MINIMIZING INTEGRALS IN CERTAIN CLASSES OF
MONOTONE FUNCTIONS

H. D. BrRuNg, G. M. EwINGg AND W. R. Utz

1. Introduction. This paper is concerned with the existence,
uniqueness and representation of minimizing functions. It includes
many results of [1] and [2]. Applications are discussed in [3].

The authors are indebted for various ideas to W. T. Reid with whom
Brunk and Ewing collaborated in a study [2] of a particular integral (1.4)
in the one-variable case. Also, the authors wish to acknowledge the
helpful suggestions of the referee.

Extension to n variables and to more general integrands is of inter-
est per se and is motivated by a variety of problems.

For example, let x (y) be the random variable, maximum dilution
(that is, unity minus concentration) of an insecticide I (J) which is lethal
to an insect from a given population. Then

p(x, y)=Pr {x>2z or y>y}

is the probability of death for an insect similtaneously dosed with re-
spective dilutions «, y of I, J. Moreover

(1.1 F(z, y)=1-p(, y)=Pr {x<a and y <y},

is the probability of survival and is a distribution function [5; pp. 78,
260]; hence p(xz, y) is nonincreasing in each variable and for each point-

pair (z, v), (@, ¥),
(1.2) Lp=p', y)—pE', y)—p, ¥)+p y) <0 .

For each of selected pairs (x;, y,) let 4y, insects be dosed and let «;
denote the fraction of the sample which is killed. The maximum likeli-
hood estimate P(z, y) of »(x, y) is that function, subject to the restrie-
tions stated above, which maximizes the product

(1.3) IT o3 %5205 (1 =) %P5, Diy=0(2;, Y;) .

Equivalently, P(z, y) minimizes the integral

(1.4) —S[a log p-+(1—a) log (1—p)dy

in which g describes the mass distribution consisting of masses 4y, at
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the respective points (,, ¥,) and no mass elsewhere.

Other problems, for example, [3, p. 610] require only that the
function P(x, y) minimizing (1.4) be monotone in each variable and not
that it satisfy (1.2). As a further example of this type, suppose
that «(t), t=(, ---, t"), not necessarily monotone in any ¢#, is a given
approximation to 6(¢) a function required to be monotone in each vari-
able. The least squares determination O(t) of #(¢) minimizes the integral

{1806 - atenanc) .

2. Formulation and preliminary lemmas. Given a fixed positive
integer n and the space R, with points t=(¢, - - -, t*), let # be a measure
defined on a Borel field <# of subsets of R, which is totally finite, that
is, B,€ 7, p(R,) < oo, and complete, thatis, if A C Ee &% and p(E)=0,
then Ae &7 and p(A)=0. The term measure will mean pg-measure un-
less otherwise specified, measurable set will mean a set in <7, and
measurable funclion a p-measurable function. In particular g can be a
finite Lebesgue-Stieltjes measure.

Let I be a fixed nondegenerate interval of extended real numbers
which includes its endpoints ¢ > — oo, b <l 0. Let F(u, v) be an extended
real-valued function for u, v eI subject to the following conditions.

(2.1) If «a(t), 0(t) with ranges in I are both measurable then so is
F'la(t), 0@)]1.

(2.2) For fixed u in I, either (i) F(u, v)=c for v~u, with F(u, u) < o
or (ii) F(u, v) is strictly deereasing (increasing) in v for a < v <u(@<v<b)
and right (left) continuous in v for a<v<u(w <v< b). (See (5.3) to
(5.6) for examples.)

2.3) Sﬂmmmmwm>~w.

For fixed «(t) and arbitrary 6(¢) with ranges in I and both measur-
able define

2.4) J[0]— SF[a(t), O(E1d () .

Let M denote the class of all measurable functions 0(¢) with ranges
in I such that J[0] exists finite or infinite and such that 6(¢) is non-
decreasing in each coordinate ¢ of ¢. Define M* as M if n=1 and, for
n>1, let M* consist of those 6(t) in M with the property that the
difference 460, defined as in (1.2) for each pair ¢, ¢/, (with the other
variables fixed for each choice of ¢, j) shall be nonnegative in the com-
plement of the closure of the set on which 6(tf)=c or 0(f)=—co. The
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principal problems of this paper to minimize J in M and in M*.

