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1. Introduction. The object of this paper is to generalize, by
means of an approach due to S. Karlin [9], a theorem originally obtain-
ed by Bellman, Harris and Shapiro [1] which may be stated in the fol-
lowing way:

A system is considered whose state may be described by a point t
in the interval [0, 1]. A probability measure μ is given for the initial
state of the system. At the end of each unit interval of time, one of
the transformations Aot A1 is applied to the state t with probabilities
Φύ(ί)f Φi(0 respectively, where φo(£) + φi(£) = l. The transformations are
defined by

(1.1) AQt=λQt, Λ ί =

The assumption is made that

(1.2) φo(*) = l - ί , φ1(t)=t.

It is clear that (1.1) and (1.2) ensure that the end-points of the interval
[0, 1] are absorbing, that is, if the state of the system is either 0 or 1,
it remains so. Let Tμ be the probability measure at the end of the
first unit interval. It is then proved that as n~> oo, Tnμ (that is, the
probability distribution for the state of the system at time n) converges
in distribution to a distribution concentrated at the points 0, 1 and the
form of this limiting distribution which depends on μ is obtained.

The motivation for the consideration of such a system arose from
certain learning models introduced by Bush and Mosteller. These are
described in detail in their recent book [2]. (Condition (1.2) means that
the state of the system may be identified with the probability of ap-
plying Ax).

The methods used in [1] to obtain the convergence of Tnμ are pro-
babilistic. Karlin [9] considers the space of continuous functions on the
unit interval and obtains a bounded operator U on this space whose ad-
joint is T. A convergence theorem is obtained for Un and the result
is translated into the adjoint space (that is, the space of measures) to

Received June 5, 1956. This paper generalizes the main theorem of the author's thesis
presented at the California Institute of Technology 1954, being partial requirements for
the degree of Doctor of Philosophy. The author wishes to express his sincere thanks to
Professor Samuel Karlin for his help and guidance in the preparation of that thesis.

1 Karlin also considers boundary cases where λ0, λ\ may be 1.
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obtain the required result.
Karlin [9] also considers cases where (1.2) no longer holds and

obtains for a wide class of non-absorbing models the convergence of
Tnμ to a distribution which is independent of μ. These do not concern
us here as the object is to consider only a class of absorbing pro-
blems, where of course the final distribution depends on the initial dis-
tribution.

We conclude this section by stating a well-known theorem [8].

THEOREM 1.1. Let Ω be a compact Hausdorff space and let
denote the Banach space of real-valued continuous functions x(t) defined
on Ω with

(1.3) ||a?||=max|a?(t)|.
ten

Let Tl(Ω) denote the space of all real-valued completely additive re-
gular set functions μ(E) defined for all Borel sets E of Ω, with

(1.4)
B C Ω

Then 3J£(β) is isometric (and lattice isomorphic) to the conjugate space
of (£(£?), the correspondence being given by

(1.5) (x, μ)=\ X(t)dμ(t).
J Ω

2 Description of the process. Let Ω be a compact metric space
with metric p. Since Ω satisfies the second axiom of countability, the
concepts of Baire and Borel measures coincide, and thus since the
former are always regular [5], we have that the set Wl(Ω) of Theorem
1.1 consists of all the completely-additive (finite) set functions defined
on the Borel sets of Ω.

Let {rj be a countable sets of points in Ω and {At} a correspond-
ing set of continuous transformations of Ω into itself with the follow-
ing properties

(2.1) A&CZSt i = l , 2, .-•

where St is any open sphere with centre τi9 and

(2.2) lim A?t=τt i = l , 2, •••

for each te Ω;

that is, repeated applications of the transformation Ai transforms t in
the limit into τi and moreover every open sphere with centre τi is
mapped by Ai into itself. The points {rj will be referred to as boundary
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points. It follows from (2.2) and the continuity of Aif that

(2.3) A.τ^τ,. i = l , 2, . . . .

Consider a system whose state may be described by a point t in Ω.
Let {φi(t)} be a countable family of continuous functions defined on Ω
with the property that

(2.4) 0^(i)<£l, i=l, 2,..

and

(2.5) Σ Φ * ( * H 1 .

Let μ(Z?) be a probability measure defined on the Borel sets of Ω,
giving the probability distribution of the initial state of the system.
Our process consists in applying at every unit interval of time one of
the transformations {At}9 A% being applied with probability φι(t), where
16 Ω represents the state of the system.

