A THREE POINT CONVEXITY PROPERTY

F. A. Valentine

There exist an interesting variety of set properties determined by placing restrictions on each triple of points of the set. It is the purpose here to study those closed sets in the n-dimensional Euclidean space E_{n} (in particular the plane E_{2}) which satisfy the following condition.

Definition 1. A set S in E_{n} is said to possess the three-point convexity property P_{3} if for each triple of points x, y, z in S at least one of the closed segments $x y, y z, x z$ is in S.

The principal result obtained in this paper appears in Theorem 2. In order to achieve this result a series of lemmas and theorems is first established. Most of these are also of independent interest.

1. Closed connected sets in $E_{n}, n \geqq 1$. In this section we assume that S is a closed connected set in $E_{n}, n \geqq 1$. The concept of local convexity is a useful one for our purpose, so we restate the well-known definition.

Definition 2. A set S is said to be locally convex at a point $q \in S$ if there exists an open sphere N with center at q such that $S \cdot N$ is convex. If a set is locally convex at each of its points, it is said to be locally convex.

Notation 1. The open segment determined by points x and y is denoted by ($x y$), whereas $x y$ denotes the closed segment. The line determined by x and y is denoted by $L(x, y)$. The boundary of a set S is $B(S)$, and $H(S)$ denotes the closed convex hull of S. The symbol + stands for set union, and the symbol - stands for set product.

Theorem 1. Let S be a closed connected set in $E_{n}(n \geq 1)$ which has property P_{3}. Then either S is convex or S is starlike with respect to each of its points of local nonconvexity (It may be starlike elsewhere).

Proof. If S is locally convex, then by a theorem of Tietze [4, pp. 697-707], [2, pp. 448-449], the set S is convex, in which case it is starlike with respect to each of its points. Hence, suppose S is not locally convex, and let $q \in S$ be a point of local nonconvexity. This implies that in each spherical neighborhood N_{i} of q, there exist points

[^0]x_{i} and y_{i} of S such that $\left(x_{i} y_{i}\right) \cdot S=0$ (see Notation 1). Choose any point $x \in S$. Property P_{3} implies that either $x y_{i}$ or $x x_{i}$ is in S. If the radius of N_{i} is $1 / i$, then as $i \rightarrow \infty$ the set $x x_{i}+x y_{i}$ converges to $q x$, which then must belong to S. This completes the proof.

Remark 1. The set of all starlike points of a set S is called the convex kernel of S. The convex kernel of a set $S \subset E_{n}$ is convex. See Brunn [1].

Corollary 1. Each point of local nonconvexity of the set S in Theorem 1 is contained in the boundary of the convex kernel of S.

Corollary 2. For the set S above, let H be any r-dimensional plane section of S, where $(1 \leqq r \leqq n-1)$. Then either $H \cdot S$ is starlike or $H \cdot S$ consists of two convex components.

Proof of Corollary 2. If $H \cdot S$ is connected, then since $H \cdot S$ has property P_{3}, Theorem 1 implies $H \cdot S$ is starlike. If $H \cdot S$ is not connected, property P_{3} implies trivially that $H \cdot S$ consists of two and only two components, each of which must be convex.

Corollary 3. Each component of the complement of S is unbounded. This is an immediate consequence of the starlikeness of S.
2. Closed connected sets in E_{2}. We restrict ourselves to closed connected sets in E_{2} in this section, and the following definitions are useful.

Definition 3. A component of the complement of a closed connected set S is called a residual domain of S. A cross-cut xy of a residual domain K of S is a closed segment such that $x \in S, y \in S$ and $(x y) \subset K$ (See Notation 1).

Definition 4. An isolated point of local nonconvexity of S is called a p-point. A point of S which is a p-point or a limit point of p-points is called a q-point.

Lemma 1. Each open segment (uv) of the convex kernel of S contains no q-points of S. (see Corollary 1).

Proof. Suppose w is a q-point contained in (uv). Clearly $S \not \subset L(u, v)$ (see Notation 1). Choose $z \in S-L(u, v)$. Since $u v$ belongs to the convex kernel of S, we have triangle $u z v \subset S$. But this implies that each sufficiently small neighborhood of w contains no cross-cuts of the com-
plement of S, since such a cross cut $x y$ would have to have its interior ($x y$) in one of the open half-planes bounded by $L(u, v)$.

