(L) = λ{[ρc, 6]) for all Le(£(G), or

there exists 6e]α, ω] such that π(L)=λ([a, b[) for all Leίί(G).

Proof. It follows from 2.10 that 7r(eΛ)=l. Let x, y be elements of
G. Then, using 2.12, we have

ττ(εx) π(εy) = π(ex*ev) = τr(ε m a x ( X ) y ) ) .

The function p on G such that p(x)=π(εx) for all xeG is therefore a
semicharacter of G. Theorem 1.8 asserts that either there exists beG
such that

(3.3.1) π(ex)=ψb](x) for xeG,

or there exists b e ]α, ω] such that

(3.3.2) π{ex)=ΨH{x) for xeG.

Suppose first that 3.3.1 holds. Applying π to the left side of 2.9.1, we
have

(3.3.3) π{ea*λ) = π{ea)-π{λ) = ψb]{a)π{λ) .

Applying π to the right side of 2.9.1, we have

(3.3.4) π(λ([a, a])

By 2.9.1, the last members of 3.3.3 and 3.3.4 are equal. We set a=b
in these expressions and equate them :

(3.3.5) π(λ)=λ{[a, b]) + π(flb »i) .

We next show that π(λ^b>ω])=0. Here there are two cases. Suppose
first that b has no immediate successor and that c is any element such
that c > 6 . Then there is a d such that b<Cd<^c. It follows at once
from 2.9.1 that ed*λίc^ = λ^ω^. Since π(εd)=0, we have

(3.3.6) 7r(;fc.«:) = o .

To infer from this that π(/l ] δ ω ])=0, we must use the continuity of π in
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the norm of (£((?). In fact,

(3.3.7) |π(L)|^||L|] for all Le&(G)

([10], p. 69, Theorem). Let λ denote the total variation of λ ([5], p.

459, 1.2). It is easy to see that I is regular. Thus, for every positive

real number ε, there exists a compact subset of ]δ, ω] (which we may

clearly take to be of the form [c, ω] with c > 6 ) such that I(]δ, c[)<ε.
Then we have

(3.3.8) \\λ^-λ^\\= sup { ( f{x)dλ{x) : \\f\\^l\ ^I(]δ, c[) < ε.
( J]δ,e[ j

We infer from 3.3.6, 3.3.7, and 3.3.8 that k(/llδ'ω3)i<O, and hence

Suppose next that b has an immediate successor 6+. Then ]δ, ω] =
[b+, ω\. From 2.9.2, we have

and since π(εbJ-=ψb-](b+)=Q, we have

Therefore τr(Λ]δ'ω:])=O in both cases, and, returning to 3.3.5, we find

(3.3.9) π(λ) = λ([a, δ]) for all λ e (£((?) .

This proves the present theorem in case 3.3.1 holds.
We have still to deal with the case in which 3.3.2 holds. If b has

an immediate predecessor, we are actually in the case 3.3.1. We there-
fore may suppose that b has no immediate predecessor. Applying π to
both sides of 2.9.1, we have as before

(3.3.10) π(λ) = λ([a, α]) + τr(^-3) for ae[a, b[ .

Relations 2.9.2 and 3.3.2 imply that 7r(^δ>ω])=0. Hence

for all ae[afb[. An argument based on p ]*> δ [ |, very like that used
above, shows that for every positive real number ε, there exists aQ<^b
such that |7r(^α'ω])|<]e if ^ 0 ^ α < ^ 6 . Since λ is regular, there exists
&!<& such that

\λ([a, ά])-λ([a, δ[) |<ε if α x ^ α < 6 .

From these facts and 3.3.10, we obtain the present theorem in case
3.3.2 holds.
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3.4. REMARK. It is interesting to compare 3.3 with the correspond-
ing assertion for compact Abelian groups. Let H be a compact Abelian

group with group operation xy. Then K(7ϊ) is a convolution algebra,
where

(3.4.1) λ*μ(f)=\ [ f{xy)dμ{y)dλ{x) for
JHJH

If H is infinite, then the homomorphisms of ®(ίf) onto K are enormously
complicated, and in fact need not be described by characters of H (see
[12] for a detailed discussion).

4. &(G) is setnisimple*

We establish first a preliminary result, which will also be of use in

§6.

4.1. THEOREM. Let f be an element of ©((?) and let εbe a positive
real number. Then there exists a finite subset {%J-Jt0 of G, where

such that the oscillation of f is less than e on each of the sets ]a3-i, α j

( i = l , 2 , . . . , m ) .

Proof. The function / is continuous. Hence, for all xeG, there

exists an interval neighborhood U(x) such that \f(y) — /(2/')l<C -— for all
ό

y, yf 6 U(x). Since G is compact, a finite number of these neighborhoods
cover G. Let Uu Z72, •••, Up be such a collection of neighborhoods.

