A REAL INVERSION FORMULA FOR A CLASS OF BILATERAL LAPLACE TRANSFORMS

William R. Gaffey

1. Introduction. The Post-Widder inversion formula for unilateral Laplace transformations [1] states that, under certain weak restrictions on $\phi(u)$,

$$
\lim _{k \rightarrow \infty}\left(\frac{k}{c}\right)^{k+1} \frac{1}{k!} \int_{0}^{\infty} \phi(u) u^{k} \exp \left(-k \frac{u}{c}\right) d u=\phi(c),
$$

for any continuity point c of $\phi(u)$.
This formula applies when $\phi(u)$ is defined only for $u \geqq 0$. A similar formula may be deduced if $\phi(u)$ is defined for $u \geqq-a$, for some positive a. In such a case, we may let $\phi^{*}(u)=\phi(u-a)$, and we may then use the Post-Widder formula to determine $\phi^{*}(u)$ at the point $u=c+a$. The inversion formula then becomes

$$
\lim _{k \rightarrow \infty}\left(\frac{k}{c+a}\right)^{k+1} \frac{1}{k!} \int_{0}^{\infty} \phi(u-a) u^{k} \exp \left(-k \frac{u}{c+a}\right) d u=\phi(c),
$$

or, if we make the transformation $z=u /(c+a)$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{k^{k+1}}{k!} \int_{0}^{\infty} \phi[(c+a) z-a] z^{k} \exp (-k z) d z=\phi(c) . \tag{1}
\end{equation*}
$$

This suggests that, if $\phi(u)$ is defined for $-\infty<u<\infty$, some sort of limiting form of (1) applies. We shall prove that under suitable restrictions on ε and on the behavior of $\phi(u)$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{k^{k+1}}{k!} \int_{-\infty}^{\infty} \phi\left[\left(c+k^{\varepsilon}\right) z-k^{\varepsilon}\right] z^{k} \exp (-k z) d z=\phi(c) . \tag{2}
\end{equation*}
$$

2. Remarks. In the following sections $\phi(u)$ will be assumed to be integrable over the interval from $-\infty$ to ∞, and c will be assumed to be a continuity point of $\phi(u)$. All limits should be understood to be for increasing values of k.

The expression $\delta /\left(c+k^{\varepsilon}\right)$, where δ and ε are positive numbers, occurs frequently. It will be denoted by $\delta(k, \varepsilon)$.

Finally, it may be noted that in terms of the Laplace transform of $\phi(u)$ for real t,

Received December 7, 1955, and in revised form April 13, 1956.

$$
f(t)=\int_{-\infty}^{\infty} \phi(u) \exp (-t u) d u,
$$

the inversion formula (2) may be written in the form

$$
\lim \frac{(-1)^{k}}{k!}\left(\frac{k}{c+k^{\varepsilon}}\right)^{k+1} \frac{d^{k}}{d t^{k}}\left[f(t) \exp \left(-t k^{\varepsilon}\right)\right]_{t=k /\left(c+k^{\varepsilon}\right)}=\phi(c) .
$$

3. Preliminary proofs. The results of the following four lemmas will be needed below. Proofs are given for the first two. The second two are proved in a similar way.

Lemma 1. If n is any fixed number and $1 / 3<\varepsilon<1 / 2$, then

$$
\lim k^{n}[1+\delta(k, \varepsilon)]^{k} \exp [-k \delta(k, \varepsilon)]=0 .
$$

Proof. If the logarithm of the expression under the limit sign is expanded in powers of $\delta(k, \varepsilon)$, the sum of two of the terms in the expansion approaches $-\infty$ as $k \rightarrow \infty$, while the sum of the rest of the terms is bounded.