Lemma 2. Let S be a closed connected set in E_{2} having property P_{3}. Then if S is not convex, it contains at least one isolated point of local nonconvexity.

Proof. Let $x y$ be a cross-cut of a residual domain K of S. Since S is closed and connected, the set $K-(x y)$ is the union of two mutually exclusive open sets, denoted by K_{1} and K_{z} [3, p. 118]. Since S is starlike, Corollary 3 implies that one and only one of these two sets is bounded. Let it be K_{1}, and denote the boundary $B\left(K_{1}\right)-(x y) \equiv C\left(K_{1}\right)$. The set $B\left(K_{1}\right)$ is a continuum [3, p. 124]. Since K_{1} is a bounded domain, and since $C\left(K_{1}\right) \cdot(x y)=0$, it follows that $C\left(K_{1}\right)$ is a continuum. Define B_{1} to be the set of points $z_{1} \in C\left(K_{1}\right)$ such that $x z_{1} \subset S$, and define B_{2} to be the points $z_{2} \in C\left(K_{1}\right)$ such that $y z_{2} \subset S$. Since $x y \not \subset S$, property P_{3} implies $C\left(K_{1}\right)=B_{1}+B_{2}$. Moreover, $x \in B_{1}, y \in B_{2}$, and moreover B_{1} and B_{2} are each closed since S and $C\left(K_{1}\right)$ are closed. Hence, since $C\left(K_{1}\right)$ is a continuum, it is well-known that $B_{1} \cdot B_{2} \neq 0$. Hence, let $p \in B_{1} \cdot B_{2}$, and we must have $x p \subset S, y p \subset S$, so that K_{1} is interior to triangle xpy. Since $p \in B\left(K_{1}\right)$, it is clear that each neighborhood of p contains a crosscut of K_{1}, so that p is a point of local nonconvexity of S.

To prove that p is an isolated point of local nonconvexity, observe that the lines $L(x, p)$ and $L(y, p)$ determine four V-shaped domains, each bounded by two rays. Order these $V_{1}, V_{2}, V_{3}, V_{4}$ so that $x y p \subset \bar{V}_{1}$, and so that the sets V_{i} are arranged consecutively in a clockwise direction about the point p. Suppose a p-point $p_{1} \in \bar{V}_{1}-p$ exists. Then since $p_{1} x+p_{1} y \subset S$, we would have $K_{1} \subset x y p_{1}$, which would violate the fact $p \in B\left(K_{1}\right)$. Suppose a p-point, say p_{1} exists in V_{2}. But this implies that $x p p_{1} \subset S, y p p_{1} \subset S$. But this again would violate the fact $p \in B\left(K_{1}\right)$. In exactly the same way V_{4} contains no p-point of S. Now consider V_{3}. If p_{1} is a p-point of S in V_{3}, then $y p p_{1}+x p p_{1} \subset S$, which implies that p is an isolated p-point since V_{1} contains no p-point of S. Finally, Lemma 1 implies that no sequence of p-points of S can exist on $L(x, p) \cdot \bar{V}_{3}$ or on $L(y, p) \cdot \bar{V}_{3}$ having p as a limit point. Thus we have shown that p is an isolated p-point of S.

Remark 2. Let $x y$ be the cross-cut in the above proof, and let p be the associated isolated p-point. Then the closed triangle xyp is such that the set xyp.S is the union of two convex sets having only the point p in common. One of these convex sets contains $x p$ and is denoted by $C(x p)$, and the other denoted by $C(y p)$ contains $p y$.