The methods apply, with suitable small changes, to problems like
that of §1 in which (1.2) is required with < instead of > and in which
admissible functions are nonincreasing in the separate variables.

The relation ¢, <¢, means that ¢! <¢, i=1, ---, n while ¢, <¢, means
that # <ti for each 7. Given a point » consider intervals of the types
(t:t<wv) and (¢:t<w). A measurable set L which is a union of inter-
vals of the first and (or) second of these types is termed a lower layer.
A measurable set L is then a lower layer if and only if ve L and ¢t <w

imply ¢e L. An upper layer U is similarly defined. The complement
L of a lower layer L is an upper layer. If L is not void the common
boundary of L and L is called a monotone graph. Given a lower layer
L and an upper layer U the measurable set UL=L—U is termed a
layer. For m=1, a layer is an interval of the reals which may be void,
degenerate or of positive length and, in the latter case, may include
either, neither, or both of its endpoints. The layer is the natural ex-
tension (for the purposes of this study) of the notion of interval. A
monotone graph is connected and is a layer but, for »n>>1, a layer need
not be connected.

LEMMA 2.1. Let & denote the union of all open sets of measure 0.
Then (7)=0 and given t& 7, every layer containing a neighborhood of
t has positive measure.

LeMMA 2.2. If 60(t) is measurable and monotone nondecreasing in
each variable t', then the set of points t, for which 0(t) is on a given
finite or infinite interval of the reals, is a layer.

The proofs of these lemmas are easy.

LeMMA 2.8. If 0(t) is monotone nondecreasing in each variable t',
the discontinuities of 0(t) lie on a countable set of monotone graphs.

This result is Theorem 7 in [4].
LEMMA 2.4. A monotone graph is of Lebesgue measure 0.

Proof. The metric density is less than unity at each point of a
monotone graph. Alternatively, observe that a line with direction num-
bers (1, -+, 1) cuts a monotone graph in exactly one point and use
Fubini’s Theorem.

3. Existence theorems. Denote the respective infima of J in M,
M* by 7, 7"
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LemmA 3.1. If 0@t), g=1, 2, ---, is a sequence in M*, there ewists
o subsequence 0)(t) of 0,(t) and 0(t)e M* such that lim 0}(t)=0(t) except
at most on two monotone graphs.

Theorem 3 of [4] establishes this result. The exceptional sets, de-

noted by 4 and 2, are respectively boundaries of layers on which
0(t)=— o, .

LEMMA 8.2. If n=1, then any sequence in M=M%* contains a sub-
sequence converging everywhere on R, to a function 0(t) in M=M*.

Proof. If n=1 each of the sets A4, 2 is either void or consists of
a single point; hence the sequence 6F(¢) can be further refined to yield
convergence (possibly to c or — o) everywhere on R,.

THEOREM 3.1. EXISTENCE THEOREM FOR M?*. There exists a func-
tion O(t) in M™* such that J[O@]=7*.

Proof. Attention is confined to the nontrivial case 7* <. Let
0,t) be a sequence in M* such that lim J[0,]=r*. By Lemma 3.1 we
may suppose that 6,(¢) converges, for te R,—A\J 2, to O(t)e M*. Let
0. (@)=lim inf 0,(¢), 0*(¢)=Ilim sup 0,(¢). Extend O(¢) to A\J 2 by the defi-
nition,

=a(t), if 0,0¢)=<a@)<0%Q1),
(3.1) O@)] =0.¢), if a@)<0.1),
=0*t), if «a(t)>0%@F).
Clearly @(t) is measurable. One varifies that @(¢) is in M™.

For fixed ¢, it follows from the definition of @(¢) and property (2.2)
of F that Fla(t), O@)] < Fla(t), v] for 6.(t) <v<<0%¢). Since each
point of accumulation of the sequence 6,(¢) lies in the interval [0,(¢),
0*(t)] we have

Fla(t), 0(t)] < lim inf Fla(t), 6,(¢)] -
From Fatou’s Lemma [6, p. 113; 7, p. 167] it then follows that

J[@]=§F[a(t>, O(t))dp(t) < lim inf gF[au), 0.(H1dxt) ;
hence J[O]=7*.

