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!• Introduction, The theory of regular univalent functions in the
unit circle Uz has been developed for various subclasses, for example,
the class of real univalent functions which leads to symmetric domains,
the class of bounded univalent functions whose image domain lies with
in the unit circle and the functions for which the image domains are
convex or star-like. The approach through the calculus of variations
has been used very successfully towards the solution of extremal problems
belonging to the various classes and also towards the determination of
the extremal domains. The purpose of the present paper is to show
how the method of interior variations due to Schiffer [1] can be adapt-
ed for the following subclasses:

(i) The class V of symmetric regular univalent-functions f(z) in

Uz which have the form f(z)=z-h^anz
n with real an. In particular we

w = 2

show that if φ(ai9 α3, , an; α2, α3, , an) is a real valued function
which is symmetric and analytic in av and av (v=2, 3, , n) and where
{an} are the coefficients in the power series expansion of the more
general class Vx of regular univalent functions then, under the assump-
tion that the function f(z) whose coefficients {αv} maximize φ(a,} •••, an,
<h> •••> «w) is symmetric, the functional differential equation satisfied by
f(z) in the general class Vτ is the same as the functional differential
equation satisfied by f(z) in the class V.

(ii) The class S of bounded univalent functions f(z) in Uz which
are normalized so t h a t / ( 0 ) = 0 , \f(z)\<Ll and at a fixed point ζeUZJ

f(ζ)=ω. In particular we find the functions which maximize or minimize

j
(iii) The class Σ of bounded univalent functions f(z) in Uz which

are real on the real axis and are normalized so that /(0)=0, |/(s)|<Il
and at a fixed point ζ on the real axis f(ζ) = <o. In particular we find
the functions which maximize or minimize f(η) for real ηeUz.

We observe that the existence and uniqueness of the solutions of
these problems is assured because the families of functions belonging
to the classes V, S and Σ are normal and compact.

2. Real univalent functions. Let D be the image in the TF-plane
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W=f(z) G V of \z\ <I 1 and let us consider the Schiffer variation

(i) " ϊ
where WQ is an interior point of D. It is easily seen that for small

enough p say pί<^p, \W—Wύ\==pι and \W—WQ\=Pι lie entirely in D
and WT is univalent on the boundary C of D and maps it univalently
on to the boundary C* of the new domain Z)*. Further, we see that
TΓi* = 0 for W=0 and that TFf is real for real values of W. Thus if
W is a symmetric univalent function which vanishes at the origin we
have obtained another neighbouring function which also has the same
properties. In order to be able to add some side conditions to the
function W we consider the variation

(2) W*=W+f?Y \ - a^-^+ d"W \
1 ' w+p h \(w~wv)w, (w- wy)wv f'
where p is an integer >; ! . This variation is of the same type as (1)
and has the independent constants (av)

}) which can be used to satisfy
the side conditions, if any.

The technique of getting the variation formula for f(z) under the
variation (2) is similar to that used in [2] in getting the variation
formula for/(s) under the variation W* = W + ap*l(W-W0). For the
sake of completeness we mention that we first find the variation formula
for the Green's function G(W, 0) of D under the variation (2). We
thus have [3J

( 3 ) δG(W, 0)= df. \ V\rh
L2π?, J r

where

(4) <P(W)=±

and p(W, η) is the analytic function whose real part is the Green's
function G{W, η) and Γ is a curve system in D which is homotopic to
C and such that φ(W) is analytic in the ring system bounded by C and
Γ. If now z=φ(W) is the inverse function of W=f(z) then the rela-
tionship of the Green's function G{W, ω) to the function φ(W) is given
by

(5) G(W, ω)=

and in particular

φ(W)-φ(ω)
l-φ(ω)φ(W)
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OHog - 1 -
\ψ(W)\

Proceeding in this way we find that the variation formula for f(z)
is given by

(6) r^MΛtaJ^
i Ll~ztv

where

ί»=f(^v) or yftv)=/(2v).

