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l Introduction* Because of the usual tediousness of computing
latent roots, any quick information about them is often welcome and
useful. We develop here some lower bounds to the absolute value of
the major latent root (the one largest in absolute value) of any real
symmetric matrix that depend only on a simple inspection of its ele-
ments. Also, lower bounds are developed for the largest latent root of
a Gramian matrix of the form AAf that require inspection only of the
elements of A. The latter case is especially important in linear regres-
sion theory of statistics, in factor analysis theories of psychology, and
elsewhere.

The original motivation for our inequalities was to study the relation-
ship between latent roots and the von Neumann value of a two-person
zero-sum game matrix. We actually use the von Neumann theory to
establish our bounds to latent roots, and in return we show how latent
roots can be used to bound the game value of a matrix. The latter
kind of bound will be useful whenever it is easier to get at the appro-
priate latent root than at the desired game value.

The bounds to latent roots are first exhibited in §§2-3, and then
proved in § 4. How to reverse their emphasis to provide bounds for
game values is shown in § 5.

2 Lower bounds to the major latent root/ Let A be any real
matrix of order mxn. Let ai3 be the typical element of A ( ΐ=l , 2,
...fm,;j=l,2, , n), and let pi and q3 be defined respectively as

(1) 2> i= min ai3 , q3= m a x ai3 ( ' ' ' ) .
V J — J-> ^ , y rij '

Furthermore, let p and q be defined respectively as

( 2 ) p = max Pi , q= min q3 .

From (1), it immediately follows that

(3) Pi^aί3^qj Γ Γ 1 ' 2 ' # ' ' m V
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and in particular that p<Lq.
Let Λ2 be the largest latent root of AA\ where A is the transpose

of A. We shall prove in § 4 below that both of the following inequalities
hold:

( 4 )

( 5 )

Inequality (4) is a useful lower bound to \λ\ if and only if
while (5) is useful if and only if g<^0. If p<,0<Lq, we obtain no infor-
mation about \λ\.

One interesting feature of (4) and (5) is that they show that λ2 is
generally at least of the order of m or of n, depending on whether
g < 0 or p > 0 .

Corresponding inequalities can be developed by considering Af in
place of A. Let p) and ql be defined respectively as

( 6 ) pj= mm a q= max a Iu , qt= max ai3 I )

so that

< 7 )

Let p! and q' be defined by

( 8 ) p'= max p] . q'= min q{ ,

whence, from (7), p'' <Lq''.
Now, AA and A A have the same nonzero latent roots, which are

all positive. So if λ2 is the largest latent root of A A', it is also the
largest latent root of A A. In addition to (4) and (5), we can write

( 9 ) V\>,p'Vm

(10) \λ\^-qrVn

Notice that the roles of m and n in (9) and (10) are reversed from
those in (4) and (5). If p ' > 0 , Xz is at least of order m, while if g ' < 0 ,
λι is at least of order n. If either of p or p' is positive, or if either
of q or q' is negative, we get some information about \λ\.

Matrices of the form AA or A A are called Gramian, or nonnegative
definite symmetric. In statistics, any correlation matrix R is Gramian.
A good deal of work in psychology, for example, is aimed at " factoring "
an R into the form R=AAr. Given such a factoring, our inequalities
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immediately given lower bounds to the largest latent root of R from
the minimax and maximin element of A. The latter are easily ascertain-
able by inspection.

3 The case of symmetric matrices. If mφn, A itself has no
latent roots defined. However, if A is square, then it does have a
characteristic equation and latent roots. A particularly important case
is where A is symmetric, or A=A\ Then the latent roots of A are all
real, and their squares are the latent roots of AAf=A\ If λ2 is the
largest latent root of AA', then λ must be a root of A largest in abso-
lute value, and conversely. In this symmetric case, we have not only
m=n, but also p=ρ\ q=q'. So (9) and (4) are redundant, as are also
(10) and (5). The inequalities can now be interpreted as referring to
the major latent root of A itself, and not merely to a root of AA\

When A is symmetric, we can usually improve on (4) and (5).
Let / be the unit matrix of order n, c be an arbitrary constant,

and A* be defined as

(11) A*=A-cI.

If λ is a latent root of A, then ^-c is a latent root of A*, and con-
versely. Let p* and g* be the maximin and minimax of elements of
A* respectively, or, if dtJ is Kronecker's delta,

(12) p*= max min (au — cδi5) , g * = min max (al3 — cδl3) .
i 3 i J

Then in place of (4) and (5), we can write

(13) \λ-c\^:p*VΈ , μ - c | ^ - ( ? V ¥ (A=A0,

where λ — c is the major latent root of A*. In special cases, a judicious
choice of c may be apparent that will make maximum \λ — c\ correspond
to a i which is either the most positive or the most negative latent root
of A, and with a better bound than given by (4)-(5).