THEOREM 3.2. EXISTENCE THEOREM FOR M. If n=1 or 2 there
exists a function O(t) in M such that J[@]=r.

Proof. If n=1 the conclusion is contained in that of the preceding
theorem. For n=2, let 6,(¢) be a sequence in M such that lim J[0,]=7,
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By Lemma 3.2 and the usual diagonalization process there exists a sub-
sequence converging at all points with at least one rational coordinate.

Define 6.(t), 0*(t) as in the proof of Theorem 3.2 noting that
0.()=0%t) if ¢ or ¢ is rational. From the density of these points in
R,, 0.(t)=0%(t) at any point ¢ at which both functions are continuous;
hence by Lemma 2.3 everywhere except on a countable set of monotone
graphs. Define #(¢) on the space R, as in (3.1).

If ¢, <t,5~¢t,, the segment with endpoints ¢,, ¢, is ecut by at least
one line on which # is rational or on which ¢ is rational in a point ¢,.
One sees that

O() < 07() < 07 () =0.(t0) < 0,(£) < O(L.) ;

hence that @ is nondecreasing in ¢' and in # and is in M. The
proof can be completed by following that of Theorem 3.1.

The point ¢, essential to the last proof need not exist for n > 2.

A function #(r), r on a finite or infinite interval will be termed a
monotone mondecreasing vector-function if z, > r; implies that &(z,) > (7).
If 6(t) is nondecreasing in each variable ¢ and #(r) has the above pro-
perty, then 6@[{(z)] is nondecreasing in the real variable . Monotone
nonincreasing vector-functions are similar. The graph of a monotone
vector-function is a monotone graph in the sense of § 2 only for certain
cases when n=1 or 2.

In the following theorem we suppose the class of measurable sets
is contained in the class of Lebesgue measurable subsets of B,. These
is then a Lebesgue decomposition [6, p. 134] of x; that is, ¢ is the
sum of a measure « absolutely continuous with respect to Lebesgue
measure 1 and a measure o singular with respect to 2. Thus if A(E)=0,
then a(E)=0 and there is a decomposition of E, into complementary

sets A, A such that A(4)=0 and o(A4)=0.

THEOREM 3.3. EXISTENCE THEOREM FOR M. If p=a-+o 4s the
Lebesgue decomposition of the given measure p, and if the mass in R,
described by the singular part o all lies on the graphs of @& counterable
set of monotone vector-functions, then there exists a function O(t) in M
such that J[@]=r.

This theorem applies in particular if o describes a discrete mass
distribution or if ¢ is Lebesgue measure. The proof, along lines similar
to those followed in preceding theorems, is omitted.

4. Integrands generated by convex functions. The class of problems
for which we are able to give more complete results in this section is
more restricted than that of §3. We are moreover primarily interested
in cases in which the minimum of J in M is finite. It is convenient
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to introduce .~ to denote the subset of M consisting of those 6 in M
such that J[6]< . Results of this section are for the minimum pro-
blem in _# only.

Let I again denote a fixed nondegenerate interval of extended reals
which includes its endpoints a~> — o and b . Let 7(z) be a con-
tinuous convex function of the real variable z on the interior 1, of I.
The derivative 7(z) exists except on a countable subset of I, and it
seems convenient to extend 7/(z) to I, by assigning it the value of the
left derivative at each point of I,, thereby making 7(z) left-continuous

on I;. The extended real-valued function F(u, v) is defined as follows:
(4.1) F(u, v)=T(u)—T(v)—(u—v)T"(v), u,vel,.

The right member of (4.1) has an obvious interpretation in terms of the
tangent to the graph of 7(z). Fl(u, v) is extended to IxI by the ad-
ditional definitions

(4.2) F(a, v)= %‘13} Flu, v) , ve (a, b) ,
F(b, v)= E.Hbl F(u, v) , v € (a, b),
F(u, a)= 71)1151 F(u, v), ue(a, b],
F(u, b)= 1}1_1’1;1 Fu, v), wela, b),

One verifies that, for u, vel,,

(4.3) P, v)=S' (e-wdT'@), i ou<w,
=-S( (—0dT" (), it u>v,
=0 if u=w.