Let

(2.6) Tμ(E) = ±\ l φi(t)dμ(t).
4 = 1 J A ^ E

It is easily seen that Tμ(E) is a Borel measure. It represents the
probability measure for the state of the system after unit time. Tμ is
defined by (2.6) for any Borel measure μ and

(2.7)

More generally, if

(2.6) defines Tμ and

(2.8) Tμ = Tμ+-Tμ- .

T is a linear transformation of 3JΪ(β) into itself and

Thus we obtain

LEMMA 2.1. T is a positive linear transformation of 3Jί(β) into
itself of norm 1.

Now consider x(t)edί(Ω) (cf. Theorem 1.1). A function Ux(t) is
defined on Ω by
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(2.9) tfa#HΣφf(ί)α<A4ί)
 2

Each term of this series is continuous on Ω and M^OIίilMI
Since ^iφi(t)==l the convergence being uniform (by Dini's theorem),

the series (2.9) is uniformly convergent and hence Ux(t)e&(Ω). Clear-
ly U is a linear transformation of £(ί2) into itself and ||E7a?||<ί||α?||. Thus,
since the functions which are constant on Ω, are fixed points of U, we
have the following.

LEMMA 2.2. U is a bounded positive linear transformation of
into itself, for which the constant functions are fixed points. Moreover
\\Un\\ = l for all positive integers n.

Theorem 1.1 connects &(β) and 3JΪ(β). We now prove

LEMMA 2.3. T is the adjoint of U, that is,

(2.10) (Ux, μ)=(x, Tμ), for each xe&{Ω) and μeSOl{Ω).

Since μ=μ+ — μ-, it is clearly sufficient to prove (2.10) for the case μ^>0.
Let

)=\ φt(t)dμ(t)

It is easy to see that

Tμ^^Aΐ1,
1

the convergence being in the sense of 3Jί(ί7). Hence

tt) dp.it)

-{Ux, μ)

since the series (2.9) converges uniformly3.
2 Operators of the type U have been considered, and both convergence and ($-1 con-

vergence theorems for the iterates Un obtained by Ocinescu, Mihoc, Doeblin, Fortet,
Ionescu Tulcea and Marinescu [1O, 3, 4, 6, 7].

3 This adjointness lemma expresses the fact that if ίi, ί2? represents the process
then E{E{x(f2)\ U}} = E{x(t2)}.
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3. Absorption assumptions.4 The first additional assumption to be
made is that each of a finite number of the boundary points is an ab-
sorbing point, that is, we assume

(3.1) Φι(r*)=l i = l , 2, . . . , m .

This together with (2.3) ensure that r4 ( i = l , 2, •••, m) are absorbing
points. (Since ΣΦsίO^l a n ( i ̂  is compact, it is not possible to extend
the assumption (3.1) to an infinite number of the boundary points r j .
The assumption (3.1) is strengthened as follows :

We assume that about each absorbing point τi (1 <I i <J m), an open
sphere Σ* m ^y be drawn with centre rt on which the infinite product

(3.2)

converges uniformly (the convergence being in the sense of infinite pro-
ducts that is, the limit is nonzero).

Clearly assumption (3.2) together with (2.2) imply (3.1). Finally,
m

the assumption is made that for each teΩ—\J Σ t there is a finite se-
1

quence of transformations

Ah, A v . . . , Ajn (l^i*O)

where n, jlf j2, ••, jn depend on t, such that A3 A3n_χ A5f is in
one of the spheres Σ« (1 ̂  ί ̂  w) and such that each term of the
sequence

(3.3) φh{t), Φh(Aht), , ΦJn(AJn^ . Aht)

is greater than zero.
Assumptions (3.2) and (3.3) imply that no matter what the initial state

of the system there is always positive probability of reaching an absorb-
ing point after an infinite number of steps. We conclude this section
with the following lemma which is a consequence of (3.1).

LEMMA 3.1. U preserves the values at the absorbing points, that is,

(3.4) Uxiτ^xiτ,), i « l , 2, . . . , m

where x(t)e&(Ω).

Proof. Since

Σiφι(t)=-1 and φ*(£)^0

Cf. discussion Bush and Mosteller, [2, pp. 167-169].
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for each I, we have by assumption (3.1) that

(3.5) ΦifaHO Iφi, l<Li<^m, 1 <: Z < oo.