Lemma 2. If $1 / 3<\varepsilon<1 / 2$, then

$$
\lim \frac{k^{k+1}}{k!} \int_{1}^{1+\delta(k, z)} z^{k} \exp (-k z) d z=\frac{1}{2} .
$$

Proof. It is well known [1] that

$$
\lim \frac{k^{k+1}}{k!} \int_{1}^{\infty} z^{k} \exp (-k z) d z=\frac{1}{2} .
$$

Therefore, it is sufficient to show that

$$
\lim \frac{k^{k+1}}{k!} \int_{1+\delta(k, z)}^{\infty} z^{k} \exp (-k z) d z=0 .
$$

Since $z \exp (-z)$ is a decreasing function of z for $z>1$, the above expression is, for fixed k, no larger than

$$
\frac{k^{k+1}}{k!}[1+\delta(k, \varepsilon)]^{k-1} \exp [-(k-1)(1+\delta(k, \varepsilon))] \int_{1+\delta(k, \varepsilon)}^{\infty} z \exp (-z) d z .
$$

By applying Stirling's formula and Lemma 1, we see that the upper bound approaches zero as k increases.

Lemma 3. If n is any fixed number and $0<\varepsilon<1 / 2$, then

$$
\lim k^{n}[1-\delta(k, \varepsilon)]^{k} \exp [k \delta(k, \varepsilon)]=0
$$

Lemma 4. If $0<\varepsilon<1 / 2$, then

$$
\lim \frac{k^{k+1}}{k!} \int_{1-\delta(k, \varepsilon)}^{1} z^{k} \exp (-k z) d z=\frac{1}{2}
$$

4. The inversion formula.

Theorem. If
(a)

$$
\left|\int_{-\infty}^{-x} \phi(z) d z\right| \leqq A \exp \left(-d x^{2+\alpha}\right)
$$

for some positive quantities A, d, and α, and if
(b)

$$
\max (1 / 3,1 /(2+\alpha))<\varepsilon<1 / 2
$$

then

$$
\lim I_{k}=\lim \frac{k^{k+1}}{k!} \int_{-\infty}^{\infty} \phi\left[\left(c+k^{\varepsilon}\right) z-k^{\varepsilon}\right] z^{k} \exp (-k z) d z=\phi(c) .
$$

Proof. For any $\delta>0$, the infinite interval may be partitioned into the four subintervals $(-\infty, 1-\delta(k, \varepsilon)),(1-\delta(k, \varepsilon), 1),(1,1+\delta(k, z))$, and $(1+(k, \varepsilon), \infty)$. $\quad I_{k}$ may be considered as the sum of four integrals over these intervals, so that we may write

$$
I_{k}=I_{k}^{(1)}+I_{k}^{(2)}+I_{k}^{(3)}+I_{k}^{(4)} .
$$

$I_{k}^{(1)}$ is understood to represent the integral over $(-\infty, 1-\delta(k, \varepsilon))$ etc.

$$
\left|I_{k}-\phi(c)\right| \leqq\left|I_{k}^{(1)}\right|+\left|I_{k}^{(2)}-\frac{\phi(c)}{2}\right|+\left|I_{k}^{(3)}-\frac{\phi(c)}{2}\right|+\left|I_{k}^{(4)}\right| .
$$

We prove first that $I_{k}^{(1)}$ and $I_{k}^{(4)}$ approach zero as $k \rightarrow \infty$. For $I_{k}^{(1)}$, consider first the integral over the interval from 0 to $1-\delta(k, \varepsilon)$. The function $z \exp (-z)$ attains its maximum at the upper endpoint. Therefore an upper bound for the absolute value of this portion of the expression is

$$
\frac{k^{k+1}}{k!}[1-\delta(k, \varepsilon)]^{k} \exp [-k+k \delta(k, \varepsilon)] \int_{0}^{1-\delta(k, \varepsilon)}\left|\phi\left[\left(c+k^{\ell}\right) z-k^{\varepsilon}\right]\right| d z
$$

which approaches zero by Stirling's formula and Lemma 3.
Consider now the integral over the interval from $-\infty$ to 0 . Integrating by parts, we find that it is equal to

$$
-\frac{1}{c+k^{\varepsilon}} k^{k+2} \int_{-\infty}^{0} F\left[\left(c+k^{\varepsilon}\right) z-k^{\varepsilon}\right] z^{k+1}(1-z) \exp (-k z) d z,
$$

where $F(z)=\int_{-\infty}^{z} \phi(u) d u$. Note that, by the assumption on $F(z)$,

$$
\left|F\left[\left(c+k^{\varepsilon}\right) z-k^{\varepsilon}\right]\right| \leqq A \exp \left[-d\left\{-\left(c+k^{\varepsilon}\right) z+k^{\varepsilon}\right\}^{2+\alpha}\right]
$$

which is in turn equal to or less than

$$
A \exp \left[d z\left(c+k^{\varepsilon}\right) k^{\varepsilon(1+\alpha)}\right] .
$$