Essentially such functions F' generalizing the particular integrand
of [2] have been suggested independently by Reid.

Such functions F arise in connection with the applications (cf. ex-
amples in § 1, also [3], where exp {—F'[g(x), 6]} is the density function,
with respect to a measure, of a random variable whose distribution be-
longs to the exponential family). F as defined above is nonnegative,
and has properties (2.1) and (2.2) (except that F' need not be right-
continuous in v for a < v < u and F is strictly monotone in » for v <<u
and for v>u only if T is strictly convex).

We again let ¢ denote the generic point in R,, let # denote a totally
finite complete measure on the given Borel field <7, and let «(t) denote
a given integrable function with range in I such that 7'[«(¢)] is inte-
grable, It follows that J[0] <« when 0(t)=6,, 0, a constant in I,, so
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that 0(t)=0,e 7.
For a measurable subset 4 or B, we define

(4.4) J10; A1=| Flatt), 0e1duc)

(4.5) M(A)=SAa(t)d/l(t)/ﬁ(A) ,Af p#(A4)>0.

THEOREM 4.1. Let v be a finite signed measure on the class of
measurable subsets of R,, absolutely continuous with respect to p. Then
there exist an upper layer P and a lower layer N such that

(i) »(PL)>0 for every lower layer L such that p(PL)>0;

(ii) W(UP) <0 for every upper layer U ;

(iii) »«(UN) <O for every upper layer U such that p(UN)>0;

(iv) u(NL)go Jor every lower layer L.

Proof. The proof is an adaptation of that of the Hahn-Jordan de-
composition theorem [6, p. 121] and will simply be sketched here in
broad outline. Let ./~ denote the class (a class of sets having a non-
positive property) of lower layers L such that »(UL) <0 for every upper
layer U. Choose a sequence of lower layers in .7~ whose measures

approach = sup #(L); one readily verifies that their union, P, is a
Lex

maximal element of .#"; that is, P belongs to .7~ and has measure 8.
Thus the lower layer P has the nonpositive property (ii). It is possible

that the void set is the only element of ./, in which event 15=<,f>. We
shall now show that P, the complement of P, has also the positive
property (i). Suppose the contrary. Then there is a lower layer 7> P
such that »(PT) <0, while #(PT)>0, so that T¢ .4 (since P is max-

imal). Hence there is an upper layer U C P, U > T, such that w(UT)>0.
One may then determine an expanding sequence (as in the proof in [6],
pp. 121-122, of the existence of a Hahn decomposition) U,, +=1,2, ---,

of upper layers, contained in P and containing 7', whose limit, U*, has
a complement, U*, belonging to .#; while

V(UiUi—1)=V(Ui-Ui~1)> 0, 1=1,2,--+; U=T.

From the maximality of P it follows that ,U(PU' *)=0, whence »(PU*)=0.
On the other hand,

U*T)= 3 U= Ui >0,
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so that .(PT) >0, a contradiction. Thus P does indeed have the posi-
tive property (i). The determination of a lower layer N, possibly void,
with the desired properties follows similarly on the introduction of a
class & of upper layers U such that »(UL)Z=>0 for every lower layer L.
For each real x, define a lower layer N, and an upper layer P, as the
lower and upper layers N and P given by Theorem 4.1 corresponding
to the signed measure

V(A)—‘:L[“(t)—x]dﬂ(t) :

As a consequence of Theorem 4.1 applied to this signed measure, we
have for upper and lower layers U and L,

MP,Ly >« if wu(P,L) >0,
(4.6) M(UP,) <z if p(UPB) >0,
M(UN,) <z if p(UN,)>0,
M(N,L) =z if p(N,L) >0,
LEMMA 4.1, If 4 is an index set and A,, 1€ 4, is & fomily of

measurable subsets of R, such that p(A,A,)=0 for Assc2e€ 4, then
p(A,)=0 except for at most a countable subset of A.