An especially important symmetric case is where A is a correlation
matrix R, with all diagonal elements equal to unity. In such a case,
the largest latent root of R cannot be less than 1, for the trace of R
is n and all n latent roots are nonnegative. For this case, if p^>0,
then choose c=l—p. This implies that the main diagonal elements of
iϋ* are all equal to p. Then, clearly p=p*; and since ΛI>1 for any i?,
\λ — l + p\ = λ — \-\-p when p > 0 , and (13) becomes

(14) λ^

Similarly, if # < 0 , by choosing e = l — g in (13) we get
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(15) ^ l - < r t i / ¥ - l ) fo^O, A=R).

4, Proof of the inequalities^ Let Pk denote the space of all k-
dimensional probability row vectors. That is zePk if and only if z is a
row of k nonnegative numbers whose sum equals unity. Let zf denote
the column vector that is the transpose of z. Then zzr is the sum of
squares of the components of z, and it is easily established and well-
known that

(16) j-^zaf^l (zePk).

The equality on the left of (16) is always attained by letting z=zλ,
where zι is a vector whose components all equal I/A: (and hence z1ePk).

von Neumann [1] has shown how each real matrix A has associated
with it a unique real number v with certain important minimax pro-
perties. Since his theorem was developed in the context of his theory
of games, we shall call v the game value of A. Our present interest
of course is to regard von Neumann's theorem as a general theorem on
real matrices, without necessary reference to the theory of games.

von Neumann's theorem is as follows. If A is a real matrix of
order mxn, then there exist an xQ and a y0, where x0 e Pm and yoe Pn,
and a unique real number v, such that

(17) xAy0 <Lv<L xQAy' for all xePm, yePn .

Furthermore,

(18)

where p and q are as defined in (2).
To use this theorem for establishing our own inequalities, apply

Schwarz's inequality to (17) to see that

(19) - VJm'){y^!Ay,) ^v< V^y')(xQAA%) ( ^ P m , yePn) .

Let λ* be the largest latent root of AAf and A A. Then

(20) XQAA'XΌ <: λ%Xo <1 λ* , '

the second inequalities in each part of (20) following from the second
inequality in (16). From the first inequality in (16),

(21) α a ^ — , VV'^1 (xePm,yePn),
m n

and we have noted that the equalities in (21) are always attainable, by
best possible xλ and y1 for this purpose. Using (20) and the equalities
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of (21) in (19) yield

(22) ~β\ 'L
Vm V n

Then (4) and (5) follow from (22) and (18). Inequalities (9) and (10)
follow from the restatement of (22) for the game value vr of A:

(23) ~M^V^ I'LL.
V n Vm

Inequalities (22) and (23) are of course sharper than those stated in
§ 2 above. If game values are known, they can be used in place of p,
qy p', or q! in the latter inequalities. We have stated our inequalities
in the form most practical to use, since p and q can be determined by
inspection, whereas v usually cannot, except in the special case where
p=q=v.

5. Application to game values- Let us now consider the converse
problem of bounding game values. If an upper bound to \λ\ is known,
this will serve to bound v and v' via (22) and (23). Thus, useful bounds
to v can be set that may sometimes be better than (18) when pφq.
Perhaps more important, (22) and (23) show how the magnitudes of v
and v' compare with those of m and n in general, given some notion
of the size of \λ\.

For the purpose of bounding v and v\ (22) and (23) can be improved
on. Let AG be the mxn matrix whose typical element is atJ — c, where
c is an arbitrary constant. Thus Ac is obtained by subtracting c from
each element of A (so AcφA* if cφQ). It is easily verified that the
game value of Ac is v — c, and optimal probability vectors x0 and y0 for
A are optimal also for Ac. Let λ2

c be the largest latent root of ACA'G (or
of A'CAC). Then we can replace (22) and (23) by the more general in-
equalities

(24) c - 4 — ^ ^ c + - 7 —
Vm Vn

and

(25)
V n Vm

Evidently, the best choice of c is that which will minimize Pc. A
practical way to approximate this choice is to minimize instead the
sum of all the latent roots of AcA'cy or the trace of ACA'C. This requires
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minimizing

m n

(26) ΣΣfau-c) 3 ,

for which the minimizing value is c=α, where

(27) 3= Σ Σ α/j
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