The result follows by (2.3) from the definition (2.9) of U.

4 Examples*

EXAMPLE 4.1. Let {At} be a countable set of transformations of
Ω into itself with the property that

(4.1) p{A%t, Ats)^λp(t, s) i = l , 2, . . .

for all pairs of points £, s e δ , where i is a constant such that 0 < λ

It follows from (4.1) that the transformations {At} are continuous
and moreover there exist points {r4} such that (2.1) and (2.2) are
satisfied.

Let {φi(t)} be a family of continuous functions on Ω satisfying
the conditions (2.4), (2.5) and the first absorption assumption (3.1).
Suppose also for each i (1 <1 i <I m) that there exists an open sphere
Σ* with centre r4 and radius r% on which φt(t) > 0 and satisfies a uni-
form Lipschitz condition5 that is,

V(4.2) \φι(t)'—Φi(s)\^:kp(tfs) t,se

Finally the assumption is made that one of the probability functions,
say φx(ί), satisfies

(4.3) φ i (ί)>0 except at the points τt (2<li<:m).

LEMMA 4.1. The process just described satisfies the absorption as-
sumptions of § 3.

Proof. We first observe that (3.1) is satisfied by hypothesis. To
establish (3.2), let ί e ^ i ( l ^ i ^ m ) and

=Φ*(il?r4)-φi(il?ί) by (2.3) and (3.1)

<Lkp(Aΐτi9 An

tt) by (4.2)

<Lkλnp(τu t) by (4.1)

<: (krt)λn.

Since O<IΛ<1, ^λn converges and hence, by a theorem on infinite
5 These assumptions link up with those given by other authors [1O, 3, 4, 6, 7].
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products Π ( l - W ^ ) ) converges uniformly on Σ* Thus ΠΦiWO
71 = 0 W = 0

converges uniformly on Σ* a n d the assumption (3.2) is verified.

It remains to verify (3.3). Let teΩ-\J Σ* Since A?t->τu there
1

exists rc0 such that i4?oί 6 Σi By (4 3)> Φi(O> 0. Hence we take Λ as

our first transformation. If Λ ί e U Σ * > then (3.3) is already verified.
1

If not φ1(^41ί)> 0 and we take A1 as our second transformation. Pro-
ceeding in this manner a finite sequence of A/s (of length <Ln0) is
obtained which satisfies the assumption (3.3). Hence the lemma is
proved.

EXAMPLE 4.2. The example described in § 1 is a particular case of
the example just given.

EXAMPLE 4.3. We now consider a generalization from 1 to JV di-
mensions of the learning model considered by Karlin (cf. Bush and
Mosteller [2]).

Let Ω be a simplex in ΈN (Euclidean space of N dimensions). Any
point of Ω is given by its barycentric coordinates t=(tl9 t2, , tN+1) where

JV + l

ti^>0 and Σ£« = l . The vertices β* ( i = l , •••, N+l) have coordinates
1

e)=d) (Kronecker delta). Let I denote the (ΛM-1) x (iV-f 1) unit matrix,
and Bi (l<Li<LN+l) denote the (N4-1)x(N4-1) projection matrix
where each element of the ith row is unity and all other elements are
zero. Clearly Bjt^e1 for each teΩ. Consider the family {At} of trans-
formations on Ω into itself defined as follows

(4.4) il^Z+α-W, 0^<l, i=l, 2,

that is, for t e Ω

Clearly At represents a transformation which carries a point P into a
point P on the line PVt where Vt is the vertex eι and

The transformations {A%} are continuous and satisfy the conditions
(2.1) and (2-2) where τi^ei. For the probabilities φt{t) we take

(4.5) Φ*(ί)=«i i = l , - . . , J V + 1 .

The conditions (2.4) and (2.5) are clearly satisfied. It remains to verify
the absorption assumptions of §3. Since φi(eί)=el=l, the condition (3.1)
is satisfied. To verify (3.2) we first note that since -61=5^
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so that

If ti > ε, it is easily seen that the infinite product Π Φ*(A?£) converges
0

uniformly.
Condition (3.3) is seen to be satisfied by noting that for any point

t, one at least of the coordinates is nonzero, say ti9 and hence the ΐth
coordinate of Aft (n=l, 2, •••) is also nonzero.