Let /(z) have the following power series expansion

(7) f(z)=z+±aHzn ,

where the an are real. Then denoting by at the coefficient of zn in
/*(£) and substituting these expansions in (6) and equating the coeffici-
ents of zn on both sides we get

8 ) "I = αB + 231 f>2 Σ or J ^v Σ
α f ^ v=i L w=

where

and Tn{f{z)) are given by the formula

We remark that (8) is the variation formula for the coefficient an

given by (7) and for v=l it agrees with the variation formula obtained
by Schiffer [2] for \an\ when an are complex. Further, if we put δan

= a*laf — an then dan=δan + O(pό) and we find that 3an in the present
case is twice δan in the general case an=an-hίβn.
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Now let us consider a function φ(aIy «•*, α.Λ, α2, * ,α w ) which is

symmetric and analytic in αv and αv and has real coefficients. Then,

because av=av + iβv, we can write F(a2, , an\ β,, , βn)=φ(az, , α w ;

ά2, * , α n ) , and the function F will contain only even powers of βv's

and

(10) ? f = 0 if A = A = ... = / J n = 0 .

Further, the condition for the extremum of F in the general case when
av are complex is

which in the limit when ^ -> 0 can be written as

If αv are real then in view of (10), (11) reduces to

(12) Σ f v̂-0.

We will obtain the same equation if we look for the solution of the
extremumproblem in the particular class V of real functions. Thus
under the assumption that the extremum function is real the functional
differential equation in the general case will coincide with the differential
equation in the symmetric case. We know from compactness arguments
that the problem φ = max has a solution in V. We also know that the
same problem has a solution in the general class V1. What we have
shown is that both extremum functions satisfy the same functional dif-
ferential equation. This implies that either there are many solutions of
the problem in the class Vλ or that the solution lies in the class V.
Thus in particular the coefficient problem anάn=max leads to the same
functional differential equation for real univalent functions as for the
general class.

3. Bounded univalent functions. We now consider a variation
which transforms a function of the class S into another function of the
class S. We will first obtain a variation which keeps the origin fixed
and also keeps the unit circumference fixed. We will then add the side
condition that for a fixed ζ, f(ζ)=ω. Let
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where O(pA) can be suitably chosen and Wo is an interior point of the
image domain of \z\ ^ 1 by f(z). For small enough p, Wf is a univa-
lent function of W outside \W- WQ\=p, < p such that Wf = 0 for W=0
and keeps the unit circumference |TF| = 1 fixed. In fact, to prove the
latter, we observe that when

and

(14) |TF?|

So to the order p2 the unit circumference is kept fixed. By adding
to (13) term of the order of p4 one could make the unit circumference
fixed. To see this let us denote by D* the boundary of the domain to
which Wf maps the unit circumference |TF| = 1. Now by the Riemann
mapping theorem there exists an analytic function S(Wf) which vanishes
at the origin and maps D* univalently on the unit circumference [S(PF2*)|
= 1, WfeD*. From the boundary behavior (14) of Wf when WΐeD*
we then conclude that

(15)

Since log \S(Wf)IW*\ is harmonic in |W*|<^1, we conclude, by the
maximum principle that (15) holds everywhere inside the unit circle.
Thus

for |TF| = 1. We have thus obtained a function S*(TF) which maps the
unit circumference |TF| = 1 onto itself and differs from Wt by O(ρA). •

A more general type of variation which can take care of some ex-
tra side conditions can be written in the form

(16) TF*= W+ Σ Γ

Taking n=l we get according to the procedure outlined in § 2 the
following variation formula

(17) φ*{W)=Ψ{W)-a^A{W, WQ) + ck(?B(W, Wo)
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where

(is) A(W, wa)=y;-p

and

(19)

Since we require that for all f(z)eS and fixed £, / ( C ) = ω , w e must
have ^*(ω)=^(ω)=C. Thus we obtain the determining relation between
aQ and αx

(20) - M K W0) + aJB(ω9 Wΰ)-aιA(ωy W1) + a1B(ωf W1) + O(pi)=-Q .