Each Uj has one of the following forms : ]u, v[; [u, v[; ]%, v\\
{w}(u<^v). Whenever an interval U3 can be written in one of the last
three forms, let the elements uf v or the element w be considered as
the endpoints of Uj. Otherwise, call u, v the endpoints of U5. There
are at most 2p distinct endpoints of the sets Uj: we write them in
increasing order as a0, au « , α m . Since a is in some TJ5 and since the
only types of open intervals containing a are [a, v[ (a < v) or {a} (if
a is isolated), we must have ao=a. By the same token, we have am=ω.

Now consider an arbitrary interval ]ak-u ak~] (&=1, 2, •••, m). The
point ak lies in some interval Us ( s = l , 2, " ,p). If Us is of the form
~]us, vs[ or ~]us, vs~], it is obvious that aJc-1^us and hence ]αfc-χ, α Λ ] C i 7 s .
If Z75 has the form [ws, t?6[ with us<^ak, then it is again obvious
that ]αfc_!, α j C ί7 s. In these cases, the oscillation of / on ]αfc_2, αfc]
does not exceed e/2. If Z7S has the form [αfe, vg[ or {αfc}, then since Us
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is open, ak has an immediate predessor, say w. If ak^ι=w1 then
]ak-j, ak]= {ak}. Consider an interval Ut that contains w. If Ut has
the form [w, vt[ or ]ut, w] or {w}, then w=ak-τ. In these three cases,
the oscillation of / on ]ak-u ak~\ is 0. If Ut has the form ]ut, vt[ and
does not have any of the three preceding forms, then we have ak<^vt,
ut<^w, and necessarily ut^ak^. Again it follows that ]ak-lt α J C P ί ,
and the oscillation of / on ~}ak-u ak~\ does not exceed e/2. Since ε/2 is
less than ε, the lemma is proved.

Our next theorem shows that (£((?) is semisimple.

4.2. THEOREM. Let L be an element of (£((?) such that λ([μ, α])=0
for all aeG. Then L=0.

Proof Let / be any function in ©(£), let e be a positive real
number, and let {α ĴLo be as in 4.1. Let p be the function on G such
that

f{ak) for a^^x^aj, (fc==l, 2, . •-, m) .

Then p is Borel measurable and bounded and hence is in 2τ(λ). Our
hypothesis on λ implies that λ({a})=0 and that Λ(]αfc_i, an]) = 0 (k=l, 2,

•• ,m). Consequently, \ p(a?)d (̂ίt?)=O. On the other hand, we have

\p(x) -f(x)\ < ε f o r all a? e G. Therefore

\ f{x)dλ{x)Λ p(x)dλ(x)

Since ε is an arbitrary positive real number, it follows that L(/)=0,
and therefore L=0.

4.3. THEOREM. Let L be an element of (£((?) such that ;({ω})=0
and /ί([a, a[)=0 /or aM a e ] a , a>]. Then L=0.

The proof of this theorem differs only trivially from that of 4.2.

4.4. THEOREM. The Banach algebra €{G) is simisimple. IfLe K(G)
and Lφΰ, then the image of L under some homomorphism 3.2.1 is dif-
ferent from zero. If the image of L under every homomorphism 3.2.2 is
zero, then L=tεω for some teK.

Proof The second statement of this theorem merely repeats 4.2.
The first statement follows from the second. To prove the third state-
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ment, let t=λ({ω}). Then (λ — tεω)([a, α[)=0 for all ae]a, ω], and
( Λ - ί O ί M H O . We now appeal to 4.3.

5 ff as the maximal ideal space of (£((?)•

5.1. Theorems 3.2 and 3.3 identify completely the homomorphisms

of ©((?) onto K. In order to study the space of all these homomor-
phisms, we introduce some new notation. For all aeG, let a denote
the homomorphism 3.2.1: a{L)=λ([a, α]). Let G denote the set of all

homomorphisms α. For λ e &((?), we define the function λ on G as

usual: λ(a) = a(L) for all aeG. For ae~\a, ω], let a' denote the homo-

morphism 3.2.2 : a'{L)=λ[a, a[). Let G' denote the set of all homo-

morphisms α'. For λe&(G), we define the function λ on Gf as usual:

λ(a')=a'(L) for all af e G'. By an abuse of notation, we identify G\J G'

with the semigroup G of all semicharacters of G (1.8 and 1.12). Theorems

3.2 and 1.8 of course suggest this step. The function λ on G=G\J G'

is called the Fourier transform of L.

5.2. Before going further, we must agree on certain identifications
that may have to be made between G and Gf. If aeG and a has an
immediate successor a+, then [a, ά\=[μ, α+[, and hence α=α+. Equiva-
lently, if ae]a, ω\ and a has an immediate predecessor α_, then [a, α[=
[α, aJ], and af=a-. For all such ae~]a, ω], we agree to identify the
point af with the point α_.