5. Returning to the general absorption process described in §§2
and 3, we establish by means of the assumption (3.2), the equicontinui-
ty of the family of functions {Unx(t)} at each of the absorbing points
τt ( i = l , 2, •••, m).

LEMMA 5.1. Let #(£-) e (£(ί2) be such that it vanishes at one of the
absorbing points τt (1 <1 i <I m), then for each e > 0, there exists a sphere
Si(e) with centre τiy such that

\Unx(t)\<ε n=l, 2, . . .

for teS^ε).

Proof. Without loss of generality we consider the case where i = l .
Let

{ftι(t)} form a nonincreasing sequence of functions which by assumption
(3.2) converges uniformly on Σ ι t° a function f(t). It follows that f(t)
is continuous, and thus since/n(τ1) = l (by (2.3) and (3.1)) and therefore
/ ( Γ l ) = l , w e have that given any positive number 3 ( 0 < £ < l ) , there
exists a neighbourhood V of τλ (contained in Σi) o n which / ( ί ) > δ,
which implies /„(£)> ^ for all n.

Choose 3"> 1 —e/||a?|| and let q be a positive integer such that

(5.1) QΣ±d>l-el\\x\\.
Q

Since ^(r^^O by hypothesis, there exists a neighbourhood V of τλ

such that for ί e F

(5.2) \x(t)\^±-\\x\\ .
Q
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Let Sί(e) be an open sphere with centre ττ and such that Sι(ε)

<ZVf\V.
By (2.1) if teS^ε), AΐteS^ε) for all positive integers n. Hence

for t e Sx(e)

(5.3) \x(A?t)\^-\\x\\ - n=l,2, . . . ,
Q

and

(5.4)

Now

l ' 2 W

where Σ ' denotes the summation omitting the term corresponding to

Replacing |α(4?ί)l by -(IM|-|aj(^Γί)l) + IWI we obtain

or

(5.5) |E

since ΣΦi(0=l Now let teSfc). Then

|C/Mί)I^IWi-^(IWi-W^)l) by (5.4)

^\\x\\s(\\x\\-l||a?||) by (5.3)

< e . by (5.1)

Hence the lemma is proved.
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THEOREM 5.1. If x(t) e S(β), then [Unx(t)} form an equicontinuous

family of functions at each of the absorbing points {rj (i = l , 2, •••, m).

Proof. Without loss of generality, we prove the theorem for the
point r1# It is required to prove that given ε > 0, there exists a sphere
Sι(e) with centre τx such that for t e S^e)

Unx(τ1)\<ε n=0, 1, 2, . . . ,

or equivalently by Lemma 3.1

(5.5) | t7M*)-α(*i)l< e w=0, 1, 2, . . ,

for teS^e).

Let 3(£)=a?00 — α(ri). z(ί)eE(fl) and ίg(r1) = 0. Hence Lemma 5.1
may be applied to obtain a sphere SΊ(ε) with centre τλ on which

|E7*s(ί)l<e rc=0, 1,2, •-.,

but since U preserves constant functions (by Lemma 2.2)

Hence (5.5) is established and the theorem is proved.

6. The convergence theorem in (£(£?)• In this section, the assump-
tion (3.3) is applied in conjunction with Theorem 5.1 to obtain the con-
vergence of Unx{t) in (£(£?).

LEMMA 6.1. Let {S^ be spheres with centres {rj such that SVCΣ*
(i=l, 2, •••, m). Then there exists a positive integer n0 and a number
3, (0 <C o <I 1) such that for each t e Ω, there exists a sequence of n0

transformations Ailf Ai2, , Ain {depending on t) which, when applied
0 m

consecutively, transform t into a point in \J Sif and such that the pro-
ί = l

bability of the application of each transformation of the sequence is > δ,
that is, each term in the finite sequence

φh{t), φi2(Aht), , Φ^JiA^^, , Aht)

is ^ d.

