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1. Introduction. The wave equation

admits solutions of the form

Uκ,μ=Aκ,μ(ξ)Bκ,μ(V)Cκ,μ(φ)

if the coordinate system is such that separation of variables is possible.
ξ, η and φ are the three independent variables, and /c and μ represent
arbitrary complex parameters. In general Uκ,μ will not be regular and
one-valued over the whole space, but will be so for special values of /c
and μ. Let ξ', ΎJ and φr be functions of ξ, τjy and φ resulting from a
translation or rotation of the coordinate system then a relation which
expresses Uκ^(jς, η;, φf) as a summation of terms of the form UKtμ(ξ, η, φ)
is called an addition theorem.

Addition theorems for cylindrical and spherical coordinate systems
are well known. These are the addition theorems for Bessel and Hankel
functions, Legendre polynomials, spherical harmonics, Mathieu functions
and spheroidal wave functions (see Meixner and Schafke [5] and Erdelyi
[2]).

It is proposed to derive such addition theorems for those functions
of the paraboloid of revolution which are regular and one-valued in the
whole space. As will be seen subsequently, these restrictions are not
always necessary. That such theorems might exist can be inferred from
the invariance of ΔU under rotations and translations of space, and from
the fact that the family of solutions that are everywhere regular and
one-valued will be mapped onto itself by motions of space.

It is possible to derive several of these theorems by using known
addition theorems. For example, it is possible to derive linear relations
between the functions of the paraboloid of revolution and spherical
harmonics. Since an addition theorem under a rotation of coordinates
is known for the latter functions, it is possible to derive one for the
functions of the paraboloid of revolution.

2. The functions of the paraboloid of revolution* The introduction
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of the parabolic coordinates

cosφ

into the wave equation

leads to the equation

1 \d-2ξdU+ o^v.+
2(ξ+η)\dξ dξ dη dη 2ξη

The method of separation of variables then shows, that the solution U
can be expressed in terms of functions of the type

In the notation of Buchholz [1], these can be represented by

Γ(l + μ)

and

In case μ is an integer, wlί( — 2ikξ) must be derived by a limit process
from the above definition. Similarly

and

When μ is an integer the function m£(z) is regular and single-valued
over the entire space ivφz) in general is neither single-valued nor
regular.
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For the case χ=rc+ μ the function m$(z) can be expressed in

terms of the more familiar Laguerre polynomials

However, the more general notation introduced by Buchholz in his book
on confluent hypergeometric functions will be used throughout this
article.

The generating function for the functions

^ n = 0, 1, 2,

is known as the Hardy-Hille expansion (for proof and additional reference
see [1].) For the sake of completeness, it will be stated as a theorem.

THEOREM 1. For | ί | < l , μφ-\, - 2 , •••

(1) G , ( P , ( ) - Σ * ( ? ) ( - ( ) • -

The case in which μ is a negative integer must be treated with
some care. From the limit relationship [1]

l i m m μ

 1 + f l ( - 2 i k ξ ) m I M

 λ+I

— m ) ! J w+

 3

,0 , n <^m

it follows that

lim Gμ(P, t)=(-t)mGm(P, t)enmφ .

A relationship between the spherical wave functions and the para-
bolic functions can now be established. The Fourier expansions of a
plane wave in cylindrical and spherical coordinates respectively are [4]

exp (ik[z cos Ψ + p cos φ sin ¥'})= Σ imemjm(kp sin ^ ) e ^ c o s * cos mφ ,

e i S r c o s v = / . . ^ Σ (2n + l)inJn+ll,Xkr)Pn(cos γ) ,
' 2kr o
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cos r=cos θ cos?F + sin θ sin Ψ cos φ ,

m } ;Σ ;-P?(cos ί)PJ(cos ?F) cos mφ
l

Comparison of coefficients of cos mφ leads to

exp (ikz cos Ψ)Jm(kp sin Ψ)

m=0, ±1, ±2,

where

jn{kr) = J π Jn+iiiikr) .