We shall see that in general we can prescribe Wo, Wλ and aQ arbi-
trarily and adjust aλ such that (20) holds.

Again, as φ\W) = Hf'(z) we see that the minimum and maximum
of \f'{ζ)\ would be given by the maximum and minimum of \φf(ω)\.
Thus the necessary condition for the extremum of \f\ζ)\ is

p a , s U ^ s . f + t , 1 S
L ^ ( ) f () φ (ω) φ

where A'(ω, TF0) and B\ωy WQ) are, respectively, the derivatives of

A(ω, Wo) and B(ω, Wo) with respect to the first argument.
The extremum condition (21) can also be written in the form

(22) adC(ω, W0)-aQC(ω,

where

φ'{ω) φ'(ω)

From (20) it is clear that for a fixed value of α0, ax is a linear
function of aΰ and α0 and can be written as

Ί AQB{) Q, 2V

if

(24)



INTERIOR VARIATIONS AND SOME EXTREMAL PROBLEMS 1491

where we have put A0=A(ω, Wo), A1=A(ω9 Wλ), and similarly for Bo

and Bγ. We will show later that (24) can always be taken to be valid.
Taking the case when (24) holds, we get on substituting this value of
α: in (22) that

(25) aJLC(ω, Wo) +Ί2? 0 ~ M o ] + alC(ω~'Wl) + WQ-lA0] + O(p2) = 0 ,

where

=sBιC(ωf W1)fA1C(ω9
λ=s

This holds for all sufficiently small values of p hence because aQ

is arbitrary, in the limit p -> 0 the extremum function satisfies the
equation

(26) C(ω, W0) = λA(ω, W0)-λB(ω, Wo) ,

where λ is independent of Wo. Again, because Wo is an arbitrary point
from (26), the equation satisfied by the extremum function can be
written in the form

W _λωφ'{ω) Jω2φ;(ω)
{1-ώWf ω-W 1-ωW

φ(W) _ψ{ω){2-φ{ω)φ{W))
ψ(W) L (φiW)-φ(ω)f {l~ψ(ω)ψ{W)f

λφ(ω) __ λ ψ\ω) Ί

φ(W)-φ(ω) ϊ-φ(ω)φ(W) J ?

where

a = ωφ"(ω)lφ'(ω)=-f(ζ)f"(ζ) .

We now prove the following.

LEMMA. For the extremum functions of the class S ivhich satisfy
the equation (27), we have

(28) 3 {1 + ωφ"(ω)lφ\ω) - λωψ\ω)} = 0

and

(29)

Proof. Let us consider the variation
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(30) W*W+ +
W~W0 1-WUW W-WL 1-

where T is real. It is easily seen that this variation keeps the origin
and the unit circumference fixed and, for small enough μ, is univalent
on the boundary. So this is an acceptable variation. Under this variation
the variation formula (17) will have the additional term iTpzWψ\W) on
the right-hand side. This will give rise to an additional term iT(jιωψ'{ω)
in (19), and to iT{l + ωφ"{ω)lφ\ω)} in (21). Then, because (26) holds,
the equation corresponding to (26) in this case will give rise to (28).

To prove (29) we observe that the derivation of the variational
equation (17) leaves an arbitrariness which permits us to add a term
ίkφ(W), for k real, to the right hand side of (17). The addition of this
term does affect the extremum condition (21), but it does appear as
ikφ(co) in the equation (20). The equation corresponding to (26) will

then have an extra term ik(λφ(co) — λφ(ω), which must vanish since (26)
has been proved to be the equation for the extremum function.

Transforming (27) in terms of f(z) and using (28) and (29) we find
that the extremum function statisfies the differential equation

(31)
D

coY(l - ωf(z)f z(z - If (1 - ζzf '

where the constants au a2, D, ft and β2 are obtained from (27) in the
following form:

(32) D= l(r2lC[ a±iC(JCl 2-1))

and

β=l+ωφ"{ω)lφ'(ω)-λωφ'(ω) .