5.3. For u,veG, we define [u, v] as the set of all ce G such that
u<±c<Lv. The sets \u, v[, \u'', i;'], etc., are defined similarly.

5.4. The GePfand topology for G is the weakest topology (that is,
the topology with the smallest family of open sets) that makes all of

the functions λ continuous. It is well known that G is a compact Haus-
dorff space in this topology ([10], p. 52, Theorem 19B). We now de-
scribe the GeΓfand topology for G.

5.5. THEOREM. The paint ω is isolated in G. If be [a, ω[ and b
has no immediate successor, then a complete family of neighborhoods of
b consists of all sets of the form

(5.5.1) [6, c[ \J W, c'] where c e ]6, ώ] .

If be [a, ω[ and b has an immediate successor b+, then b=b+ is isolated

in G. If be ]α, ω] and b has no immediate predecessor, then a complete
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family of neighborhoods of b' consists of all sets of the form

(5.5.2) ]α', &'] \J [α, &[ where a e [a, b[ .

It b has an immediate predecessor &_, then bf=b-1 and is isolated.

Proof. We use repeatedly the fact that all λ must be continuous

on G. The function έω is 0 everywhere on G except at α>, and έω(α>)=l.

Hence ω is isolated.

Consider next any point b such that a<^b<Cω. If b has no im-

mediate successor, there exists, for every open set T containing [α, 6],

an element c such that c > δ and [ α , 5 ] C [ ^ c [ C Γ . Every measure

λ e (£((?) is regular, and hence we can find a c0 > b such that

(5.5.3) \λ(lcc,b-})-λ([a,c)l\<e

for all c such that &<e<lco, ε being an arbitrary positive real number.
This means that

(5.5.4) |2(δ)-i(c ') |<e if & O ^ c 0 .

If λ is non-negative, 5.5.3 clearly implies that |Λ([α, bj)-~λ([a, e]) |<εfor
all c such that b<Lc<Lc0. Since Λ is a linear combination of four non-
negative measures, we now have the following result.

5.5.5. Let be [a, ω[ and let b have no immediate successor. Let

λe&(G), and let e be any positive real number. Then there is a eo>&

such that U(6)-^(c)|<ε if b<Lc<cQ and U(6)-Λ(c')|<ε if b<c<^cQ.
If b has an immediate successor, 6+, then we have

i f X=b=b+>(5.5.6) ^ ( O ^ H J A
1 0 elsewhere on G .

Since the function εb— εb+ is continuous on G, the point 6=6+ is isolated.

We next consider a point 6'eff such that b has no immediate

predecessor. Then [α, &[ is a nonclosed open subset of G, and for every

closed subset Fof [a, b{, there exists c < & such that F C k c]CZ[a, b[.

If ^ e E(G), then λ is regular, and we see just as in 5.5.5 that:

5.5.7. λ(&) is arbitrarily close to λ(b') if co<Cc<Lb and λ(c) is

arbitrarily close to λ(bf) if c o ^ c < 6 (here c0 is an appropriately chosen
element <&).

The case in which b has an immediate predecessor has already been
dealt with.
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The topology imposed on G by the neighborhood system 5.5.1 and
5.5.2 (and with isolated points as described) is obviously a Hausdorff
topology. In 5.5.5, 5.5.6, and 5.5.7, we have shown that every function

λ is continuous on G in this topology. From 5.4, we see that the
GePfand topology is weaker than or equivalent to the topology just
described.

To show that this topology is precisely the GePfand topology, con-
sider any b, ceG such that a<Lb<Cc<Lω and such that b has no im-
mediate successor. It is easy to see that

x ί f

0 elsewhere on G.

Hence all of the neighborhoods of b enumerated in 5.5.1 are necessarily
open in the GePfand topology. Since c is the immediate successor of
b if and only if b is the immediate predecessor of c, the same function
έ6 — έc shows that all of the neighborhoods of b' enumerated in 5.5.2
must be open in the GePfand topology. Points with immediate succes-
sors and the point ω have already been dealt with : such points must
be isolated in the GePfand topology for G. This completes the present
proof.

5.6. REMARK. Since &(G) has the unit eΛ (2.10), G must be com-

pact. Thus the topology of 5.5 is a compact Hausdorίf topology. This

fact could of course be established by a direct examination of G.

5.7. The mapping L-> λ is a linear mapping of (£(£) into the func-

tion space S(G) that changes convolution into pointwise multiplication.

That is, L*M->(λ*μ)Λ==λ μ for all L, M e &(£), where λ μ is the pointwise

product of λ and μ on G. This follows at once from 3.2. Theorem 4.4

shows that this mapping is an algebraic isomorphism. The result of the

present section is to describe the (unique) compact Hausdorff topology

on G under which the functions λ are continuous. Thus in studying

algebraic properties of έ(G), we may consider the subspace of &(G)

consisting of all λ. In 6.7 and 6.9, we will give a more precise descrip-

tion of these functions.