The result of the integration by parts may be written as the difference between two integrals, the first containing z^{k-1} and the second containing z^{k}. The first integral is no greater in absolute value than

$$
\frac{A}{\left(c+k^{\varepsilon}\right)} \frac{k^{k+2}}{k!} \int_{-\infty}^{0}\left|z^{k-1}\right| \exp \left[z\left\{d\left(c+k^{\varepsilon}\right) k^{\varepsilon(1+\alpha)}-k\right\}\right] d z .
$$

Since $\varepsilon(2+\alpha)>1$, the coefficient of z in the exponent above is positive for sufficiently large k. Therefore, after some manipulation, this upper bound can be shown to be equal to

$$
\frac{A}{\left(c+k^{\varepsilon}\right)} k^{k+2} k!\cdot \frac{\Gamma(k)}{\left[d\left(c+k^{\varepsilon}\right) k^{\varepsilon(1+\alpha)}-k\right]^{k}},
$$

which approaches zero as $k \rightarrow \infty$.
By the same argument, the second integral approaches zero, so that $\lim I_{k}^{(1)}=0$.

For $I_{k}^{(4)}$, observe that since $z \exp (-z)$ is a decreasing function of z for $z>1$, the expression has the following upper bound for its absolute value:

$$
\frac{k^{k+1}}{k!}[1+\delta(k, \varepsilon)]^{k} \exp [-k-k \delta(k, \varepsilon)] \int_{1+\delta(k, \varepsilon)}^{\infty}\left|\phi\left[\left(c+k^{\ell}\right) z-k^{\varepsilon}\right]\right| d z .
$$

Since the integral is bounded, the whole upper bound approaches zero by virtue of Stirling's formula and Lemma 1.

We now prove that

$$
\left|\lim I_{k}^{(3)}-\frac{1}{2} \phi(c)\right|<\frac{1}{2} \eta
$$

for any $\eta>0$. By Lemma 2, it is sufficient to show that

$$
\left|\lim \frac{k^{k+1}}{k!} \int_{1}^{1+\delta(k, \varepsilon)}\left\{\phi\left[\left(c+k^{\varepsilon}\right) z-k^{\varepsilon}\right]-\phi(c)\right\} z^{k} \exp (-k z) d z\right|<\frac{\eta}{2} .
$$

Since c is a continuity point of $\phi(u)$, there is a $\delta>0$ such that if $\left|\left(c+k^{\varepsilon}\right) z-k^{\varepsilon}-c\right|<\delta$, that is, if $|z-1|<\delta(k, \varepsilon)$, then

$$
\left|\phi\left[\left(c+k^{\varepsilon}\right) z-k^{\varepsilon}\right]-\phi(c)\right|<\eta
$$

For such a δ, the absolute value of the expression above is equal to or less than

$$
\eta \lim \frac{k^{k+1}}{k!} \int_{1}^{1+\delta(k, \varepsilon)} z^{k} \exp (-k z) d z=\frac{\eta}{2} .
$$

By the use of Lemma 4, it may be shown in a similar way that

$$
\left|\lim I_{k}^{(2)}-\frac{1}{2} \phi(c)\right|<\frac{1}{2} \eta .
$$

Putting together these results, we have $\left|\lim I_{k}-\phi(c)\right|<\eta$ for any $\eta>0$, which proves the theorem.

Reference

1. C. V. Widder, Inversion of the Laplace transform and the related moment problem, Trans. Amer. Math. Soc. 36 (1934), 107-200.

University of California, Berkeley