Proof. Let L_{i} and L be lines parallel to $x y$, such that L_{i} separates p and $x y$, and such that $p \in L$. Let H_{i} be the closed half-plane bounded by L_{i} and containing $x y$. Suppose $L_{i} \rightarrow L$ as $i \rightarrow \infty$ so that $H_{i+1} \supset H_{i}$. Since $S \cdot H_{i} \cdot$ xyp is locally convex, by Tietze's Theorem [4, loc. cit.] each of its components is convex. Property P_{3} implies that there are at most two such components. The fact that $x y \not \subset S$, implies there are exactly two such components. Denote them by C_{i} and D_{i}. Clearly $C_{i+1} \supset C_{i}, D_{i+1} \supset D_{i}$, and hence C_{i} and D_{i} converge to convex sets having p in common. They have only p in common, otherwise p would not be a boundary point of K_{1} as defined in the proof of Lemma 2. One of the convex sets contains $x p$ and the other $y p$ so that the notation in the remark is justified.

Definition 5. Let Q be the set of q-points of S.
Remark 3. Corollary 1 implies that Q is contained in the boundary of its own convex hull $H(Q)$, designated by $B(H)$.

Lemma 3. The boundary of $H(Q)$ is connected, and it can contain at most one ray.

Proof. Since $H \equiv H(Q)$ is convex, if $B(H)$ were not connected, it would have to consist of two parallel lines (this is known). However, Lemma 1 would then imply that each of these parallel lines would contain at most two q-points. But this would imply that Q is bounded in which case $B(H)$ would be connected. If $B(H)$ contained two rays, then Lemma 1 would again imply that Q is bounded, which would again be contradictory.

Definition 6. An edge of the boundary $B(H)$ is a closed segment $x y$ or a closed ray $x \infty$ whose endpoints are q-points. An open half-plane whose boundary contains xy(or $x \infty$), and which does not intersect $H(Q)$ is called an open half-plane of support, and it is denoted by W.

Lemma 4. Let W be an open half-plane of support to $H(Q)$, which abuts on an edge xy $(o r x \infty)$. Then $H(Q)+W \cdot S$ is a convex subset of S.

Proof. If $u \in H(Q)$ and if $v \in S \cdot W$, then $u v \subset S$, since S is starlike with respect to u. This, together with the facts $x \in B(S), y \in B(S)$, and property P_{3} imply that $u v \cdot x y \neq 0$ (or $u v \cdot x \infty \neq 0$), so that $u v \subset H(Q)+$ $W \cdot S$. Suppose $u \in S \cdot W, v \in S \cdot W$. Let $z \in(x y)$ or $(x \infty)$. If $(u v) \not \subset S$, since $u z \subset S, v z \subset S$, then triangle $u v z$ would contain a p-point of S (See the first paragraph of the proof of Lemma 2). But this is impossible, since W contains no p-points of S, and since by Lemma 1 the open segment ($x y$) or ($x \infty$) contains no p-points of S. Hence $H(Q)+$
$W \cdot S$ is convex. It should be observed that if $H(Q) \equiv x y$, then $H(Q)+$ $W \cdot S$ may or may not be closed.

Lemma 5. Let $x_{i} y_{i}$ be a countable number of pairwise disjoint edges in $B(H) \equiv B(H(Q))$. Assume that $B(H)$ contains at least three edges, and let W_{i} be the open half-plane of support to $H(Q)$ whose boundary contains $\left(x_{i} y_{i}\right)\left(x_{i} y_{i}\right.$ may be $\left.x_{i} \infty\right)$.

Then the set $H(Q)+S \cdot \Sigma_{i} W_{i}$ is a closed convex set.