5.8. The Stone (or kernel-hull) topology for G ([10], p. 56) is

identical with the GePfand topology. A neighborhood of x e G in the

Stone topology consists of all y such that λ(y) φ§, where i(jc)τ^0. It
is clear that the Stone topology is weaker than or equal to the GePfand
topology, and since the functions έδ — έc are different from 0 exactly on
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the neighborhoods 5.5.1 and 5.5.2, the two topologies coincide.

6* The Herglotz-Bochner theorem for (£((?)•

6.1. WeiPs generalization to locally compact Abelian groups of the
Herglotz-Bochner theorem (see [10], pp. 141-142, Theorem 36A) gives
an intrinsic characterization (positive definiteness and continuity) of all
functions on the dual group that are Fourier-Stieltjes transforms of
finite non-negative regular Borel measures. We here give two analogues

of the Herglotz-Bochner theorem for the algebra

6.2. Let /I be a non-negative measure in (£((?). Then the function
λ is continuous, real-valued, and non-negative on G. It is also nondecreas-
ing in the sense that λ(a)<Lλ(b) and λ(a')<LXbf) if α<;&. We shall
show that these properties completely characterize Fourier transforms
of non-negative measures. In fact if h is a continuous, real-valued, non-
negative function on G such that h{a) <I h(b) for a <I δ, and k(ω) > 0,
then h=λ for some non-zero λ e (ί(G) such that ΛI> 0. The proof requires
a number of steps, which we state as separate theorems.

6.3. THEOREM. Let h be a continuous function on G that is real-
valued and non-decreasing on G. Then h is also real-valued and non-
decreasing on G\

Proof. It is first clear that h is real-valued on G\ since G is dense

in G. Let α, b be elements of G such that α < δ , and let e be a positive
real number. There exists an element c < α such that \h(a') — h(x)\ < ε
for all x such that c<Lx<Ca (see 5.5.2). This holds trivially if a has
an immediate predecessor. Similarly, there exists an e<Cb such that
\h(bf) — k(y)\<Ce for all y such that e<Ly<Cb. If we choose e^>a, then,
as h is non-decreasing on G, all of the numbers h(x) are less than or
equal to all of the numbers h(y), and it follows that h{a')<,h(b').

Given a function h as in 6.2, we must recapture the measure λ, or,
equivalently, the linear functional L, whose Fourier transform is h. For
this purpose, we introduce a Riemann integral with respect to h.

6.4. DEFINITION. Let h be any real-valued, non-decreasing function
on G. Let Δ denote a finite subset {α0, al9 -- ,αm} of G, such that
aQ=a, am=ω, and aj-1<iaj (j=l, , m). For an arbitrary complex-
valued function / on G, let

S(f, ΛH
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6.5. THEOREM. Let f be a continuous function on G. Then there
exists a unique number L{f) such that for every e ̂ > 0 there exists a Δo

as in 6.4 with the property that \L{f)—S{f, Δ)\<^e for all ΔZϊ Δo. We
write this relation as L(f)=limS(f, Δ).

Proof. Let β=h(ω)-h(a). If £=0, then S(f, Δ)=0 for all J and
there is really nothing to prove. Otherwise, let θ be an arbitrary posi-
tive real number. Then, by 4.1, there exists a A^{aj]%Q such that the
oscillation of / is less than β~Ύθ in each of the sets ]θj-i, aj] (j=l,2,
•• ,m). Suppose now that Γ is a finite subset of G such that Γ^ A.
We shall prove that

(6.5.1) \S(f, Δ)-S(f,

Write Γ={bk}
r

k^, &Λ;-I<A, and suppose that bs=au bJc<^a1 for k<Cs.
Then we have

(6.5.2) - KaQ))

Σ

If hia^ — hia^) is positive, it is clear that the inequality in 6.5.2 is strict.
Estimates similar to 6.5.2 obviously hold for the b's lying in the inter-
vals ]alf α2], •• ,]αm_1, αm]. Adding these estimates together, we obtain
the result that

the strict inequality holding because some h{aj) — h{cij-ι) is positive. This

is just 6.5.1.
Let Δn be a subset of G as in 6.4 such that \S(f, Δ)-S(f, 4)1 O " 1

for all Δ D Δny and let Γn= \J Δ5 (w=l, 2, 3, •). Then {S(f Γn)};. t is a

Cauchy sequence of complex numbers and hence has a limit, which we
take as L(f). If e is a positive real number, then there exists an
n> 3/e such that \L(f)-S(f, Γn)\ < e/3. If Δ D ΓΛ, then J D 4 , so that
\S(f, Δ)-S(f, Γn)\<2/n. Thus \L(f)-S(f, Δ)\ < ε , as was to be proved.
The uniqueness of L{f) is proved by a standard argument, which we
omit.