Proof. If the lemma is false then there is a positive number € and a
sequence of sets of the family {4,, 1e 4}, each having measure greater
than €. It follows from the hypothesis

p(AA,)=0 for Asoz~1ed

that the usual technique of replacing the sets of a sequence by mutually
disjoint sets while preserving their union yields a sequence of disjoint
sets each having measure greater than e, so that their union has in-
finite measure, contradicting the property of g of being totally finite.

COROLLARY 4.1. p(P,N,)=0 for every real x and p(Nj’x)=O for all
but a couniable set of real numbers zx.

Proof. If w(P,N,)>0, the first and third relations (4.6) yield the
contradiction « < x. It can be seen as follows that the second conclusion
is a consequence of Lemma 4.1. Since

NP, N,P,CN,P,,

it follows that when z <y and p(N,P,) >0, then y << M(N,P,) <z, which
is a contradiction. It follows that
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for x£y.

It is convenient to determine the upper and lower layers P, and
N, so that

4.7) NICECNy for <y (or P,DNyDPy for x <vy),
(4.8) Nxz U Ny ’ Pz:= U Py .
< y>x

Let E denote the countable set consisting of reals r which are rational
or for which /1(1\7,?,.)>0. It can be shown that

Ni= U (N,UPB), P:=\J N (N,N\P),

Borlz y>v Bor=y

have properties (4.7) and (4.8) and that relations (4.6) hold with N,
P¥ in place of N,, P,. We shall understand from here on that this
replacement has been made, but shall omit the asterisks.

Let us define #(¢) as the infimum of those « such that teP,.

LEMMA 4.2.
4.9) O(t) >x if and only if teP,.
(4.10) o)<z if and only if teN,.
(4.11) O@t)=x if and only if te(N,P,) .
(4.12) o(t) = tsupzw .

Proof of (4.9). From its definition, O(t) <« if t¢ P,. If 0(¢)=uz, >z,

then te P, for y<x,; hence e \>J P,=P,.
vy ox

Proof of (4.10). If t¢N,, then te P, for each y < x; hence

Ot)=infy>=x.
i Py

If te N,=\JN,, there exists y,< a such that te N, for y—>y,; hence
<@
te P, for y>v,; hence

o@t)=inf y<y,<w.
t¢ Py }

Relation (4.11) follows from (4.9) and (4.10).
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Proof of (4.12). Set 0,(t)= supx. Arguments similar to the above
t& N,

show that 0.,(¢) satisfies (4.9), (4.10;, (4.11) ; hence that 6(t)= 0.(t).
We remark that, for e 7,

Mit: 60) <z<0@)} <z, Mit: O()=2>00)} =2,

provided that the measures of these sets are positive. Each strict in-
equality between z and 6(¢) in these statements may be replaced by the
corresponding weak inequality.

LEMMA 4.8. If 0(t)e 7, if E is a measurable set, if a, is @ sequence
of real numbers strictly decreasing to a (b, & Sequence strictly increasing
to b), iof 0,(t)=max[0(¢), a,] (min[6(t), b,]), then 0,(t)e #Z, n=1,2, -+,
and lim J[0,; E]1=J[0; E1].

Proof We recall that the function of ¢ assuming the constant value
a, is in .7, and that, as a function of v, F(u, v) is nondecreasing for
v >u and nonincreasing for v <u. Since

0(t) < 0,(t) < 0,(¢)= max [0(?), @] ,
we have

0 < Fla(t), 0.(t)] < max {F'[a(t), 6()], Fle(t), 0.(8)]}
= max {F[a(t), 00)], Fla(t), a.]} .

The functions F[a(?), 0(t)], F[a(t), a,] are integrable ; so then is the
function max {F[a(?), 0(t)], Fla(t), a,]}. Also

lim 0,(¢)=0(¢), lim Fla(t), 0.(6)]=F[a(?), 0(2)],

and by the dominated convergence theorem, limJ[6,; E]=J[0; E].