Proof. Without loss of generality establish an order on the boundary $B(H)$, and assume that in terms of this order, x_{i} is the beginning of the edge $x_{i} y_{i}$ and that y_{i} is the endpoint of $x_{i} y_{i}$. Select any two disjoint edges $x_{i} y_{i}$ and $x_{j} y_{j}$, and without loss of generality assume that $x_{i}, y_{i}, x_{j}, y_{j}$ fall in an order so that an arc of $B(H)$ has x_{i} and y_{j} as its endpoints, and so that all four points lie on this arc in the order given above $(B(H)$ may be unbounded). Let the convex set which is bounded by the two lines $L\left(x_{i}, y_{j}\right)$ and $L\left(x_{j}, y_{i}\right)$, and which contains the quadrilateral $x_{i} y_{i} x_{j} y_{j}$ be denoted by V. The segments $x_{i} y_{i}$ and $x_{j} y_{j}$ divide V into three parts; one is the closed quadrilateral $x_{i} y_{i} x_{j} y_{j}$; the second is a three sided closed polygonal set adjacent to $x_{i} y_{i}$ and denoted by $\Delta\left(x_{i}, y_{i}\right)$; the third is a three sided closed polygonal set adjacent to $x_{j} y_{j}$ and denoted by $\Delta\left(x_{j}, y_{j}\right)$. The last two sets may or may not be bounded. If the edge $x_{j} y_{j}$ is a ray $x_{j} \infty$ instead, then the same type of division occurs, in which $L\left(x_{i}, \infty\right)$ is a line parallel to the ray $x_{j} \infty$ so that $\Delta\left(x_{j}, \infty\right)$ has two bounding sides instead of three. We must have $S \cdot W_{i} \subset \Delta\left(x_{i}, y_{i}\right)$, for if this were not so, it is easily seen that either x_{i} or y_{i} would be an interior point of a triangle which would belong to S. But this would contradict the fact that $x_{i} \in B(S), y_{i} \in B(S)$. Similarly $S \cdot W_{j} \subset \Delta\left(x_{j}, y_{j}\right)$. This is true whether $x_{j} y_{j}$ is a finite segment or a ray $x_{j} \infty$.

Now, choose two points u and v in $U \equiv H(Q)+S \cdot \Sigma_{i} W_{i}$. If u and v are in $H(Q)+S \cdot W_{i}$, then Lemma 4 implies $u v \subset U$. If $u \in S \cdot W_{i}$ and $v \in S \cdot W_{j}$, then by the preceding paragraph $u \in \Delta\left(x_{i}, y_{i}\right), v \in \Delta\left(x_{j}, y_{j}\right)$ (or $v \in \Delta\left(x_{j}, \infty\right)$). Since $V \equiv \Delta\left(x_{i}, y_{i}\right)+x_{i} y_{i} x_{j} y_{j}+\Delta\left(x_{j}, y_{j}\right)$ is convex, and since $\Delta\left(x_{i}, y_{i}\right) \cdot x_{i} y_{i} x_{j} y_{j}=x_{i} y_{i}$, we have $u v \cdot x_{i} y_{i} \neq 0$, whence $u v \subset U$.

To prove that U is closed, observe first that if there are a finite number of disjoint sets $x_{i} y_{i}$ (there are at least three edges) then U is closed, since $\bar{W}_{i} \cdot S \subset \Delta\left(x_{i}, y_{i}\right)$ implies $\overline{W_{i}} \cdot S \subset W_{i} \cdot S+B(H)$. If there are an infinite number of sets W_{i}, then let s be a limit point of an infinite sequence of sets $W_{i_{n}} \cdot S$. Since $W_{i_{n}} \subset \Delta\left(x_{i_{n}}, y_{i_{n}}\right)$ by fixing $\left(x_{j}, y_{j}\right)$ of the preceding paragraph, it follows that $\left(x_{i_{n}}, y_{i_{n}}\right) \rightarrow q$, a fixed point of $B(H)$, as $i_{n} \leftarrow \infty$. However, since in this situation, we must have $\Delta\left(x_{i_{n}}, y_{i_{n}}\right) \rightarrow q$ as $i_{n} \rightarrow \infty$, it follows that $s=q \in H(Q)$. Hence, it is clear that U is
closed, since $H(Q)$ is closed.
Theorem 2. Suppose S is a closed connected set in E_{2} such that for each triple of points x, y, z in S at least one of the segments $x y, y z, x z$ is in S.

Then S is expressible as the union of three or fewer closed convex sets having a nonempty intersection. The number three is best.

Definition 7. Let N denote the cardinality of the set of p-points of S in Theorem 2.

Theorem 3. If N is not an odd integer greater than 1, then S can be expressed as the union of two or fewer closed convex sets having a nonempty intersection.

Proofs of Theorems 2 and 3. We recall that Q is the closure of the set of p-points of S. The proof is divided into 5 cases, depending upon the value of N. The five cases are: $N=1 ; N=2 ; N=2 m>1 ; N=2 m$ $+1>1 ; N=\infty$.