Proof. By assumption (3.2), it is clear that

(6.1) Φί(*)>0 on Σ« ( a n d hence on S€) i=l, 2, ••- , m.

and thus by the continuity of φt(ί), there exists δQ such that
and
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(6.2) Φtit)^ do for 16 Si i = l , 2, , m

Let te Ω. If te Ω — \J Sif we have by the assumption (3.3) together
1

with (2.1), (2.2) and (6.1) that there exists a finite chain of transfor-

mations Aό, Aj, , Aj , which when applied consecutively, transform

t into a point in one of the spheres, say St ( l<IZ<lm). Moreover

each term in the sequence φh{t), φJ2(A3f), , φj (A^V Ά / ) is > 0.

If te\J Sif the same result holds for then ί e S , ( l 5 ί £ < ^ ) and
1

thus by (2.1) and (6.1), it is sufficient to take a chain consisting of the
single transformation Aτ.

Consider A~jXSτ. This is an open set containing Aj ••• AJΊt.

Since φ5 (A3 _ •••AJt)'^>0, there exists an open set Un such that

and on which Φ3Jt)^>0. By the regularity of β, there exists an open

set Vn such that

Vn is compact and therefore there exists a positive number δn such that

Φj (t)2> dn on Vn and hence in particular on Vn.

Now consider A]1 Vn. Proceeding as above, we obtain an open
set yn-T, such that

and a positive number δn-i, such that Φ̂  (ί)^^w-i o n ^«-i Proceed-
ing in this manner, we arrive at an open set V1 which is such that

and such that φJl(t)^>δ1 on Vl9 where ^ > 0 .
Hence, the open set Vτ containing t has the property that each

point in it is transformed by the sequence A3χ, AJ2, , A3 into a point

( TO \

CλJSλ and the conditional probabilities of each of the successive
transformations being applied are I> δl9 δ2, , δn respectively.

This process is repeated for every teΩ, For each t an open set
corresponding to Vx is obtained. By the compactness of Ω, we have
that Ω is covered by a finite number of open sets Ωι {1=1, 2, •••, k),
where each set Ωτ has the property that there is a finite chain of trans-
formations of length nt (that is, ^ = t h e number of transformations in
the chain) which when applied successively transform each point of Ωt

into one of the sphere S t ( i = l , 2, •••, m) say Sly and which has the
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property that the conditional probabilities of applying the transforma-
tions of the chain are respectively I> δh, δh, , δt , where each of
these numbers is greater than zero.

Let w o =max^. The length of the chain nτ for each Ωτ may be

extended to nQ preserving the above properties. For if t e Sτ (1 < I < m),
AιteSι by (2.1) and Φι(t)>δ0 by (6.2).

Let

£= min (<J,4, δ0).

With these values of n0 and δ, the lemma is established.

LEMMA 6.2. Let {%p(t)} be a sequence of functions in E(β) with the
following properties

(6.3) \\xP\\^H p=0, 1, 2, . . .

where H is a constant.

(6.4) ^ ( r , ) = 0 /or α/Z p i = l , 2, ••., m

(6.5) ί^β family of functions {Unxp(t)} {n, p = 0 , 1, 2, •••) is equicontinu-
ous at each of the absorbing points τt ( i = l , 2, , m).
Then, under these conditions

lim 11*7^11=0

where the convergence is uniform with respect to p.

Proof. Given ε > 0, there exist by (6.5) spheres St(e) with centres
τi (i=l, 2, •••, m) such that for teS^e)

I Unxp(t) - ^»α?p(r4)| < e/2 all w, p .

Hence by (6.4) and Lemma (3.1)

(6.6) I Unxp(t)\ < e/2, * e 0 S,(ε), all w, p.

There is no loss in generality in assuming the spheres S^e) so chosen
that

(6.7) Sje)dΣi i = l , 2, - . . , m.

Thus the spheres £έ(ε) ( i = l , 2, •••, m) satisfy the hypothesis of
Lemma 6.1. The positive integer nQ and the positive number δ obtained
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in the lemma depend here on e. Let

(6.8) α = l - — - δ " o .

Since 0 < δ <I 1, it follows that 0 < a < 1. We now show that for
all p

(6.9) \\Uknoχp\\^μ, fc=0, 1, 2, . . .

where /*&=== max (cΛEZ, ε).
We prove (6.9) by induction. Clearly by (6.3) it is true for &=0.

Suppose it is true for k.