6.6. THEOREM. The function L defined in 6.5 for all f e (£(G) is

a non-negative linear functional on
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Proof. Since h is real and non-decreasing, it is clear that S(Δ, f) is
real and non-negative for all real / e <£(<?) that are nonnegative and all
Δ as in 6.4. Hence the limit L(f) of these numbers is non-negative.
The linearity of L follows at once from 6.5 and the obvious equality
S(Δ, uf + vg)^ΞuS(Δ,f) + vS(Δ, g), valid for all complex numbers u, v, all
f,ge&(G), and Δ as in 6.4.

We can now state and prove our main theorem.

6.7. THEOREM. Let k be a continuous function on G that is real-
valued, non-negative, and non-decreasing on G. Let L be the non-negative
linear functional associated with h as in 6.5. Let λ be the measure
associated with L as in 1.6.1. Then h is the Fourier transform of
λ 4- h(a)eΛ :

(6.7.1)

Proof. Since λ and h are completely determined by their behavior

on the dense subset G of G, we have only to show that 6.7.1 holds on

G. That is, we must show that

(6.7.2) λ(a)=λ([a, a])=h(a)-h(a) for all aeG .

If a 6 G and a has an immediate successor, then the function ψ^ is
continuous, and by the definition of λ given in 1.6.2, we have λ([a, ά]) =
L{ψa-]). If Δ is any finite subset of G as in 6.4 that contains α, then it
is plain that S(^α], Δ)=h(a)—h(a). This implies that L(ψal)=h(a) — h(a),
that is, that 6.7.2 holds for this value of a.

If a has no immediate successor, then, for every positive real number
e and every b > α, b e G, there exists a non-negative real-valued function
/e(£(G) such that /(a?) = l for x<,a, /(a?)=0 for x^b, 0<^f(x)^l
for xeG, and

(6.7.3) \λ(la, α ] ) - L ( / ) | < A .
o

This follows at once from 1.6.2 and the fact that G is a normal topolo-
gical space. Now let Δ be any finite subset of G as in 6.4 that contains
a and b. The inequalities

(6.7.4) h{a)-h{a)<S{f, Δ)^h{b)-h{a)

obviously hold. Since h is continuous on G, we can choose the element
6 > α such that Q<Lh(b) — ̂ (α)<ε/3. By 6.5, there exists a finite subset
Γ of G such that Γ^Δ and

(6.7.5)
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Combining 6.7.3, 6.7.4, and 6.7.5, we have

(6.7.6) μ([α, a])-(h(a)-h(«))\<e .

Since ε is arbitrary, we have proved 6.7.2.

6.8. REMARK. Theorem 6.7 is an analogue of the Herglotz-Bochner

theorem, since it characterizes in a simple way those functions on G

that are Fourier transforms of non-negative measures in (£((?). We can
also obtain an exact analogue of the Herglotz-Bochner theorem in terms

of positive definite functions. A function p on G is said to be positive
definite if

m m __

(6.8.1)
k=Ί

for all complex numbers ξu •••, ξm and all distinct χu •••, χm in G. If

λ is a non-negative measure in S(G), then we have

Σ ta) Σ gΣ Σ Wta)= Σ g
m

Hence 5 is continuous and positive definite in the sense of 6.8.1. Con-

versely, let p be a continuous function on G that satisfies 6.8.1. Let

a,beG and let α < 6 . For m=2, X1=φa], X%=Ψ*], f i=l, and f 2 = - l , the

the inequality 6.8.1 obviously reduces to

(6.8.2) -p(Φai) + P(Φbi)^0 .

Writing p(φxl)=p(x) for xeG, we have p(a)<Lp(b). From 6.8.1, we also
see that p is non-negative. That is, p is continuous and non-decreasing
on G and hence is the Fourier transform of a non-negative measure
(6.7). Monotonicity is a much easier property to verify, in applications,
than the inequality 6.8.1, so that the present characterization of Fourier
transforms of nonnegative measures as continuous, positive definite
functions is perhaps only a curiosity.

6.9. REMARK. Theorem 6.7 permits us to characterize general

Fourier transforms λ, where λ is an arbitrary complex-valued measure

in (£(G), as being continuous functions on G that are linear combinations

of continuous, real-valued, non-decreasing functions. However, there is

another characterization of the functions λ, more intrinsic in nature.

Namely, let p be a function on G and let α, b be elements of G such
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that a<Lb. We define the variation of p on the interval [α, 6] as the
supremum of all numbers

Σ
1

taken over all finite sets a^aQ<^dι<i * ̂ ^ m ^ ^ (if ct=δ, we take the
variation as 0). We write this variation as V(p: a, 6). One can then

prove that a function q on G is the Fourier transform of some measure
in (£(G) if and only if q is continuous and V(q: a, ω) is finite. The
proof is suggested by standard arguments from the elementary theory
of functions of a real variable (see for example [11], pp. 215-223). In
the non-trivial direction, the proof is carried out by showing that every

continuous real-valued function of finite variation on G is the difference

of two continuous, real-valued, non-decreasing functions on G. We omit
the details.