One further finds from (33) and (34) that Kα,| = l and
In order to fix λ which remains arbitrary, as yet, we need the geometry
of the extremum domain. In particular we prove the following.

THEOREM. If f(z) is a function of the class S for which \f'(ζ)\ is
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either a maximum or a minimumf then f(z) maps the unit circle \z\ <C 1
onto a slit domain.

Proof. If the theorem were not true, then there would exist a
point Wo, | T F O | < 1 such that a neighborhood of WQ is contained in
|TF|<^1 and does not belong to the image domain. In the variation
(16) taking Wo and Wv to be two such points we get the following
variation formula for f(z):

(35) f*{z)=A*)+?tlJ^v %ΓS ,

v=o L f(z) -f(zv) 1 -f(z)f(z,)

The requirement that for all f(z), f(ζ)=f(ζ)=ω, yields that

(36)

and the condition for the extremum of \f'{ζ)\ leads to

(37)

Thus, because

1 2 ^ ω
—J(zv) ϊ—ωj(Zv)

we see that the extremal function satisfies the equation

But this is impossible since the left hand side has a second order
pole at z=ζ, where as the right hand side has only a first order pole.

As a consequence of this theorem it follows that (24) can always

be assumed to hold. Indeed, if it were not so, we could find no point

zλ in \z\ <I 1 such that \Aλ\ φ \Bλ\. Hence, because Aτ and Bτ are analy-

tic functions of zι and as equality is to hold for all z1, we have

(39) A(ω, f(z))

(39) gives the following differential equation for f(z):

(40) /ωr«(C) - μ&fiQ)
f/2(ζ)Λζ)f(z)(f(z) - ω)(l - ωf(z))

z(z-ζ)(l-ζz)
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But the function given by the differential equation (40) does not
map the unit circle onto a slit domain, because at one end of the slit
f'{z) will have a first order zero. Hence the right hand side of (40)
should have a second order zero on the unit circumference. Since this
is obviously not so, we have shown that (24) can always be taken to
be valid.

We have thus shown that all extremal functions f(z) which belong
to S, and for which \f\ζ)\ is a maximum or minimum, satisfy the dif-
ferential equation (31). As the extremal function f(z) maps \z\ <I 1 onto
a slit domain, at one end of the slit f\z) will have a first order zero.
To this zero of f'{z) there need to be a corresponding zero on the right-
hand side of (31), and as it is on the unit circumference |z| = l, we
must have βr=βχ=eiφ in (31). Further, because the slit will make an
angle 0 with the unit circle such that \θ\ < π, we get from simple
geometric considerations and the fact that the right hand side of (31)
has no pole at any point on the unit circumference that a1=ai=eiθ.
Geometrically this means that the slit starts from the unit circumference
|Wn = l, making an angle π/2 with it.

As a result of the equality of au <xz and βu β2, we have from (33)
and (34) that

f (ζ) 1—|ω|-

and

(42) ^ 1 ^ ^

Eliminating λ from both these equations one finds that, at the fixed
point ζ, the extremum function satisfies the equation

ζf (

The differential equation (31) now reduces to

(44) f\z){M* ± M)3 {i±\ω\γ _{i^\ζ\γ _ C ΐ
Λz)(Λz)-ωγ(i-ωf(z)Y * c z{z-ζ)\ι-lzγ '

where on each side either the upper or the lower sign is to be taken
at one time.

From (44) one can get the information regarding the nature of the
extremum domain. On account of the slit character of the extremum
domain, the unit circumference |TF| = ]/(^)| = 1 is definitely a part of the
boundary. Further, if z=ew we get from (44) that
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)o> ± \ω\Y (\Ψ \ω\f

is real. Hence, writing W(t)=f(z) and making a proper choice of the
parameter ί, we can put it in the form

(45) W (Wώ± W d±M)2= C
w (w-ωγ(i-ώwγ ω

C being some real constant. We now observe that this is an ordinary
differential equation of the first order and hence has only one solution.
Further, the straight line W=r\ω\ld>, where r is a real parameter, does
satisfy the differential equation. Since there is only one slit, this line
corresponds to the slit and we conclude that the boundary of the image
domain consists of the unit circumference and a radial slit pointing in-
wards at the points ± \ω\jω.