Case 1. $N=1$. Let $Q=p$, and let C be a circle with center at p and having radius r. The set $S \cdot C$ is a closed connected set having property P_{3} and having p as its only p-point. If $S \cdot C$ satisfies the conclusions of either Theorem 2 or Theorem 3, it is quite clear that $S=$ $\lim S \cdot C$ as $r \rightarrow \infty$ will satisfy the same conclusions. Let the boundary of the convex hull $H(S \cdot C)$ be $D(H)$, since $B(H)$ stands for the boundary of $H(Q)$. The rest of the proof will show incidentally that $D(H) \cdot S$ has one, two or four components.

Suppose $D(H) \cdot S$ has exactly three components and designate these by $B_{i}(i=1,2,3)$. It is easy to show that $B_{i} \neq\{p\}(i=1,2,3)$. Choose points $x_{i} \in B_{i}$ with $x_{i} \neq p(i=1,2,3)$. Property P_{3} implies that at least one of the intervals $x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{1}$ is in S. Suppose $x_{1} x_{2} \subset S$. Since $x_{i} \in D(H)(i=1,2)$, and since $B_{1} \cdot B_{2}=0$, we must have $L\left(x_{1}, x_{2}\right) \cdot S=x_{1} x_{2}$. If $p \notin\left(x_{1} x_{2}\right)$, then let H_{12} be the closed half-plane bounded by $L\left(x_{1}, x_{2}\right)$ and not containing p. Since $x_{1} \in B_{1}, x_{2} \in B_{2}$ with $B_{1} \cdot B_{2}=0$, there must exist a cross cut of the complement of S in H_{12}. However, by the proof of Lemma 2, there would exist a p-point in $H_{12} \cdot S$ which contradicts the fact that $Q=p$. Hence $p \in\left(x_{1} x_{2}\right)$. Since $p \in\left(x_{1} x_{2}\right)$, if $x_{1} x_{3} \subset S$, the proof of Lemma 2 would again imply the existence of a p-point in that closed half-space bounded by $L\left(x_{1}, x_{3}\right)$ which does not contain p. However this contradicts $Q=p$. Hence, $x_{1} x_{3} \not \subset S$. Similarly $x_{2} x_{3} \not \subset S$. Property P_{3} and the closure of S implies that for points $x \in B_{1}$ sufficiently near x_{1}, we have $x x_{2} \subset S, x x_{3} \not \subset S, x_{2} x_{3} \not \subset S$. Applying the same reasoning to x, x_{2}, x_{3} that we applied to x_{1}, x_{2}, x_{3}, we get $p \in\left(x x_{2}\right)$ for all x near
x_{1}. This can only be true if $B_{1}=x_{1}$. Similarly, $B_{2}=x_{2}$. However, since B_{3} is contained in only one of the open half planes bounded by $L\left(x_{1}, x_{2}\right)$, the facts $B_{i}=x_{i}(i=1,2)$ simply that $x_{1} x_{2} \subset D(H) \cdot S$, which contradicts the fact $B_{1} \cdot B_{2}=0$. Hence $D(H) \cdot S$ cannot have exactly three components. Suppose $D(H) \cdot S$ has at least four components, and designate four of these by $B_{i}(i=1,2,3,4)$. The above argument implies that $B_{i}=x_{i}$ $\in D(H) \cdot S$, and these can be renumbered so that $p \in\left(x_{1} x_{2}\right), p \in\left(x_{3} x_{4}\right)$. Clearly any fifth component B_{5} could not exist, since the above argument applied to x_{1}, x_{2}, x_{3} and $x_{5} \in B_{5}$ would yield $p \in\left(x_{1} x_{2}\right), p \in\left(x_{3} x_{5}\right)$, so that $x_{5}=x_{i}$, a contradiction. Thus if $D(H) \cdot S$ has more than two components, then $S \cdot C$ is the union of two line segments having an interior point in common.

