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l Introduction. The Post-Widder inversion formula for unilateral
Laplace transformations [1] states that, under certain weak restrictions
on φ(u)f

lim (k~Y+1A \~φ{u)ιιk exp (-
fc-*°° \ c J kl Jo V

for any continuity point c of φ{u).
This formula applies when φ{u) is defined only for &I>0. A similar

formula may be deduced if φ(u) is defined for u^ —a, for some positive
α. In such a case, we may let φ*(u)=φ(u—a), and we may then use
the Post-Widder formula to determine φ*(u) at the point u=c + a. The
inversion formula then becomes

lim f-A__y+ λ.[φ(u-a)uk exp (-
fc\c4α/ A:! Jo \

or, if we make the transformation z=ul(c

(1) lim ^+1\ φ[(c + a)z-ά]zk exp (-kz)dz=φ(c)

This suggests that, if φ(u) is defined for — oo <̂  u < co, some sort
of limiting form of (1) applies. We shall prove that under suitable
restrictions on ε and on the behavior of φ(u),

lim - * - ( φ[(c + k*)z-ks]zk exp (-kz)dz=φ(c) .
fc~*~ k l J

2 Remarks In the following sections φ(w) will be assumed to be
integrable over the interval from — oo to oo, and c will be assumed to
be a continuity point of φ(u). All limits should be understood to be for
increasing values of k.

The expression <?/(c-f kz), where d and ε are positive numbers, occurs
frequently. It will be denoted by δ(h, ε).

Finally, it may be noted that in terms of the Laplace transform of
φ(u) for real t,
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f(t) = \ φ(u) exp (— tu)du ,

the inversion formula (2) may be written in the form

lim i ^
kl

3. Preliminary proofs- The results of the following four lemmas
will be needed below. Proofs are given for the first two. The second
two are proved in a similar way.

LEMMA 1. If n is any fixed number and 1/3 <C ε <C 1/2, then

Proof. If the logarithm of the expression under the limit sign is
expanded in powers of δ(k, e), the sum of two of the terms in the ex-
pansion approaches — oo as k -> oo, while the sum of the rest of the
terms is bounded.

LEMMA 2. // 1/3 < ε < 1/2, then

l i m • \ zk exp (— kz)dz =
k\ Ji 2

Proof. It is well known [1] that

lim I zk exp ( — kz)dz=— .
kl Ji 2

Therefore, it is sufficient to show that

hk + lΓoo

lim — I zk exp ( — kz)dz=0 .
kl Ji+δCfc, ε)

Since zexp(-z) is a decreasing function of z for 2 > 1 , the above ex-
pression is, for fixed k, no larger than

By applying Stirling's formula and Lemma 1, we see that the upper
bound approaches zero as k increases.

LEMMA 3. If n is any fixed number and 0<ε<^l/2, then
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\imkn[l-δ(k, e)]* exp [fc3(fc, e)]=0
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LEMMA 4. / / 0 < ε < 1/2, then

lim
hJc + lCί

kl Ji-
exp (-Jte)cfe

4 The inversion, formula*

THEOREM, /f

(a) \[lφ(z)d* <:Aexv(-dx2+«)

for some positive quantities A, d, and a, and if

(b) max(1/3, 1/(2 + α ) ) < ε < 1/2,

then

Km Ik = lim --— I φ[(c + kz)z- ks]zk exp (-kz)dz=φ(c) .
kl J-«

Proof. For any <5 ]> 0, the infinite interval may be partitioned into
the four subintervals (-oo, l-δ(fc, e)), (l-δ(Jc9 e), 1), (1, l + δ(λ, «)), and
(l + (k, e), oo). /fc may be considered as the sum of four integrals over
these intervals, so that we may write

I(

k

Ό is understood to represent the integral over (— oo, l — δ(h, e)) etc.

2

We prove first that IiΌ and /^4) approach zero as k -> oo. For /^υ,
consider first the integral over the interval from 0 to 1 — δ(k, ε). The
function zexp(-z) attains its maximum at the upper endpoint. There-
fore an upper bound for the absolute value of this portion of the ex-
pression is

kl
i

- [ 1 - δ(k, ε)Y exp [-
fi-δ(fc,ε)

, e)]
Jo

which approaches zero by Stirling's formula and Lemma 3.
Consider now the integral over the interval from — oo to 0. Inte-

grating by parts, we find that it is equal to
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kl J —

where F(z)=l φ(u)du. Note that, by the assumption on F(z),

which is in turn equal to or less than

The result of the integration by parts may be written as the dif-
ference between two integrals, the first containing z*'1 and the second
containing zk. The first integral is no greater in absolute value than

7*fc+2fO
•V \ I st — i [ v~(J(~ i 7.s\7.εΠ.+αO icXΛcI'Z

kl

Since ε(2 + α ) > l , the coefficient of z in the exponent above is
positive for sufficiently large k. Therefore, after some manipulation,
this upper bound can be shown to be equal to

A &fc+2 Γ(k)
*) kl ' \d\

which approaches zero as k -> oo.
By the same argument, the second integral approaches zero, so that

For /£4), observe that since zexv(-z) is a decreasing function of z
for z > l , the expression has the following upper bound for its absolute
value :

^ + - [ 1 +<?(&, ε)] fcexp[—k — kδ(k, ε)]\ \φ[(c + ks)z—k*]\dz .
kl Ji+δ(fc, ε)

Since the integral is bounded, the whole upper bound approaches zero
by virtue of Stirling's formula and Lemma 1.

We now prove that

for any ^ > 0 . By Lemma 2, it is sufficient to show that

λ.fc + iΓl+δ(Λ;,ε) γj

lim -I \Φί(c + kz)z—ks] — φ(c)}zk exp ( — kz)dz <-£-
kl Ji 2
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Since c is a continuity point of φ(u), there is a δ^>0 such that if
\(c + kΈ)z-ks-c\<δ, that is, if |s-l|<<S(ft, e), then

For such a δ, the absolute value of the expression above is equal
to or less than

jUfc+ifi+δ(*,ε) γ,

rj lim — — l zk exp (— kz)dz = -*- .
ft! Ji 2

By the use of Lemma 4, it may be shown in a similar way that

Putting tog ether these results, we have |lim/Λ — Φ(c)\<^η for any
0, which proves the theorem.
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