If we substitute ~~ for cos Ψ here, introduce parabolic coordinates,

and then use Theorem 1, we obtain an expression for GV(P, t) in terms
of spherical harmonics :

P1n(

( 2 ) Gm(P, t)= f ^ ' m (2^ + l)^"-~^ί Jn(kr)Pΐ (cos fl). J ^ *

cos θ=

The right-hand side of (2) can be expanded in a power series in t by
using

tml*(l + t)

The left-hand side of (2) has been defined as a power series in t by
equation (1). Comparing coefficients of equal powers of t in this series
leads to

β?(P)= Σ a{n\ m, s)jn(kr)P™(cos θ)e-im* ,
n = m

( 3 )

α(ίi; m, s ) =
m! J -O (m + l)(r)(s —r)! r!

m = 0 , 1, 2,
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That the above series converges everywhere follows from the fact that
a(n; m, s)P™(cos θ) behaves like a power of n for large n, but jn(kr) is

In order to find the inverse to the above relationship, the variable
wt is replaced by w in (2). From the resulting power series expansion

1 — w
it now follows that

( 4 )

_ _ x ^ ^ib + nι + ί.1^

n =l+m (n-hm)l
h(n;m, l)jn(kr)Pi:(cosθ)e- ίmt>

where

b(n; m, l)= m=0, 1, 2,

The following vectors and matrices can now be defined :

A(m) =

l-s)l(m + s)l

' Oo(m) \

a2(m)

! jn(kr)P™(co$ θ)e
l

~imφ

B(m) =

. J

fb(m; m, 0) 6(m + l; m, 0) δ(m + 2; m, 0)

0 6(m+l;m, 1) 6(m + 2; m, 1)

C(m)= 0 0 δ(m + 2;m, 2)
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With this notation the system of equations represented by (4) can be
written as

( 5 ) A{m) = C(m)B{m) , m«=0, 1, .

In order to express the spherical functions in terms of parabolic func-
tions it is necessary to invert the system (5). The inverse of the matrix
C(m) is given by

ι\ m, 0) γ(m; m, 1) γ{m\ m, 2)

0 ?(m + l; m, 1) γ(m-\-l\ m, 2)

0 0 r ( m - h 2 ; m , 2 ) •••

where

, n (-)n+m+ι(2n + ΐ)
r(n: m, ί)= \ / v /

To prove the assertion that this matrix is really the inverse of C{m),
it must be shown that

k

Σ r ( ^ + i; m, i)b(m + k; m, i) = δJk .

We have
A"

k; m, ί)

= * ( - ) ί + .'(2m + 2i +1) (2m + A: + i)\
h \i -j) l(

y - .,Fτ(j-k, 2m+k + j + l;
+ 2jy "

= ί 0 ,
(k-j)\(2m + 2j)\

Use of the inverse matrix allows one to write

( 6 ) jn(kr)Pζ(cos θ)e~mφ

Σ ( )
«-» (,?' —s)!(m + s)!

One can now state

T H E O R E M 2. F o r m = 0 , 1 , 2, •••
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) = Σ a>(n; m, H)j7Ί{kr)Plι{cos 0)e~ίmφ ,

m!

jn{kr)P™{cos0)e-ίmφ

{n — m)\ j = n-m {j —

It is not permissible to interchange the two summations in (6) because
the coefficient of the inner summation is 0{l/j). Although the series
does not converge absolutely it can be shown to converge conditionally.
The inverse Laplace transform of the Kummer function is given by [2]

- 1V1
. z dz

2πi }c zm+ι

where C is a circle enclosing the origin and 2=1. If ΩT{P) is expressed
in terms of Kummer functions, then (6) can be rewritten as

. i f f ^ ^ L > Γ i + l _ l T
{2πif]c)c {zζ)m+ι Lz ζ ZζJ

On sufficiently large circles the quantity +__ — | becomes suf-
Lz ζ zζJ

ficiently small so that an interchange of summation and integrations is
permissible and the series converges. One then obtains the double
integral

-m)l (2kv/ξrj)m+ι(2n+l)l

I f f p 2 t t ( i j { - f ί ) Γ 1 1 1 ~ \ n - m

πiγ)o}o> (ζz)m+ι Lz ζ zζJ
U +

(2πiγ)o}o> (ζz)m+ι Lz ζ zζ

ζ z ζzJ

As consequences of Theorem 2 and the integral relations [4]

sin θ dθ = - A(n + ™)L_ δn
(2 l)( — m)\
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sin θ m(n — m)l

one can state the following.