LEMMA 4.4. Given &', 0" € 7, let
E={t: 0@)<<0"(t)} and E@)={t: 0@)<z<0"(t)} .
Then

IO E1=J10; B1={ | {e=MEG)} rEGNATG) -

Proof. Let a, and b,, n=1, 2, ---, be sequences strictly decreasing
and increasing to the endpoints o and & of I repectively. Set

0,(t)= max [0'(¢), @,] , and 6 (t)= min[0"(¢), b,],
n=1,2,---. We have
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J107; B1=J10,: E)=| (Fla®); 0,01 Flatt); 0,1} du

=S d/zS [2—a()]dT(2) .
o o e,00)

For fixed n, set
A= {(zy t) : 0’(t)§2 < 0,/(t> » an-—gz <bn} .

Both z and «(¢) are integrable over A with respect to the product
measure (d,xdT"), so that Fubini’s Theorem permits a change in the
order of integration. We have that

J105; E1=J0,; E1=| | aT'@) | le—a(t)ds

B> O

=S[a b)) {Z—M[E(z)]} /‘[E(z)]dT’(z) .

Applying Lemma 4.3 and taking limits as » — « we obtain the desired
conclusion,

THEOREM 4.2. 6(t) minimizes J in A,

Proof. For 6(t) in _~, set
B,={t: 6(t) <0@)} ,
B,={t: 6(t) > 6(t)} ,
B,={t: 6(t)=0(t)} .
Then
J[@]=2J[O; B;]

and similarly for J[¢]. We have J[0; B,]—J[0; B;]=0. In Lemma 4.4
set @=0, 0=0" so that E becomes B, and FE(z) becomes that set
{t: 0@)<z<60(t)}. From Lemma 4.2 (see remark preceding Lemma
4.8) it follows that M[E(z)] <z if p[E(z)]>0; hence from Lemma 4.4
that

(4.13) J[0; B]]—-J[@; B]=>=0.
Now set #=0", §=0¢ in Lemma 4.4 and then E=25, and
Ez)={t: 8(t) >z=0(t)} .

Again, from Lemma 4.2, M[E(2)] >z if p[E(2)]>0; hence, from Lemma
4.4,
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(4.14) J[0; B,]—J[6; B,]=0 .

Adding (4.13) and (4.14) we find that J[0]—J[0]=>=0, completing the
proof.
By (4.11), the minimizing function @(¢) assumes a given value « on

the layer N,P,. In calculating for specific examples it is useful to ob-
serve as a consequence of equations (4.6) that if x(N,P,) >0 then N,P,
is the maximal layer among layers N,OL over which the mean is minimal:

M(N,P,)=2 < M(N,L)

if p(N,L)>0; while if N,L> N,P, and if M(N,L)=M(N,P,), then N,L
and N,P, differ by a set of measure 0. Similarly N,P, is the maximal

layer among layers UP, over which the integral mean of a(t) is maximal.

We term the subset of a neighborhood of a point %, consisting of
points £>1%,, an wupper neighborhood of t, and the subset consisting of
points ¢ < %,, a lower neighborhood of t,. Let & denote the set of
points each of which has an upper or a lower neighborhood in ¢ (de-
fined in Lemma 2.1); &> 2.

THEOREM 4.3. REPRESENTATION THEOREM. If, given e >0, we have
HUN,,.) >0 for every upper layer U containing a given point t,, and
HM(P,_.L) >0 for every lower layer L conlaining t,, where c=0(t,), then

(4.15) 6(t,)= sup inf M(UL),
U>s to L3y ti)

(4.16) O(t,)= inf sup M(UL),
L3, U3,

(4.17) 6(t,)= sup inf M(UL) ,
Usty L

(4.18) 6(t,)—= inf sup M(UL) .
Lato U

In particular (4.15), ---, (4.18) hold if t, is a mass point of p or if t, s
a point of continuity of O(t) not in .