= y

Consider £ fixed. By Lemma 6.1, there is associated with t a finite
sequence of n0 transformations Ajχ, AH, , AJn (depending on t) which

til

when applied consecutively transform t into \J S^e) and such that

each term of the finite sequence φh{t), φh{Ajf), •••, φJn(AJn Λ A3f) is

^δy that is,

and

(6.12) φh(t)φh(Aht). • -Φ^A^ • -A

In (6.10) we take inequalities with absolute values and separate
out the term corresponding to the above sequence and proceed as in § 5
(between the relations (5.4) and (5.5)) to obtain by the induction
hypothesis

(6.13) |Σ7<*+1>"ια,(ί)|

^ - Φφ)Φh(Aht) φ)n{AlΛ_χ> • - Aht)

x (μk- \U««oχp(AJn< Aht)\) + μk .

(6.6), (6.11) and (6.12) give

Since μk^>ε, we have μt — ε / 2 ^ 1/2^. Hence
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( ^ ) by (6.8).

Therefore

»*xp\\^aμk ^ max (a**Ή, e)=μk+1.

Hence (6.9) is established. Clearly there exists k0 sufficiently large such
that μko<^ε. Then, since ||ί/w|| = l, all n (Lemma 2.2), we have that
for n I> noko

\\U*xp\\^e all p.

Hence the lemma is proved.

THEOREM 6.1. Un converges strongly on (£(42), that is, there exists
a continuous transformation U^ of norm 1 of S(ί2) into itself {which
preserves constant function) such that

(6.14) lim||U*a?-i7.a;||=0

for each function xe&(Ω).

Proof. Given x(t) e (£(β), let

(6.15) xp(t)=Upx(t)-x(t) p = 0 , 1, 2, . . . .

Clearly xp(t) e (£(J2) and ||a?J,||^2||a?||. Moreover by Lemma 3.1, xp(τi)=0
(i=l, 2, - . . , m). Hence the hypothesis (6.3) and (6.4) of Lemma (6.2)
are verified for the family {xp(t)}. It remains to verify (6.5).

Given ε > 0 , we have by Theorem 5.1 that there exists spheres
Si(ε) with centres τi ( i = l , 2, •••, m) such that for n=0, 1, 2, ••• we
have

\Unx(t)-x(τt)\<el2, teSM, i=l,2, ..,m.

Hence for t e St(e) (1 <Li^Lm) and all n, p

\Un^x(t)-Unx(t)\<ε

or

(6.16) \Unxp(t)\ <ε all n, p, t e \J St(ε).
1

Since xp(τί)=0, Unxp{τ^=τ0 (Lemma 3.1) and thus it is clear from
(6.16) that the hypothesis (6.5) of Lemma (6.2) is verified.

Hence applying Lemma 6.2 to the family xp{t) as defined by (6.15)
we have that given ε > 0 , there exists n such that

\\UnxP\\<ε p=0, 1, 2, . . . ,
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or

\\Un+px—Unx\\<ie for all positive integers p.

Hence since the space (£(β) is complete, there exists an element
TJjxi e <£(£) such that

is clearly a linear transformation of &(£?) into itself. Since

it follows that U^ is continuous and H^Όdl^l. However since U pre-
serves the constant functions on Ω, it is clear that U* does likewise
and hence 11̂ 11 = 1. Hence the theorem is proved.

7. The form of U^x. The following lemma is a direct consequence
of Lemma 3.1 and Theorem 6.1.

LEMMA 7.1. £/«> preserves the values at the absorbing points, that is,

J7ββa?(ri)=a?(rί) i = l , 2, •••, m

where x(t)e (£(£?).

LEMMA 7.2. Jf #(£) is α fixed point of U in E(/2) having the value
zero at each of the absorbing points τi (i=l, 2, •••, m), then #(£) = 0 .
Two continuous fixed points of U which are equal at each τt ( i = l , 2,
• , m) are identical.

Proof. Let x(t) be a fixed point of U with ^(rέ)=0 (i = l, 2, , m).
We apply Lemma 6.2 to the family of functions consisting of the single
function x(t). Since Unx=x all n, the conditions of the lemma are
trivially satisfied and hence lim ||Z7w#||=0, that is, ||a?||==0. Therefore

the first part of the lemma is proved.
If x(t), y(t) are two fixed points in S(fl) such that »(r4) = 2/ίr,)

( i=l, 2, •••, m) then, applying the first part of the lemma to the func-
tion z(t)=x(t) — y(t), we obtain £(£)== 0. Hence the lemma is proved.