Taking the square root and integrating (44) we obtain

(46) Γ± log-^f t ^ . +logj + ^ ) l + c o n s t .L Vf{) V l-Vω f(z) J

The various possibilities arising from different combinations of signs
on the two sides of (46) are to be taken in such a way that the singulari-
ties at f(z)=ω and z=ζ on the two sides of (46) balance each other.
We are thus left with only four possible combinations which after some
simple algebra give rise to the following equations for the extremal
functions:

(ω-\ω\f(z)y (ζ=f\ζ\zY

and

(ω+\ω\f(z)Y (ζ±\ζW

Equations (47) and (48), respectively, give rise to the following
values of

( }

and
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(50) / ' (C)= ω -1—'£-' —--'•
u c i±lci i - M

As |ω| <1 |Cl, one easily sees that the maximum value of \f\ζ)\
given by

and that the function f(z) corresponding to it is given by

(52) '

Also, the minimum of \ff(ζ)\ is given by

7 ( c ) ϊ T i c ί ϊ ΐ μ '

and the function corresponding to it is given by

(ω-\ω\f(z)f

We have thus proven the following.

THEOREM. Let S denote the family of regular univalent functions
f(z) defined in the unit circle \z\<Ll such that \f(z)\<Ll, /(0) = 0 and,
for some fixed point ζ in \z\<Cl, f(ζ) = cυ Then the maximum and
minimum values of \f\ζ)\ are given by

and the corresponding maximizing and minimizing functions are, respec-
tively, given by the equation

(56) (l±\ω\Yωf(z)_ (lτJCl)X_
(co±\ω\f(z)Y (ζψ\ζ\zf '

where the upper signs on both sides give the maximal function and the
lower signs on both sides given the minimal function. The boundaries of
the maximal and the minimal domains consist of the unit circumference
together with radial slits starting, respectively, at the points ± \ω\jώf the
end points of the slits being the images of the points qp \ζ\Γζ by the cor-
responding functions given by (56).
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We now remark that we could as well have tried to solve the fol-
lowing problem:

In the class $ of regular univalent functions f(z) in \z\ <I 1 statisfy-
ing the normalization /(0) = 0, |/(z)| <i 1 and, f(ζ) = ω at some fixed point
C in 1̂1 <!1, to find the function which maximizes |/(/;)| at some ηφζ
in | s | < 1 .

The existence and uniqueness of the solution is easily proven. It
can also be readily shown that the extremal domain will be a slit
damain. The variational equation for the extremum as obtained from
(17) can be written as

(57) sjJ["^(^i> /fe)) __ΰnB(<ϋi, f(z0)) + α ^ , / ^ ) )
IL ωι co1 cυ1

where ωι=f(η)9 and we have replaced φ(ω) by ζ and Wo by J\z0),
φ{W*)=z*, ψf(W0) by lifted, and similarly for Wλ.

By arguments similar to those which lead to the equation (26) we
can again assert that if

(58) c 0 = ^ Δ ^ Δ

then the extremum function will satisfy the equation

(59) CQ fW(ύ

where μ is independent of f(z0).
As in the lemma we can again show that μf(ζ)!Γ(ζ) and μζ are

real. The differential equation for the extremum function can now be
written as

f(z)(f(z) - ωjQXz) - ω)(l - ωf{z)){l - ω

where |c1cZ1| = l, and l̂ ê -l = 1 and cu dι, eu e, and K can be determined
by a comparison with (59).