Now, suppose $D(H) \cdot S$ has exactly two components denoted by B_{1} and B_{2}. Let the end points of B_{i} be x_{i} and y_{i} ordered so that $y_{1} x_{2}$ and $y_{2} x_{1}$ are cross-cuts of the complement of S. The points x_{i} and y_{i} need not be distinct. We will prove that each of the sets $P_{i} \equiv H\left(B_{i}+p\right)+$ $C\left(x_{i} p\right)+C\left(y_{i} p\right),(i=1,2)$ is convex. (See Remark 2 following Lemma 2 for the definitions of $C\left(x_{i} p\right)$ and $\left.C\left(y_{i} p\right)\right)$. Property P_{3} and the fact that $D(H) \cdot S=B_{1}+B_{2}$ implies that $B_{i}+x_{i} p+y_{i} p$ is the boundary of $H\left(B_{i}+p\right)$. We will prove that P_{1} is convex. Since each of the sets $H\left(B_{1}+p\right)$, $C\left(x_{1} p\right), C\left(y_{1} p\right)$ is convex, to show that P_{1} is convex, it suffices to select points $z \in H\left(B_{1}+p\right), u \in C\left(x_{1} p\right), v \in C\left(y_{1} p\right)$, and to show that $u v+u z+v z$ $\subset P_{1}$. We must have $u v \cdot x_{1} p \neq 0, u v \cdot y_{1} p \neq 0$, for if this were not so, the fact $D(H) \cdot S=B_{1}+B_{2}$ would imply that $u v \cdot P_{2} \neq 0$. However, this would contradict property P_{3}. Hence, we have $u v \subset x_{1} y_{1} p+C\left(x_{1} p\right)+C\left(y_{1} p\right)$. Thus $u v \subset P_{1}$. In the same manner $u z \subset P_{1}, v z \subset P_{1}$, so that P_{1} is convex. The same argument applies to P_{2}.

Finally if $D(H) \cdot S$ has exactly one component, and $Q=p$, it can be shown readily that there exists a line through p which divides $S \cdot C$ into two closed convex sets having p in common. This completes the proof for $N=1$, and oddly enough it appears to be the most difficult to prove.

Case 2. $N=2$. Let $Q=p_{1}+p_{2}$. The line $L\left(p_{1}, p_{2}\right)$ divides the plane into two open half-planes $W_{i}(i=1,2)$. Lemma 4 implies that $W_{i} \cdot S$ is convex. If $W_{1} \cdot S=0$, then $S=\bar{W}_{2} \cdot S+S \cdot L\left(p_{1}, p_{2}\right)$ yields the desired conclusions of Theorem 2 and 3. Hence suppose $W_{i} \cdot S \neq 0 \quad(i=1,2)$. Let $U \equiv \overline{W_{1} \cdot S}+\overline{W_{2} \cdot S}$. If U is convex, then $S \equiv U+S \cdot L\left(p_{1}, p_{2}\right)$ yields the desired decomposition. Suppose U is not convex, then we can show that $S \cdot L\left(p_{1}, p_{2}\right)=U \cdot L\left(p_{1}, p_{2}\right)$, for suppose a point $u \in S \cdot L\left(p_{1}, p_{2}\right)-$ $U \cdot L\left(p_{1}, p_{2}\right)$ exists. Since U is not convex, there exist points $x_{i} \in W_{i} \cdot S$ such that $x_{1} x_{2} \not \subset S$. Moreover $u x_{i} \not \subset S$, since $u \notin \overline{W_{i} \cdot S}$. However, this violates property P_{3}. Thus if U is not convex, $S=\overline{W_{1} \cdot S}+\overline{W_{2} \cdot S}$, and this is a desired decomposition of S into two convex sets.

Case 3. $N=2 m>2$. In this case the hull $H(Q)$ is a convex polygon, each segment of which is an edge having p-points as endpoints (See definition 6). Order the edges $x_{i} x_{i+1}$ of the boundary $B(H)$ counterclockwise so that $\left(i=1,2, \cdots, 2 m ; x_{1}=x_{2 m+1}\right)$. The open half-plane of support to $H(Q)$ adjacent to $x_{i} x_{i+1}$ is denoted by W_{i}. By Lemma 5 each of the sets

$$
\begin{equation*}
S_{1} \equiv H(Q)+S \cdot \sum_{i=1}^{m} W_{2 i-1} \tag{1}
\end{equation*}
$$

$$
S_{2} \equiv H(Q)+S \cdot \sum_{i=1}^{m} W_{2 i}
$$

is a closed convex set. Moreover, since $S \subset H(Q)+\sum_{i=1}^{2 m} W_{i}$ we have $S_{1}+S_{2}=S$.