COROLLARY 1.

sin Odθ= f[a(n; m,

θ) sin θdθ=a(n; m, s)jn(kr)

0__ za(n; m, s^Me
Jo sin θ n=m m{n — m)\

= Σ Φ ; rn, s)a(n; m, a)3l{

3. The addition theorem resulting from a translation of the axes
along the axis of symmetry.

Since z is the axis of symmetry one can introduce the translated
coordinates

It follows from Theorem 1 that

(7, βλp, o- μ

In particular, for ^ = ^ = 0, £=£0 Theorem 1 yields

exp Γifcfo J - - 1 = ( 1 + ί) Σ < + i/ 2 ( -2iΛf0)( - t)n .
L 1 + ίJ rc=o

Using this expression in (7), expanding and multiplying the power series
in t and comparing coefficients, we obtain the following.

THEOREM 3.

( / J / ^ J

μφ-h -2 , ••• w=0, 1, 2, . . . .

The case in which μ is a negative integer can be handled as a limiting
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case of Theorem 3. By differentiating both sides with respect to ξ0 at
?o=O one obtains the following.

COROLLARY 2.

d
d(2ikξ0)

In particular for rj = O one obtains from the above

n\

Aikξnl

J. m£+ ( 1 + μ ) / 2(
d{2ιkξ)

!ί+ 0 + μ ) / 2 ( - 2ikξ)Γ(l

j-o 7

It is possible to define a vector

and a matrix

0 0

α10 απ 0

where

" " " l o ,

such that Theorem 3 can be restated as follows.

THEOREM 3\
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4* The addition theorem resulting from a translation of axes perpen-
dicular to the axis of symmetry*

The translation can be assumed to be in the ^-direction without
loss of generality. Introducing the new coordinates

x=x'-δ , y=yf , z=z' ,

R=Vf + ̂ ~^2f)d'cos~ψ ,

p-δe'

P=(x, y, z) ,

one obtains from Theorem 1

Under the condition p^> δ one can take advantage of the addition
theorem for the Bessel functions

and obtain

tn/2

( 8 )

The case where μ is an integer must be handled as a limiting case.
To determine the addition theorem one must expand both sides in powers
of t and compare coefficients. Using

,_w/2 7 (ZkδVΊ \ _ v a t*
\ 1 _μf / s=0

r=o (s — τ ) ! τ ! i

one obtains the following.
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THEOREM 4.

H Σ Σ g,-3,norn(P') + Σ (-)n Σ gs-^r\n ,
l j O 0 j 0

for μφ ± 1 , ±2, ••• . For μ=m, with m a positive integer,

s s s j + m

( \sOmCP\ V V Π Qn + m( p ' \ _i_ V V π ( \nΓ)n-m (-p'\p li(n-m\φ'

For μ=—m

\immΩttP)^^~meMΦ' ^2
Another method by which such addition theorems can be derived is

to take advantage of a theorem by Friedman [3], which is an addition
theorem for spherical harmonics under translations of the coordinate
system. This theorem in combination with Theorem 2 will yield an
addition theorem, but in a very cumbersome form. Conversely the
theorem for spherical harmonics could be derived by using Theorems 2
and 4.

A similar plan will be used in the next section. The addition
theorem for spherical harmonics under rotations of the coordinate system
in combination with Theorem 2 yields the corresponding theorem for
parabolic functions.