7* An application, to the theory of probability•

7.1. Theorem 6.7 has applications to the theory of probability. Let

Φ be a random variable defined on a probability space (Y, π) with values

in G. The function d on G, defined by

(7.1 1) { d(a)==π{y: VeY> Φ{y)^a) for aeG ,
' d{af)^π{y: yeY, < % ) < α } for ae]a, ώ\ ,

is obviously non-decreasing on G and G\ Under some obvious hypotheses

on π and Φ, this function d is continuous on G and hence is the Fourier

transform of a probability measure λ in E(G) (6.7). It is clear that λ is

non-negative, and since cZ(α>)=l, we must have /(G)=l, that is, λ is a

probability measure on the Borel sets of G. If Φ5 are independent ran-

dom variables as above with corresponding probability measures λ3 e (£(G)

( i = l , , m), then the probability corresponding to the product Φr - -Φm

is the convolution λ^ *λm. Thus the arithmetic of independent sets of

random variables is just the arithmetic of the set of all continuous,

nonnegative, non-decreasing functions p on G such that p{ω)=l. The

operation is of course pointwise multiplication on G. If we denote the

set of all probability measures in £((?) by ξβ, then the set of function

on G that we are now considering is exactly φ. In the case of a finite

semigroup G, the arithmetic arising in this way has been studied in

detail in another place [6].

We proceed to a description of some of the properties of 5β and φ.
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7.2. It is clear that ψ has a unit, namely eΛ (2.10). Since the
measure εω has the property that

if xφω,

if x = ω ,

it follows that eω*Λ=εω for all λ such that λ(G) = l. Hence εω is a zero
in the set $p.

7.3. We next identify the idempotent elements of ς$. If λ*λ=λ,

where λ e (£(G), then λ2=λJ and λ assumes only the values 0 and 1. If

ΛeSp, then λ is nondecreasing on G and λ(ω) = l. The requirement of
continuity makes it obvious that there exists an element b e G such that

l(a)=0 for a<^b, Λ(α) = l for α ^ δ , /(α')=0 for a<Lb, and i(α /)=l for
a^>b. This implies that λ=εb. Hence the only idempotent elements of
5β are the measures εδ.

7.4. DEFINITION. Let {Λn}n-i be a sequence of measures, where

^ne5β for all n. If there exists i e K(G) such that lim-Jn(jc) = ̂ (jc) for

all xeG, then we say that λ is the limit of the sequence {h}n=ι, and
we write λ= lim 4

7.5. It is easy to show that lim λn is in ψ whenever it exists. The
notion of limit adopted here is very like that employed in the classical
theory of probability (see for example [3], pp. 58-62, and esp. 102).
There are obvious differences, as we insist on pointwise convergence
throughout the entire space of homomorphisms G, while the classical
theory deals only with the homomorphisms defined by integrals

e~ίxydλ(x), which are not even dense in the space of all homomorphisms

(see [12]).

7.6. THEOREM. Let 2 e $ and let /IM-Λ*. - .*Λ(n) {n=l, 2, 3, •).
Then there is an element aeG such that l imΛ C w ] = e α .

Proof. Consider the function ln = (^y on the set G. Let A=

{x: xeG, Λ(x)=l}. Since ωe A, A is non-void. Let a=m£A. Since λ

is non-decreasing, we have {xixeG, x^>a} CZA. Since 1 is continuous
on G, we have a e A. It follows that

(7.6.1) λ(x)\ ==1 ιΐ

1 < 1 if
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This implies that

(7.6.2) lim2(xH{° i f X<a>
[1 if x^a.

Therefore lim λn(x) = εa(x) for all xeG. The same relation holds if

xeG', as is shown by the same argument. (Continuity shows that

α= inf {x:xeG, λ(xf)=l}.) Therefore, by 7.4, lim λ^=εa.

7.7. Finally, we may look for the class of probability measures in ̂ 3
that can be written in the form lim (μι* */O, where // rae$. For this
purpose, it is convenient to go over to 9β. Let λ be an arbitrary element
of φ. Write λ=p. Then for every positive integer r, there is a unique

nonnegative function pllr on G. It is easy to see that pιlr satisfies the
conditions of 6.7 and has the property that p1/r(α))=l. Hence pllr is the
Fourier transform of a probability μr such that u^ = λ. It is further-
more clear that

\impll2(x)-pιli(x) pll2n(x)=p(x)
n-^oo

for all xe G. Therefore, if we write λn=μ2*μ4* *μ2W, we have lim λn=
λ. Therefore every λ in φ is an "infinite product". If λ is not idempo-
tent (that is, not of the form eα), then no μr is idempotent, and λ is
an infinite product with " nondegenerate" factors.