LEMMA 7.3. Let ψi{t)==Uβlφi(t) ( l < i i < o o ) . ϊ%βw ^t(ί) is a fixed
point of U in (£(β). /f i > m, ^ β ( ί )^0 . /f i<Lm, ψ%(t) is the unique
fixed point of U having the value 1 at τi and the value zero at each of
the other absorbing points τό (jφi, l ^ i ^ m ) . Moreover
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Proof. Uφi=UUβoφi^Uoaφt^φi (1 ^i O)

since Z7Z7OO==C7OO by Theorem 6.1. Hence ψi is a fixed point of U. For
i > m , φ*(£) has the value zero at each of the absorbing points τ3 (l<Lj
<Im) (by 3.5) and hence by Lemma 7.1 Ψi{t) has the same property
and thus, by Lemma 7.2, is identically zero. If l^Li<Lm, then since
φi(t) has the value 1 at τt (by (3.1)) and the value zero at each τ3

(jφi, l ^ i ^ m ) by (3.5), we have by Lemma 7.1 that ψt has the same
properties and hence since ψ% is a fixed point of U, by Lemma 7.2 it is
the unique fixed point with these values at the vertices.

oo

By (2.5) Σ0ί(*) = l By Dini's theorem, the convergence is uniform
1

oo

so that we have in the sense of (£(J2), Σ Φ i ^ l Hence since Ux is con-
1

oo m

tinuous Σ^i^-U and since ^(£)=0 ( ΐ > m ) , Σ ^ ( t ) = l and the lemma
1 1

is established.

THEOREM 7.1. / / xe

Proo/. Let

Clearly by Lemma 7.3, y is a fixed point of U such that y(τi)=x(τi)
(ΐ==l, •• , m). By Theorem 6.1, U^x is a fixed point of U and by
Lemma 7.1 J7ββa?(rί)==a?(r<) ( i = l , •••, m). Hence by Lemma 7.2, y^U^x
and the theorem is proved.

8. The convergence theorem in

THEOREM 8.1. Let

then

Tnμ — 2 >

where the half-arrow denotes weak-star convergence, that is,

(8.1) lim (a?, 2 » = Φ , 2 > ) , a? €

where T^ is a positive continuous linear tranformation of norm 1 o/
2JZ(i2) into itself. T^ is the adjoint of U^ and
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(8.2) T.μ=

where dt is the probability measure with all its measure concentrated at
the point τim

Proof. Theorem 6.1 gives that for # e (£(£?), we have lim
n~*oo

the convergence being in the sense of K(β). It follows that lim (Unx, μ)

=(Umx, μ) for μ e SOl(Ω). Let Tx be the adjoint of Um that is, (Umx, μ)
=(x, T^μ). Hence by (2.10) lim (a;, Tμ)=(x, T^μ) and (8.1) is establish-

ed. ΓTO being the adjoint of U^ is a continuous linear transformation
of Wl(Ω) into itself of norm 1 and it is clearly positive. By Theorem

7.1 Z7-a>=Σs(* i)&. Hence for μe'mφ), {Ujx, /«)=ΣafoXΛ, μ). Let
1

Tfμ is an element of 9Jί(β) and it is clear that

μ)=(x, Tμ) for all xe&{Ω). Hence T^Ut^T^. Thus Γ ^ -

Σ (Λ> )̂̂ « a n ( i ^ e theorem is proved.
1

9 Probability interpretation of Λ(t). It is easy to see from the
definition (2.9) of U, that Unφι{t) represents the probability, that given
the initial state of the system is t> that at the end of the (rc-fl)stunit
time interval the transformation At is applied. ^(£)=lim Unφi{t) thus

W->oo

represents the limiting probability of applying Aif given that initially
the state of the system is t.

Another point of view is obtained from (8.2). If δtQ is the pro-
m

bability measure concentrated at the single point ί0, then T«A 0 =Σ Ψι{U)δn

so that Ψt(t0) gives the probability that if the initial state is tQ, the
limiting state is τi#

To sum up, we have two probability interpretations for Ψi(t):

(1) Limiting probability as n -> oo that at the nth step in the process,

the transformation At is applied, given that the initial state is t.
(2) Probability that the limiting state is r4, given that the initial state

is t.

I wish to express my thanks to the referee for some useful
comments.
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