From geometric considerations and the fact that the extremal domain
will be a slight domain, one easily deduces that c1==d1=eiθ and eL=e2=eiy.
These conditions lead to
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(61) [(l - K H ( i -h μ a ) - M I - |α)|a)(i 4- | ω i |
a ) p = 4 | ( i - μ L | > - ^ ( 1 - μpHi 2 ,

and

(62) [(1 -|? | a)(l4- l C i 2 K - K ( l ~ ICI2)(1 + M a ) ] a =4|( l - l^|a)C«χ-/<?(! - ICla)l3,

where

and

Eliminating // from (61) and (62), we get

(63)
/(C) ( l - 7

From the slit character of the extremal domain and geometric con-
siderations we prove that the boundary of the extremal domain consists
of the unit circumference with a slit that starts at right angles to the
circumference. But we can no longer claim that this slit is radial.
Also, because the integration of (60) involves hyperelliptic integrals it
is not possible to get analytically any further information about the
nature of the image domain. However, if one could show that the
image domain is symmetric one could obtain an explicit result at least
when ζ and η are real. We are thus lead to reformulate the problem
for bounded symmetric univalent functions.

4. Symmetric bounded univalent functions. We now want to con-
struct a variation which keeps the unit circumference and the real axis
fixed and which maps the origin into the origin. Evidently such a
variation will be a combination of the variations considered in §§ 2 and
3. One easily deduces that any such variation will be of the form

(64) W*~=W+ a^W - a^W*
ι w-w0 i-wow w-w0 i~wow

where O(pι) can be suitably chosen.
In order to be able to get a variation which can take account of

some side conditions we need to take a linear combination of the vari-
ational terms in (64) with different αn and WQ. Thus, we get the
variation

(65) w*=w+ t\ - ̂ W(i-wη _
L(WWJ(1WW)
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The variation formula for f(z) in this case is

(66) r(*)=M

άyf^(?)z(l-z>)_f(zv) Ί
(1 -zvz)(zv -z) zyf

n(zj) J+

(1 -zvz)(zv -z) z

If we require /*(C)=/(C)= c"ι C real, we get, using that f(z) is
symmetric,

(67) S R Γ Σ J - -

Also, if η is real, then the condition for the extremum of f(η) = ωL

is

(68)

Thus the extremum function satisfies the equations (67) and (68).
By Lagrange's method of multipliers we see that the equation satisfied
by the extremum function is

(69) zf'Λ*)\ (i-^) - ^ λ{l-ω>) _ Ί
f(z)

(rj-z)(l-7/z) (ζ~z)(l-ζz)

where

and

It is easily proven in this case that the image domain is a slit
domain. Thus, as in § 3, from geometric considerations and the fact
that the image domain is a slit domain we conclude that numerators on
both the sides of (69) should be perfect squares. We thus have that
either

(70)
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or

(71)

and either

(72)

or

(73) (1-0)0(1 + ω)=^λ(l-ω){l-\-ω[) .

The differential equation finally reduces to the form

( 7 4 ) (1 ±ω^ω-ωMl -cυωJfHβKfiz) Ψ If
(1* ωj(z))(ω - ϊ Ϊ j

where the upper or the lower sign on each side is to be taken at one
time.

The alternative in (70), (71) and (72), (73) arises on account of the
ambiguity of sign of the root in (74).

In the left hand side of (74) let us make the transformation

(75) ^ |

according as we take the upper or the lower sign in (74). Then the
left hand side transforms either to

or

respectively, where βι = (l + ω)l(l — ω) and

Similarly, making the transformation

(78) z=Ψ

y-1

according as we take the upper or the lower sign in the right hand
side of (74), we get either
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L-C7)(C-7)/ 7 9 )

or

ί 8 0 )

respectively, where γι = (l-hζ)l(l — ζ) and γ2=(l + η)j(l — ΎJ). We note that
(77) is obtained from (76) by changing the signs of ω and ωu and
similarly (80) is obtained from (79) by changing the signs of ζ and η.
Thus it is enough to consider the cases

where

and

Γ(
1 L

Putting

and

o

we have from (81), on integration,

cλv=cλuΛ- const. ,

where p(v)=W2 and ??*(%) = X, p and ?)* being the Weierstrass's p-
functions.