We note that the measure of <" is 0, and that the Lebesgue meas-
ure of &7-¢” is 0. Further, since #(z)e ., its discontinuities lie on a
countable set of monotone graphs (Lemma 2.3.). Theorem 4.3 thus gives
almost everywhere representations of @(¢), provided that x is absolutely
continuous with respect to Lebesgue measure, or provided that the
Lebesgue singular part of ¢ concentrates its mass at a countable number
of mass points. In general, these representations need not be valid almost
everywhere.
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Proof of (4.15) and (4.17). Given U3¢, and given e >0, then
#(UN,,.) >0 by hypothesis, so that by (4.6), M(UN,,.) < c+e. Hence

(4.19) inf M(IUL)<¢, if Ust,
Lato
and also
(4.20) inf M(IUL)<c¢ if Ust,.
L

Further, if p#(N,L)>0, then by (4.6), M(N,L)>c¢. But N,st, and
hence relations (4.15) and (4.17) follow respectively from (4.19) and
(4.20).

Relations (4.16) and (4.18) may be proved similarly.

We note that under the hypotheses of Theorem 4.3, if «(¢) is mono-
tone nonincreasing in each argument, then the constant function

o(t) = Sadﬂ / Sdp

minimizes J in M and also in M*. If «(¢) is in the class M(M*) then
clearly 6(¢)= «a(t) minimizes J in M(M*), even under the less restrictive

conditions of F in §§ 2 and 8.

5. Uniqueness theorems. By the relation 6(¢) = 6(t), we mean that
equality holds almost everywhere.

THEOREM 5.1. Under the conditions of § 4, if T(z) is strictly convex
(that is, T'(2) 1s strictly increasing) on I, and f 6(t) and 6(t) both mini-
mize J in %, then 0(t) = 6(t).

Proof. The set {t: 0(t)%6(t)} is the union over all rationals »,
Uft: ) <r <06\ {E: 0¢t) <r <O()} .

It suffices to prove that each of these sets has measure zero. Suppose
there is an r, such that p{t: 6@) <r,<0(t)} >0. Then there exists

z, such that, for 7, <2<z, p{t: 6() <z<0()} >0. Asa consequence
of Corollary 4.1, #{t: O(t)==z}=0 for all but a countable set of z, hence

M{t: 6(t) <z<0@)}=M{t: 6(t) <z 0@1)} <=z

except for a countable set of z between 7, and z,. It follows from
Lemma 4.4 that

JI0; B]>J[O; B,  B={t: 6()<6@)} .

Similarly, if
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pit: 0(t) <r,<6@)} >0,
then

J10; B]>J[0; B], B,={t:0()>001)},

and hence J[0]>J[#], contradicting the hypothesis that J[6]=J[O].

If 7'(z) is not strictly increasing on I the above conclusion need
not hold. For example if 0 is interior to I and 7()=0 or z according
as 2<0 or >0, then if @(t) minimizes J, any distinct admissible funec-
tion 6(t), agreeing everywhere in sign with @(¢), also minimizes J.

The next theorem applies either to problems covered by §3 or to
problems based on an integrand (4.1), and to both the minimum problems
in M and in M*.

If 6(t) and 0(1) are both in M or both in M*, then

0.(6)=06(t) +2[0(t)—6(t)]

is in M (M*) for 0 <{z=<1. Setting Z(z)=J[0,] we find that

(5.1) f"(z)=j(0~@>2Fw(a, 0.)dp ,

provided the formal differentiation is valid. Moreover if 6 minimizes J
in M (M*), it _Z(0) exists, and if Taylor’s formula is applicable, then

(6.2) JO1-J0]=_F)-_F(0)=_F(1)~ _F(0)-_ 7 '(0)=_7"(0)2,
0.

THEOREM 5.2. If (5.1) and (5.2) are walid, if, for each z on the
unit interval F,[a(t), 0(t)] is positive for almost all ¢, and if 6(t) and
O(t) both minimize J in M or both minimize J in M™*, then 0(t) = O(t).

The last two theorems apply in particular to integrands given by
(4.1) and (4.2) in terms of any one of the convex functions

(5.3) T(z)—zlog z+(1—2) log (1—2), ze I,=(0,1),
(5.4) T(z)—2" ze Iy=(—co, o),
(5.5) T(z)=z—logz ze I,—(0, =),
(5.6) T(z)=zlog 2 , ze I,=(0, ).

Applications of these examples in mathematical statistics are discussed
in [3]. Each of these examples is covered by the hypotheses of § 3 and
of §4. It is easy to find suitable sufficient conditions for the validity
of (5.1) and (5.2) in each case.
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