Case 4. $\quad N=2 m+1>1$. As in Case 3, let $e_{i} \equiv x_{i} x_{i+1} \quad(i=1, \cdots$, $2 m+1 ; x_{1}=x_{2 m+2}$) denote the ordered edges of $B(H)$, and define S_{1} and S_{2} as in (1).

Let

$$
S_{3} \equiv H(Q)+S \cdot W_{2 m+1} .
$$

By Lemma 5 , the sets S_{1}, S_{2} and S_{3} satisfy the conclusions of Theorem 2.
Case 5. $N=\infty$. In order to prove this case, the following definition is helpful.

Definition 8. A connected closed subset I of the boundary $B(H)$ is called a polygonal element if the following conditions hold:
(a) It is the closure of the union of edges of $B(H)$ (see Definition 6).
(b) Its endpoints (one, two or none) are limit points of p-points of S.
(c) If $I=B(H)$, then I contains at most one limit point of p-points. If $I \neq B(H)$, then only its endpoints (one or two) are limit points of p-points.

Observe that these conditions imply that a polygonal element is maximal in the sense that it is not a proper subset of a larger polygonal element.

The number of polygonal elements of $B(H)$ is countable, hence we can well-order them easily. Let $I_{1}, I_{2}, \cdots, I_{n} \cdots$ designate such a wellordering.

For each polygonal element I_{n}, divide the edges it contains (see Definition 6) into two classes M_{n}^{1} and M_{n}^{2} such that no two edges of $M_{n}^{i}(i=1,2)$ are adjacent, that is, have an endpoint in common. It may
happen that one of the M_{n}^{i} may be empty. For each edge $e \in M_{n}^{i}$ we let W_{e}^{i} denote the open half-plane of support to $B(H)$ whose boundary contains e. Define

$$
F_{n}^{i}=\sum_{e \in M_{n}^{i}} W_{e}^{i} \cdot S \quad(i=1,2),
$$

and let

$$
S_{i}=H(Q)+\sum_{n} F_{n}^{i} \quad(i=1,2)
$$

Since each edge in M_{n}^{i} is separated from each edge in $M_{m}^{i}(n \neq m)$, Lemma 5 implies that S_{1} and S_{2} are closed convex subsets of S. Moreover, since for each point $x \in S$, either $x \in H(Q)$, or x is contained in some $W_{e}^{i} \cdot S$, we have $S=S_{1}+S_{2}$ and $S_{1} \cdot S_{2} \neq 0$.

To prove that the number "three" in Theorem 2 is best consider the familiar two cell formed by a five-pointed star. It is a simple matter to verify that this set has property P_{3}, and that it cannot be expressed as the union of two convex sets. The analogous $2 m+1$ pointed star behaves the same way.

3. Concluding remarks.

(a) It should be noted that the converse of Theorem 2 is not true. For instance, the set consisting of three segments $x x_{i}(i=1,2,3)$, where each angle $\angle x_{i} x x_{j}=120^{\circ}(i \neq j)$, is the union of three convex sets; yet it does not have property P_{3}.
(b) It would be of interest to characterize those sets in E_{2} which are the union of two closed convex sets. It appears that such a characterization will follow from an investigation of the cardinality of the set $B(K) \cdot B(S)$, where K is the convex kernel of S.
(c) The theory in E_{3} needs to be settled. In view of $\S 1$, it is natural to ask the question. What are the closed connected sets in E_{3} such that each of its plane sections is either starlike or the union of two disjoint convex sets?

References

1. H. Brunn, Ü̈ber Kerneigebiete, Math. Ann. 73 (1913), 436-440.
2. V. Klee, Convex sets in linear spaces, Duke Math. J., 18, No. 2 (1951), 443-466.
3. M. H. A. Newman, Topology of plane sets of points, second edition (reprinted 1954), Cambridge University Press.
4. H. Tietze, Über Konvexheit im kleinen und im grossen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen, Math. Z. 28 (1929), 697-707.

[^0]: Received June 26, 1956.