If ea= lim (μχ* *μn)y then it is clear that all μ5 are equal to eΛ.
For in the contrary case, we have μ5{a) <C 1 for some ae G and some
positive integer^'. Hence lim μL(a) •fin(a)^foj(&)<Cl> a n d μL μn

does not converge to εa=l everywhere on G.
On the other hand, if beG and δ > α , choose any ueG such that

oc<Lu<Ca. A simple calculation shows that

lim (ieu(x) + iea(x)f = ea(χ)

uniformly on G. Hence εa is an infinite product with all factors non-
degenerate. (For the case of a finite G, see [6], 8.2.)

7.8. An intuitive interpretation of the results of 7.1-7.7 may be
given. Consider a game whose possible outcomes are points of G, with
the probability that the outcome lies m A(ZG given by λ(A), where
λe?$. We play the game repeatedly and keep score as follows. After
the first game, we take its outcome, xu as our "score". After each
subsequent game, we take as our score the maximum of its outcome
and our previous score. That is, the score after n games is max(#1?
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•••,#„). The probability that this score lies in A CZG is λ[n\A). Hence,
as n —>°o, 7.6 shows that the outcome is almost certainly α, where
α= inf {x: xe G, λ(]x, ω])=0}. This is in accordance with what one
intuitively expects. If there is a positive probability of obtaining x in
some interval [α, 6], then, after sufficiently many repetitions, the pro-
bability is arbitrarily close to 1 that the maximum will be greater than
or equal to a.

A similar interpretation, based on 7.7, can be given for games with
different probabilities λn. Here an arbitrary λ e φ can be obtained as
the limiting probability as the number of games goes to oo.

8 Examples and special results •

Our construction yields interesting results in certain classical cases.
We here list a few of them.

8.1. Let G be the closed interval [0, 1] on the real line, with the

usual ordering. Then d(G) consists of all complex, finite, countably

additive Borel measures on [0, 1]. The space G is the union I\J Γ\J {1},
where i=[0,1[ and /' is a replica of ]0,1] disjoint from /and {1}. The
point 1 is isolated. Sets of the form [t, ί-f δ[\J]*', t' + 8% where [£, t + δ[
C.I and ]έ', t'-t δ'] (ZΓ, are a basis for open sets in I\JΓ. This topology
was described many years ago by Alexandroff and Urysohn for counter-
example purposes [1], and it seems remarkable that it turns up here as
the maximal ideal space of a certain Banach algebra.

As noted in 6.9, the Fourier transforms λ are just the continuous
functions on G that have finite variation on I\J {1}. Now let ψ be any
complex-valued function on [0,1] that has finite variation and is continu-
ous on the right: ψ(t-hθ)==φ(t) for 0 ^ ί < 0 . It is well known ([3], p.

53) that φ determines and is determined by a Λe&(G): φ(t)=λ([O, f])

(0<:£<:i). Hence λ(t)=ψ{t) for all tel\j{l}, and it is easy to see

that λ(t')=φ(t-O) for t'e Γ. It follows that the algebra 9? of all right-
continuous functions of finite variation on [0, 1] with pointwise operations

is isomorphic to the algebra of Fourier transforms λ and hence to ®(G).
Furthermore, the homomorphisms of S3 onto K all have the form ψ ~> ψ(t)
(0<lέ<ll) or φ-+φ(t — 0) ( 0 < £ < : i ) . This answers a question put to
the first-named author by Professor Einar Hille in 1946. Finally, if

ψjβS3, and φ3 corresponds to the measure ^ed(G) (j=l, — ,m), then
the function φτ φm corresponds to Λ* *Λm.

8.2. Let G be any well-ordered set having a greatest element. It
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is obvious that G is compact and hence (£(<?) is an algebra of the kind

analyzed in the present paper. The measures in &((?) are all uncompli-

cated. In fact, if λe<ί(G), there exists a countable subset {an}~=i of G

and a sequence {£w}~=i of complex numbers such that Σ i ^ l ^ 0 0 a n ( i

such that

(8.2.1) λ=±znean.

The proof of this depends upon the following fact.

8.2.2. Let A be a well-ordered set with a greatest element and let
d be a finitely additive, real-valued, non-negative measure on the Borel
sets of A such that (̂{p})==0 for all pβ A and δ is inner regular in the
sense that δ(P)= sup {δ(F): F compact, FC.P} for all intervals P =
[a, w[C4. Then <S=0.

Proof. We may suppose that A is infinite. Let a be the least
element of A and let α+ be the successor of a. Then δ([oc, #+[)=
£({#})=(). Suppose that ue A and that δ([a, t[)=0 for all £ < > . If
% has an immediate predecessor %_, then we have

δ([a, w[) = ̂ ([«, %-[U {%-})=*([«> %-D + 3({w-})=0 .