5 The addition theorem resulting from a rotation of coordinates.
Since a rotation about the axis of symmetry, namely the z-axis,

yields trivial results, a rotation about the y-axis will be used without
loss of generality. Let

z=z' cos Ψ-x'sin Ψ

( 9 ) x=x' co

Under this rotation the following addition theorem holds for the spherical
harmonics [2]:

n /(yj 171 \ I

~ι—n9ι(n+\ϊ\)\ 2n

where

YcoB YΊi,m
n+ιy\ 2/ v 2

tFλ( — n — l, n — l + 1; 1—m—l; cos2—]
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for ra-fZ<I0, and
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for

• .,Fλ\l — n, n +1 +1;

and where

; cos2

Qι'-

Using the above in conjunction with Theorem 2 one can state the full
addition theorem.

THEOREM 5. Under a rotation of coordinates (9) the following state-
ment holds:

oo γι oo ' n j - l T l Γ / , I 7 I \ Π )

Σ ( - )s ,,--^~( )!(

6 The infinitesimal transformations. It is possible to restate the
addition theorems for infinitesimal transformations. The theorem for a
translation along the z-axis can be rewritten from Theorem 3 :

where

- f c ; 1; z

For small values of ξ0, namely dξ0, it follows that

- y

and that

(10)

1 0 0

2 1 0

2 2 1

. . V

\
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where / is the identity matrix.

THEOREM 3". Consider an infinitesimal translation along the z-axis
such that

Then

where T(dξ0) is given by (10) and Vμ(P) is as defined in Theorem 3'.
Similarly one can find the addition theorem for translations in the

^-direction from expression (8):

For a differential translation dd this expression reduces to

G ( T) J.\ f^ (ΊD' +\ \ rCaO Γ±/^i / Γ)/ j \ f^ ί TJf 4-XΛ
μ\-*- 1 v) \JΓμ\-L j L) ~r [^ί/KJΓμ + ^yJ ? C) \JΓμ—-[\1Γ y t/yj

from which it is possible to state

THEOREM 4'. For an infinitesimal translation of coordinates given
by

x—xf — dd , y=yr i z=zf

the following holds:

*( n - i n~ί +i / )

For negative integral values of μ one can use limit processes.
To derive the analogous theorem for a rotation of coordinates it is

first necessary to derive the addition theorem for the spherical har-
monics. This can be done conveniently by starting with the following
definition of the spherical harmonics [2] :

r rn+ι

where

D= d D= d D = d

dz ' " dx ' 3 dy

Under the rotation
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x'=z sin Ψ -\-x cos Ψ

y'=y

zf—z cos Ψ — sin Ψ

these differential operators are also transformed :

,= -D[ sin y + D; cos Ψ

Let

D2-iD3=Q ,

Then it follows that

[ 1 -\n-mΓ

D[cosΨ+ L smΨ(Qr + Q')\ I - Ό \ sin '/

+ 1 cos ?F(Q' + Q') + I (Q' - Q')T .
Δ Δ Δ

The existence of the operational equivalence

QQ1 - = - £ > ? !
r r

Q ) - = J — = 0 .

follows from

If Ψ is taken to be a differential angle d^ in (12), then one obtains
from (11)

(13) e-ίmφP%(cos θ)=e-imφ'P%(cos θ')

Equation (2) written in the form

G,U(P, t)

m + 1; J
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combined with (13) yields

Gm(P, t)=Gm(P\ t)-dl
9 tir

•1; m + 1; -*• )
1 + ί/

ml(l-\-tγ

(14)

+ dΨ Σ in^V
2 n = m

In order to be able to rewrite the above as generating functions one
can make use of the differentiation formulas [2]

\z\lz)JF1(mn + l, m±n\2; m + 2; z)]
dz

; z)

[ ^ ( m — n — 1, m-4-n; m; z)]
dz

m

Using these in (14) one obtains

GJP. t^GΛP', t)+

from which one derives

GUP, t)=Gm(P', i ) + ^ [ ( m + l)GM+1(P'( ί) + ί(l + ί)^(?»+1(P', ί)

One can now state the following.

THEOREM 5r. Under the infinitesimal rotation
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tf=x + zd¥ , y'=y , z'

one has the formula
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