Since /(0)=0, j\ζ) = ω and f(ή) = ωu we get, using the periodicity
and homogeneity property of the p-functions,

(82) W,=~ι-X.
cl

Transforming back to z and f(z), we can write (82) in the form
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d 3 I \i+ζ

Since /(0) = 0 we have from (83) that

( 8 4 ) 3 1 V l 4 - ω / Kl+ωJ) c\L 3 I Vl + C/ Vl + ^ / ί J

This gives us ω1? but it involves a which is not yet known in terms
of ζ, ω and ^. Towards this we observe that on subtracting (84) from
(83) we have

c\

and because f(ζ) = ω we have

and finally

(86)

Now, putting z=η and f(ή)=ωu we get for ω{ the required equation

(87) (\±ωfah^^JχΛ-ζf ̂

Observing that all the possible extremal functions could be obtain-
ed by changing the signs of ω, ωu ζ and η and taking all the combi-
nations, we see that

(88) iχ±ωf ___m___=± _? a±σ

ω (l±ftz)Y (l±zY C

gives all the extremal functions and

(89) Q C '

the corresponding values of ωu where at one time either the upper or
the lower sign is to be taken on each side of (88) and (89).

Further, on account of the continuity and univalence of f(z) on the
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real axis, f(z) will have the same sign or different sign as z according
as ω has the same or different sign as ζ. Thus (88) and (89), respec-
tively, reduce to

ω a±f(z)γ

and

(1±JD)2 _ωλ = η

The following different cases need to be considered: (i) ω > 0 ,
C > 0 and η > 0 (ii) ω > 0, ζ > 0 and η < 0 (iii) ω > 0, C < 0 and η > 0
and (iv) ω > 0, C <C 0 a n d ^ <C 0 We observe that (ii) can be easily
deduced from (i) for in this case ω{ <^ 0, and the maximum and the
minimum of ωλ in this case will be the same as the minimum and maxi-
mum of ωλ in (i). A similar relationship exists between (iii) and (iv).
So we need to consider only the two cases (i) and (iii).

We now observe that if \x\ <C 1 and x is real then x + llx is a
monotonic decreasing function of x, and also that

(92) 5 + 1 / ^ - 2 ^7j+ l\η + 2
C + ϊ / C - 2 C+l/C + 2 '

according as 57 ̂  £ > 0 .
With these considerations we can prove the following.

THEOREM. Let Σ be the class of bounded, symmetric univalent func-
tions f(z) which are normalized so that | / (z) |<I l , |£ |<I1, /(0) = 0 and
f(ζ)=ω where ζ is a fixed real point in | z | < ] l . Further let ω^>0,
ζ > 0 and for some real point rj let f{yj) = ωx. Then the maximum and
the minimum values of ωλ, when η^>ζ, are given by

ωv + \\ωλ ± 2^-ηj-1/5_=F 2
C + Ϊ /C I F2 '

and the corresponding maximizing and minimizing functions are respec-
tively given by

(94) Q±°>Y Λz) = z

ω (l±f(z)f (i + zY C '

tvhere the upper signs on both sides give the maximum and the lower
signs the minimum. However, if η <C C then the maximum and minimum
values given by (93) and the corresponding function given by (94) are
interchanged.
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If ω <^0, ζ <^ 0 and η ̂ > 0 then the maximum and the minimum
values of ωλ are given by

(95)

and the corresponding maximizing and minimizing functions are given
by

(96) i1

ω (l±f(z)Y (l±zY C '

where, as before, the upper sign on both sides gives the maximum and
the lower sign gives the minimum.

The boundary of the extremal domain in each case consists of the
unit circumference with a radial slit starting either at W=l or W= — l.
The length of the slit differs in various cases.

My thanks are due to Professor M. Schiffer for his interest and
help in the progress and completion of the paper.
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