If % has no immediate predecessor, then for every compact set F CZ [ρcy u[,
there is a t<Cn such that [α, ί ] ^ F . There is also a £' such that
t<^tr <C.Uj and we have F C f e ί ]C[«, ί'[. By our inductive hypothe-
sis, we have <5([α, t[)=0. By the regularity of δ, we infer δ([a, u[) =
sup {δ(F): F compact, F C O, %[)} =0. Hence 5([α, u[)=0 for all % 6 A.
Since <5({<»})-(), it follows that δ(A)=0.

In proving 8.2.1 from 8.2.2, we may clearly suppose that λ is non-
negative (use 1.6.5). Let {αw}"=1 be the subset of G consisting of all

points for which λ is positive, and let zn=λ({an}). Then δ=λ— ^zneari is
7 1 = 1

a measure satisfying the hypothesis of 8.2.2 (this δ is even countably
additive).

It follows that the algebra ®(G) is isomorphic to the algebra 1{(G)
described in [8]. Since we have obtained all of the semicharacters of
G in the present case, Theorems 1.8, 3.3, and 4.4 of the present paper
are somewhat more precise that the corresponding Theorems 5.1, 2.7,
and 5.8 of [8].

8.3. As another illustration of our techniques, we find all idempotent

elements in ©(G), where G satisfies 1.5. If λ*λ=λ, then λ2=λ and λ can
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assume only the values 0 and 1. According to 6.9, λ must have finite
variation on G and be continuous on G. Hence λ can have only a finite
number of changes of sign on G. A simple argument shows that there
exists a finite subset {bj}J=ι of G such that a <C&i <Cb.λ<^ ' * * <Ĉ m <Cω

(we write <x=b0, ω=bm+1 in the following formulas) with the following
properties. First, we may have

(8 3 1) 2λ(x) = \ 1 ~ ( " ~ 1 ) & f o r xeVbk,bk+l (k = 0, , m) ,

( _ i r for χ6[6m, 6m+1] .

Second, we may have

1 ^ f o r J C 6t 6^ 6fc+it ((8 3 2) 2λ(x) =
' l Γ for xe[6m, 6m+1] .

These are the only possibilities. Translating this into a statement about
the original measures, we see that λ must have the form

(8.3.3) ^ ε c o _ ε c i + s + . . . + ( _ i ) ^ C f c 9

where a <icQ < cx < <c f c ^ ω. Since every measure 8.3.3 is obviously

idempotent, we have found all idempotent measures in (£((?). This may
be compared with Theorem 9.1 of [8], where we obtain a less precise
result for a class of measure algebras related to but more complicated
than those under study here.

8.4. Again let G satisfy 1.5. (£(G) admits an obvious involution.

Let Le&(G) and L=M+iN, where the functionals M and N are real-

valued for real-valued /e£(G). Then the mapping L~>L=M—iNis an

involution of (£((?). Furthermore, (£((?) is obviously symmetric under

this involution : (λ)A is the complex conjugate of L However, (Σ(G) is

never isomorphic to (£((?) (pointwise operations) if G is infinite. If G is
infinite, we may suppose without loss of generality that G contains an
infinite strictly increasing subset

(8.4.1) α i < α 2 < θ 3 < •••<«»<••• .

Let b be the least upper bound of this set. It is easy to see that

T= {an} \J {6'} is a closed subset of G. The function r on T such that

γ(an)=^(l-(-l)n) and 7-(&')=0 is continuous on T. By Tietze's exten-
n

sion theorem, there is a continuous function γQ on G such that γQ(an) =
γ(an) ([9], p. 242). Obviously γQ has infinite variation on G and hence
is not a Fourier transform (6.9).
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8.5. Following a suggestion of the referee, we note that if a semi-
group G satisfies all of the hypotheses of 1.1-1.3 and if 1.4 is replaced
by the hypothesis of local compactness, then it can be treated in much
the same way as we have treated the compact case. Certain changes,
however, are needed. The function space GΓ(G) of 1.6 is replaced by
(£*((?), the space of all bounded continuous functions on G. The conju-
gate space K(G) is replaced by ^f(G), the space of all countably addi-
tive, complex-valued, finite Borel measures on G. (This is a realization

of (£(G) for G compact but is ordinarily only a very small part of the
conjugate space of (£*(G) if G is non-compact.) The integral 1.6.1
exists for all / e (£*(G) and λ e ^£(G) and defines a bounded linear
functional on (£*(<?). Under this definition, ^/(G) is a convolution
algebra. Every semicharacter of G is defined by a Dedekind cut, and
it will be of the form 1.8.1, 1.8.2, or as in 1.11. ^f(G) has a unit
if and only if G has a least element a and the unit in this case is ε̂ .
(See 2.10.) The results of §§ 3 and 4 can be carried over with obvious

modifications. The maximal ideal space of ^/ί\G) is still G (see § 5),
but the topological structure may be complicated. We omit the details.
The changes necessary in §§6-7 are considerably greater, and the more
general results to be obtained would not seem to justify carrying out
all of the details.
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